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Abstract. Survival analysis is applied in a wide range of sectors (medicine, economy, etc.),
and its main idea is based on evaluating the time until the occurrence of an event of interest.
The effect of some particular covariates on survival time is usually described by the Cox
proportional hazards model and the statistical significance of the impact of covariates is
verified by the likelihood ratio test, the Wald test, or the score test. In addition to standard
tests, appropriate higher-order approximations based on Barndorff-Nielsen and Lugannani-
Rice formulas are used for more accurate approximations. In this paper, comparison of
these tests’ size and power for small sample sizes is performed on simulated datasets with
various proportions of right-censored data, distributions of baseline hazard functions and
different types of covariate—continuous or discrete.
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1. Introduction

Survival analysis plays an important role in the statistical analysis of time-to-event

data sets mainly in medicine [20]; however, applications can also be found, e.g. in

economy [18], or materials engineering [14]. Its main idea is based on the survival

time, which is the time to the occurrence of an event of interest [11]. Incomplete

information about survival time leads to censored observations [17], namely, the most

common right-censoring is considered in what follows.
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The effect of some covariates on survival time is usually investigated by the Cox

proportional hazards model [11], and its significance is tested by the likelihood ra-

tio, the Wald test and the score test [9]. These tests are asymptotically equivalent;

nevertheless, numerically they give different results in applications depending on

the data and the sample size [4]. Chandra, Joshi (1983) [10] proved that the score

test is more powerful than the other two for large samples. Yi, Wang (2011) [29]

compared these tests under a specific design and based on the simulation study,

the Wald test was recommended. The mentioned tests represent approximations

of the first order. Second-order asymptotic methods [6], [15], [31] provide useful

tools for the improvement of the first-order methods. Pierce, Bellio (2015) [22] ap-

plied the Barndorff-Nielsen adjustment [3] and the Skovgaard statistic [26], [27] using

the nuisance parameters approach and showed that the higher-order improvement

is insensitive to the censoring model. Bělašková, Fišerová (2017) [4] showed the im-

provement of the accuracy of the p-value for small sample sizes using the Barndorff-

Nielsen approximation and the Lugannani-Rice approximation [21] in combination

with the Wald statistic in the Cox model with one covariate.

The main aim of this paper is to investigate the behaviour of the power and size

of tests mentioned above for a single covariate case, extending [4]. Tests comparison

is based on an extensive simulation study. There are many procedures on generating

survival data, differing mainly in the type and distribution of censoring, the genera-

tion of survival times, or the time dependency of the covariates. The basic procedure

for the simulation of survival times dealing with fixed covariates and with an expo-

nential, Weibull and Gompertz distribution of survival times is proposed in [5], [23].

Another issue of simulating survival data is related to censoring, e.g. see [1], [12],

[19]. The approach described in [28], which guarantees a predetermined probability

of censoring for an individual observation, has been applied here.

The paper is organized as follows. Section 2 contains the description of the Cox

proportional hazards model together with test statistics and their corresponding

second-order approximations. Section 3 deals with the power and size of tests and

discusses possible ways of comparison of the studied tests. Section 4 outlines the set-

tings and the results of the performed simulation study. Section 5 is dedicated

to conclusions and discussion notes.

2. Test statistics in the Cox proportional hazards model

The Cox proportional hazards model has its base in the hazard function de-

fined [11] as h(t) = lim
∆t→0

P (t < T 6 t+∆t | T > t)/∆t, where T denotes the time

to an event of interest. This function determines the intensity of the occurrence of
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the observed event in time, under the condition that the subject survived the time t.

Considering one covariate x, the hazard function for the observation i can be de-

fined [11] in the form h(t, xi) = h0(t) exp(xiβ), where h0(t) is an arbitrary baseline

hazard function and β is a regression coefficient. The coefficient β is estimated using

the maximum likelihood method based on the partial likelihood function [11]

(2.1) L(β) =

n
∏

i=1

( exp(xiβ)
∑

j∈Ri
exp(xjβ)

)δi
,

where n is the number of observations, Ri = {j : tj > ti} is the risk set and δi is
an indicator function for censoring, i.e., it equals zero for censored observations and

one otherwise.

The key assumption of the Cox model is that the hazard ratio is constant over

time [24]. In addition to that, the assumption of no ties for the event times, i.e.,

events are not grouped, is considered. The violation of that assumption could be

dealt with using the Breslow approximation [7] in the case of a small proportion of

tied data, otherwise using the Efron method, or the exact method [13]. Moreover,

independence of the censoring and the survival times is assumed [11].

The null hypothesis H0 : β = β0 against the alternative HA : β 6= β0 is tested

by the likelihood ratio (ZLR), the Wald (ZW), or the score (ZS) test statistics [9]:

ZLR = 2[l(β̂)− l(β0)],(2.2)

ZW = (β̂ − β0)
2 · J (β̂),(2.3)

ZS = [l′(β0)]
2 · [J (β0)]

−1,(2.4)

where β̂ denotes the maximum partial likelihood estimator of β, l(β0) stands for the

logarithm of the partial likelihood function (2.1) evaluated at the point β0, l
′(β0)

stands for the first derivative of the logarithm of (2.1) and J (β̂) is the observed

Fisher information, given as the second derivative of (2.1) multiplied by minus one.

All three test statistics (2.2)–(2.4) have asymptotically a chi-squared distribution

with one degree of freedom under H0. They can also be expressed in the form having

asymptotically a standard normal distribution N (0, 1) under H0, namely

Z∗

LR = sgn(β̂ − β0)
√
zLR,(2.5)

Z∗

W = (β̂ − β0) · [J (β̂)]1/2,(2.6)

Z∗

S = l′(β0) · [J (β0)]
−1/2.(2.7)

In addition to these tests, it is possible to use higher-order approximations [3],

[4], [15], [31] to the cumulative distribution function (cdf) of a standard normal
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distribution N (0, 1). Particularly, using the Barndorff-Nielsen approximation, the

approximate cdf is of the form

(2.8) Φ

{

c1
√
zLR +

1

c1
√
zLR

log
c
√
zq

c1
√
zLR

}

;

the formula of the Lugannani-Rice approximation is expressed as

(2.9) Φ(c1
√
zLR) + ϕ(c1

√
zLR)

(

1

c1
√
zLR

− 1

c
√
zq

)

.

Here zLR stands for the likelihood ratio test statistic value, zq stands for the Wald or

score test statistic value, Φ and ϕ denote the cdf and the probability density function

of N (0, 1), respectively, and c1 = sgn(β̂ − β0). Further, the equality c = c1 holds for

the Wald test statistic used in the approximation. Otherwise, using the score test

statistic leads to the equality c = sgn(l′(β0)).

3. Comparison of tests

Test statistics are usually compared in terms of the size and power of tests. Let

the null hypothesis H0 : β = β0 be tested on the significance level α. The size of

a test corresponds to the probability of making a type I error, i.e., in the case of

a two-sided test it is given as P(Z > χ2
1(1 − α) | H0 : β = β0), or alternatively

P(|Z∗| > u(1 − 1
2
α) | H0 : β = β0), where Z or Z

∗ denotes the corresponding test

statistics (2.2)–(2.7), χ2
1(1−α) is a (1−α)-quantile of a chi-squared distribution with

one degree of freedom and u(1 − 1
2
α) represents a (1 − 1

2
α)-quantile of a standard

normal distribution. The power of a two-sided test determined in a given point β∗

is defined [16] as P(Z > χ2
1(1 − α) | HA : β = β∗), or alternatively as P(|Z∗| >

u(1− 1
2
α) | HA : β = β∗).

An asymptotic test property can cause disrespect of the nominal value α of the

significance level for a small sample size. The tests can be either liberal, when

the empirical size of the test (the rejection rate of true H0) is higher than α, or

conservative, when the empirical size of the test is smaller than α. For better com-

parability of the power of tests, it is therefore useful to consider the adjustment of

the power. The adjusted power [30] of a two-sided test in a given point β∗ is defined

as P(Z > (χ2
1(1 − α))adj | HA : β = β∗), differing from the power by the quantile

(χ2
1(1− α))adj, computed as a (1− α)-quantile of the individual test statistic values

calculated under the null hypothesis H0. The main advantage of the adjusted power

approach is the same empirical test size for all tests and approximations, which is

equal to the nominal value α.
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The theoretical power of three basic tests is based on the distribution of the test

statistic under the alternative hypothesis HA. In our case, the likelihood ratio,

the Wald test and the score test statistics [16] have asymptotically a noncentral

chi-squared distribution with one degree of freedom under HA. The noncentrality

parameter ψ can be determined using a Pitman-type alternative hypothesis [25],

[29] HA : β = β0 + n−1/2Ψ, where Ψ ∈ R. In general, the unknown parameter ψ

can be expressed using the Fisher information I1(β0) of one observation as ψ =

Ψ2I1(β0). Applying the equality nI1(β0) = I(β0), where I(β0) corresponds to the
Fisher information of a random sample of size n, together with an expression of Ψ

from the alternative hypothesis HA, we get the noncentrality parameter in the form

of ψ = (β − β0)
2 · I(β0).

The empirical size and power of tests can be determined as the proportion of re-

jection of the null hypothesis H0; true H0 in the case of the test size, false in the case

of the power of the test. The corresponding adjustment of the empirical power is

calculated similarly, except decision based on different critical values. Significant

differences between test statistics in terms of the size or power of the test can be

identified employing confidence intervals. These can be based on the confidence inter-

val for a binomial proportion [2], [8]. The absolute frequency of rejection of the null

hypothesis H0, denoted as a, follows a binomial distribution Bi(M,p), where M

is the number of trials and p is the success probability for each trial. Obviously,

the relative frequency of rejection equals p̂ = a/M . There are more possibilities [8]

how to construct required confidence intervals, e.g. the exact confidence interval, or

the normal approximation interval [2]. However, this approach brings problems re-

lated to the coverage probability for small sample sizes or the value of the proportion

near to zero or one [8]. For this reason, the Wilson interval, with bounds equal to

(see [2])

[

p̂+
[u(1− 1

2
α)]2

2M
± u

(

1− 1

2
α
)

√

p̂(1− p̂)

M
+

[u(1− 1
2
α)]2

4M2

]

/(

1 +
[u(1− 1

2
α)]2

M

)

,

will be used.

4. Simulation study

Simulation and all computations were made by the statistical software R, ver-

sion 3.6.1. The total number of 10,000 generated datasets M was considered and

the sample size n of the individual datasets was set to 20, 50, 70, or 100. The pro-

bability of being censored was set gradually to 0%, 20%, or 50% for an observation.
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The Weibull distribution Wei(λ, ν) was used with survival times given as [5]

survival time =
( − ln(U)

λ · exp(xβ)
)1/ν

,

where λ > 0 represents a scale parameter, ν > 0 stands for a shape parameter,

U is a random variable from a uniform distribution R(0, 1) and x is some covari-

ate. Within the performed simulation study, the parameters λ = 0.7, or 1.7 and

ν = 0.5, 1, or 2 were considered. The parameter λ is directly related to the length

of the survival time, i.e., λ = 1.7 represents longer survival time in comparison with

λ = 0.7. Further, the parameter ν characterizes the behaviour of the hazard function.

Namely, ν = 0.5 corresponds to a decrease of the event hazard, ν = 1 corresponds

to a constant hazard function, and in the case of ν = 2, the event hazard increases.

The censoring times were generated from a uniform distribution R(0, θ), where θ was

obtained from the equation [28]

P(δ = 0|θ) =
∫

D

P(δ = 0 | x, θ)fx(x) dx,

where fx(x) is the density function of the covariate x and D its domain. The prob-

ability P(δ = 0 | θ) of being censored was set to 0.2, or 0.5. The event times were
considered without ties. One covariate x following either a standard normal distribu-

tion N (0, 1) or a binomial distribution Bi(n, 0.5) was examined. The null hypothesis

H0 : β = 0 against the alternative HA : β 6= 0 was tested on the 5% significance level.

The main aim of the simulation study is to investigate the behaviour of the size

and power of three basic tests, i.e. the likelihood ratio (LiR), the Wald test (W) and

the score test (S), as well as the approximations, i.e. the Barndorff-Nielsen (BNW

and BNS, when the Wald and the score test is used, respectively) and the Lugannani-

Rice (LRW, LRS) approximations. Concerning the size of a test, particular attention

is paid to (i) the comparison of the size of tests with the nominal value α, (ii) the

magnitude of the test size deviation from the nominal value α, and (iii) the behaviour

under different settings (number of observations, probability of censoring, covariate

distribution, and type of the event hazard and the length of survival time). In the

case of the power of a test, the study is mainly focused on (i) the behaviour of

adjusted power curves under different settings, (ii) the behaviour of adjusted power

curves in the neighbourhood of the point β = 0, (iii) how fast the tests achieved

a sufficiently large adjusted power of 0.8, and (iv) the comparison of adjusted power

curves with a theoretical power curve for basic tests. Due to the symmetry of a power

curve with respect to the β = 0 axis, all power curves are plotted only for the

nonnegative values of β.

234



Based on the performed simulations, let us summarize the main results. First,

the size of tests will be discussed. The statistical significance of the deviation be-

tween the test size and the nominal value 5% was assessed using the 95% confidence

intervals. The relative frequency of cases when tests have been identified as liberal

(the confidence interval is above the nominal value) or conservative (the confidence

interval is below the nominal value) in all 72 configurations is presented in Table 1.

For both types of the covariate distribution, situations when the tests were liberal pre-

vailed. The Wald test was conservative in a few cases for both distributions. Other

tests were conservative only once for the discrete covariate. In general, the Wald

test was identified as the test with the most accurate test size (Table 1, Figure 1).

In contrast to the other tests, that accuracy was emphasized even for a small sample

size (n = 20) or higher probability of censoring, mainly for the continuous covariate.

However, we cannot state in which situations the Wald test is liberal in general.

x test LiR W S BNW BNS LRW LRS

N (0, 1) liberal 0.806 0.556 0.806 0.806 0.819 0.806 0.819

accurate 0.194 0.417 0.194 0.194 0.181 0.194 0.181

conservative 0 0.028 0 0 0 0 0

Bi(n, 0.5) liberal 0.667 0.486 0.819 0.639 0.722 0.639 0.722

accurate 0.319 0.444 0.167 0.347 0.264 0.347 0.264

conservative 0.014 0.069 0.014 0.014 0.014 0.014 0.014

Table 1. The relative frequency of liberality and conservativeness of LiR, W, S, BNW, BNS,
LRW, and LRS.
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Figure 1. The empirical power curves (solid lines) together with the pointwise 95% confi-
dence bands (dotted lines) in the case of a continuous (left) and a discrete (right)
covariate. Settings: n = 20, λ = 0.7, ν = 1, 0.2 probability of censoring.
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Considering various settings of the simulation in more detail, there were 74% and

64% cases of equality between the decision about the test size for the continuous

and for the discrete covariate, respectively. The increasing number of observations

resulted in a shift of the tests from liberal to accurate, except the predominant

liberality of the Wald test for a continuous covariate. The shift was more evident

for the discrete covariate. A higher probability of censoring implied a higher accuracy

of the test size of the Wald test for both types of the covariate and also of the BN and

the LR approximations of the Wald test for a discrete covariate only. Unfortunately,

we cannot state in general that the size of approximations is more accurate than

that of the basic tests. We only found that the approximations of the score test were

identified as more accurate than the score test from 50 observations for a discrete

covariate.

Let us look at the influence of the length of the survival time (λ) and the type of the

hazard function (ν) on the size of tests. For an increasing survival time (λ increasing),

the size of all tests does not change significantly with a few exceptions for the Wald

test (three times for a discrete covariate for n = 20 or 50, twice for a continuous

covariate for n = 20, all under various settings of other parameters). Further, with

the change of the hazard function from decreasing through constant to increasing

(the value of ν increasing), the liberality of tests rose for both distributions of the

covariate. The effect was more distinctive for a continuous covariate (Table 2). There

was only one case when the Wald test was identified as conservative for an increasing

hazard function (n = 20, λ = 0.7, 0.5 probability of censoring).

ν test LiR W S BNW BNS LRW LRS

0.5 liberal 0.667 0.458 0.667 0.667 0.667 0.667 0.667

accurate 0.333 0.542 0.333 0.333 0.333 0.333 0.333

conservative 0 0 0 0 0 0 0

2 liberal 0.917 0.583 0.917 0.917 0.917 0.917 0.917

accurate 0.083 0.375 0.083 0.083 0.083 0.083 0.083

conservative 0 0.042 0 0 0 0 0

Table 2. The relative frequency of liberality and conservativeness of LiR, W, S, BNW, BNS,
LRW, and LRS in the case of a continuous covariate.

Finally, the magnitude of the deviation from the nominal size of the test will be

investigated. Let us define a test as weakly liberal/conservative if the empirical size

of the test is below/above the value accounting for 1.5/0.5 times the nominal signif-

icance level, i.e., the 95% confidence interval for the size of the test does not exceed

[0.07, 0.08]/drop below [0.02, 0.03]. For both types of covariate, all liberal and con-

servative tests were marked as weakly liberal and weakly conservative, respectively,
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with a few exceptions for a discrete covariate. Particularly, the Wald test was not

weakly conservative in the case of the sample size n = 20, λ = 0.7, ν = 0.5 and the

probability of censoring 0.5. The score test was three times identified as not weakly

liberal, all with the sample size n = 20.

Second, the power of the tests will be explored. Comparison of the empirical power

curves was based on the idea of adjusted power together with the corresponding

pointwise 95% confidence bands. The individual empirical (adjusted) power curves

were situated lower, i.e., tests were less powerful, for a higher probability of censoring

because of fewer observations which were taken into account. They shrunk and were

approaching the theoretical power curve with an increasing number of observations.

Moreover, an increasing number of observations led to the mutual similarity between

the individual empirical power curves.

Let us examine the effect of the length of survival time (λ) and the type of event

hazard (ν) on the adjusted power of tests. In the case of a shorter survival time

(λ = 0.7), the effect of the change of the event hazard (ν) on the adjusted power

of tests was identified for an arbitrary sample size and 0.5 probability of censoring.

Particularly, the change of the hazard function from decreasing through constant to

increasing (ν increasing) led to less and more powerful tests for a continuous and

discrete covariate, respectively (Figure 2). For other settings, when the probability

of censoring was zero or 0.2, or for a longer survival time (λ = 1.7), these effects did

not occur.
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Figure 2. The pointwise 95% confidence bands for the adjusted power curves in the case of
a continuous (left) and a discrete (right) covariate. Settings: n = 20, λ = 0.7, 0.5
probability of censoring.

Moreover, the effect of the length of survival time (λ) for a fixed event hazard (ν)

and an arbitrary sample size was examined. For zero probability of censoring, the ad-

justed empirical power did not change in relation to the considered survival time (λ).
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For a higher probability of censoring (0.2 or 0.5), the adjusted power was increasing

for a longer survival time (λ increasing). Focusing on various values of the event haz-

ard (ν), for an increasing ν, there was a decrease in the difference in adjusted power

curves for the considered length of survival time in general. There is one excep-

tion for a continuous covariate with 0.5 probability of censoring; the difference was

increasing together with an increase of the event hazard (ν increasing), see Figure 3.
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Figure 3. The pointwise 95% confidence bands for the adjusted power curves in the case of
a continuous covariate. Settings: n = 20, ν = 0.5 (left) and ν = 2 (right), 0.5
probability of censoring.

Focusing on the neighbourhood of β = 0, i.e. from 0 to 0.6, in all considered

variants, the LR approximations were significantly more powerful than all the basic

tests and the BN approximations, except overlapping in β around the value 0.1

(mainly for a discrete covariate) or in higher values of β, i.e. 0.5 or 0.6 (n = 100,

a continuous covariate), see Figures 2, 3, 4. There is no significant difference in the

adjusted power between the LRS and the LRW. Further, there is no difference in

the adjusted power between the basic tests and the BN approximations. Here, only

two exceptions were identified, when the Wald test was significantly more powerful

than the likelihood ratio test in β around 0.6 (a discrete covariate, 0.5 probability of

censoring).

Next, let us look at how fast the tests achieved a sufficiently large adjusted power

of 0.8 (Figures 2, 3). The value of β, where the required power of 0.8 was achieved,

was determined by cubic interpolation of the upper bound of the pointwise confi-

dence band for the adjusted power. Then, the mean of β and the standard error

over the various situations with the same sample size were calculated (Table 3). In

general, the three basic tests and the corresponding BN approximations reached the

required power for almost the same values of β for individual simulation setup. These
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Figure 4. The pointwise 95% confidence bands for the adjusted power curves in the case of
a continuous (left) and a discrete (right) covariate. Settings: n = 20, λ = 0.7,
ν = 1, 0.2 probability of censoring.

values of β were significantly higher than those of the corresponding LR approxima-

tions for the discrete covariate. That emphasized higher adjusted power of the LR

approximations. For the continuous covariate, a significant difference of the values β

was found for sample sizes 20 and 50, only. In addition to that, the adjusted power

of the tests and the approximations was higher for the continuous covariate than

for the discrete one. A similar pattern occurred also for various types of the hazard

function considered separately.

n x LiR W S BNW BNS LRW LRS

20 N (0, 1) 0.935 0.941 0.942 0.935 0.936 0.804 0.805

(0.043) (0.045) (0.044) (0.043) (0.043) (0.037) (0.037)

Bi(n, 0.5) 1.531 1.528 1.537 1.529 1.532 1.318 1.319

(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.008)

100 N (0, 1) 0.379 0.379 0.379 0.379 0.379 0.328 0.327

(0.014) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Bi(n, 0.5) 0.623 0.622 0.622 0.622 0.622 0.549 0.549

(0.012) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011)

Table 3. The mean and the standard error of the values of β, at which the adjusted power
of 0.8 was achieved for LiR, W, S, BNW, BNS, LRW, and LRS.

In the neighbourhood of β with average power 0.8, the adjusted power of the LR

approximations was significantly higher than that of the other tests and the BN ap-

proximations for both types of covariate (Figures 2, 3). For a continuous covariate,

the likelihood ratio, the Wald test, the score test and the BN approximations over-
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lapped. However, there were more obvious differences between these tests in a dis-

crete case. Namely, there were four cases (small sample size, or higher probability

of censoring) when the Wald test had higher adjusted power than the score test and

the BN approximations.

x test LiR W S BNW BNS LRW LRS

N (0, 1) more powerful 0.181 0.153 0.153 0.181 0.181 0.986 0.986

similar 0.514 0.528 0.528 0.514 0.514 0.014 0.014

less powerful 0.306 0.319 0.319 0.306 0.306 0 0

Bi(n, 0.5) more powerful 0.972 0.986 0.986 0.972 0.972 1 1

similar 0.028 0.014 0.014 0.028 0.028 0 0

less powerful 0 0 0 0 0 0 0

Table 4. The relative frequency of the similarity of the adjusted power for LiR, W, S, BNW,
BNS, LRW, and LRS to the theoretical power of 0.8.

ν test LiR W S BNW BNS LRW LRS

0.5 more powerful 0.25 0.25 0.25 0.25 0.25 1 1

similar 0.5 0.5 0.5 0.5 0.5 0 0

less powerful 0.25 0.25 0.25 0.25 0.25 0 0

2 more powerful 0.083 0.042 0.042 0.083 0.083 0.958 0.958

similar 0.542 0.542 0.542 0.542 0.542 0.042 0.042

less powerful 0.375 0.417 0.417 0.375 0.375 0 0

Table 5. The relative frequency of similarity of the adjusted power for LiR, W, S, BNW,
BNS, LRW, and LRS to the theoretical power of 0.8 in the case of the continuous
covariate.

Finally, a comparison of the theoretical and adjusted power curves for all tests

was performed. With the usage of cubic interpolation, the values of β corresponding

to the theoretical power of 0.8 were determined. In the discrete case, the adjusted

power of all tests was mostly significantly higher than the theoretical one and only

about 0–2% from the total number of the variants were similar (Table 4). A similar

pattern has also occurred for a variety of the hazard functions assessed separately.

On the other hand, there was an obvious difference in the behaviour of the LR

approximations and the other tests for a continuous covariate (Tables 4, 5). Namely,

for the other tests, the adjusted power of about 15–20% of cases was significantly

higher than the theoretical one, while for the LR approximations it was almost all the

cases. About 50% of variants were determined as similar to the theoretical power,

contrary to the LR approximations with only about 1%. In contrast to the discrete

covariate, there was about 30% of cases with significantly lower adjusted power than
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the theoretical power, while for the LR approximations these was none. The change

of the hazard function from increasing through constant to decreasing (the value

of ν is decreasing) resulted mostly in a higher proportion of tests considered as

more powerful than the theoretical power curve. That highlighted the usage of LR

approximations for both discrete and continuous covariate.

5. Conclusions and discussion

The likelihood ratio, the Wald test and the score test, together with the Barndorff-

Nielsen and the Lugannani-Rice approximations were examined in terms of the test

size and power in the Cox proportional hazards model with a simple covariate under

different settings (sample size n = 20, 50, 70, 100; probability of censoring set to

0, 0.2, or 0.5; a covariate with a binominal and a standard normal distribution;

a Weibull distribution Wei(λ, ν) of a baseline hazard function with λ = 0.7, 1.7 and

ν = 0.5, 1, 2). A two-sided test with the null hypothesis H0 : β = 0 was tested

on the significance level α = 0.05.

Taking into account the test size, the empirical test sizes were approaching

the nominal value with an increasing number of observations. In general, a weak

liberality (the empirical test size not greater than 0.075) prevailed for all tests,

with a few exceptions for a discrete covariate. The Wald test came out as the test

with the most accurate test size for both distributions of the covariate, even for

situations with only 20 observations, or with a higher probability of censoring. An

increasing sample size led to more accurate test size for all tests, except the Wald

test with the most accurate test size in general. An increase in the probability of cen-

soring implied a higher accuracy of the Barndorff-Nielsen and the Lugannani-Rice

approximations of the Wald test for both distributions of the covariate. Finally,

a change of event hazard in terms of increasing values of ν led to more liberal tests,

mainly for a continuous covariate.

Based on the adjusted power, an increasing number of observations led to the mu-

tual similarity of the individual adjusted power curves and also the theoretical one.

An increasing proportion of censored data implied a decrease in the adjusted power.

The Lugannani-Rice approximations were more powerful than the other tests for both

considered distributions, with one exception (n = 100, a continuous covariate).

For a shorter length of survival time (λ = 0.7) and 0.5 probability of censoring,

a change of event hazard in terms of increasing values of ν led to a slower and a faster

rise in the adjusted power for a continuous and a discrete covariate, respectively.

In practice, only the most common type of null hypothesis is verified. If β = 0 (or,

equivalently, the hazard ratio exp(β) = 1), the covariate does not affect the event

hazard. A value β greater than zero (a hazard ratio greater than one) indicates
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that as the value of the covariate increases, the event hazard increases and thus

the length of survival time decreases. Similarly, a value β less than zero (a hazard

ratio less than one) indicates that as the value of the covariate increases, the event

hazard reduces and thus the length of survival time increases. From a theoretical

point of view, different values of β0 can be assumed as well and the behaviour of the

size and power of tests can be analogously investigated. The behaviour of the power

curves will be similar, up to a shift of the power curves in a horizontal direction, and

a change of their slope.

In addition to the analyzed distributions of a covariate, other alternatives,

e.g. a trimmed or skewed normal distribution or some bimodal distribution could

be considered. However, for the two distributions considered in this paper and

for the three and two settings of the event hazard (ν) and the length of survival

time (λ), respectively, the study showed many patterns in the behaviour of the tests.

Moreover, the simulation could be enriched by a larger number of covariates. The

need for the extension of this concept was also outlined in [4].
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