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Geodesic graphs in Randers g.o. spaces

Zdeněk Dušek

Abstract. The concept of geodesic graph is generalized from Riemannian geom-
etry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds.
On modified H-type groups which admit a Riemannian g.o. metric, invariant
Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o.
manifolds are constructed. New structures of geodesic graphs are observed.

Keywords: Finsler space; Randers space; homogeneous geodesic; geodesic graph;

g.o. space

Classification: 53C22, 53C60, 53C30

1. Introduction

A Minkowski norm on the vector space V is a nonnegative function F : V → R

which is smooth on V \ {0}, positively homogeneous (F (λy) = λF (y) for any

λ > 0) and whose Hessian gij = (12F
2)yiyj is positively definite on V \ {0}.

Here (yi) are the components of a vector y ∈ V with respect to a fixed basis B

of V and putting yi to a subscript means the partial derivative. Then the pair

(V, F ) is called a Minkowski space. The tensor gy with components gij(y) is the

fundamental tensor. A Finsler metric on the smooth manifold M is a function F

on TM which is smooth on TM \ {0} and whose restriction to any tangent space

TxM is a Minkowski norm. Then the pair (M,F ) is called the Finsler manifold.

On a Finsler manifold, functions gij depend smoothly on x ∈ M and on o 6= y ∈
TxM .

Special Minkowski norms are the Randers norms. They are determined by

a symmetric positively definite bilinear form α and a vector V such that

α(V, V ) < 1, or, equivalently, its α-equivalent 1-form β related with V by the

formula

(1) β(U) = α(V, U) ∀U ∈ V.
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196 Z. Dušek

The Randers norm F is defined by the formula

(2) F (U) =
√
α(U,U) + β(U) ∀U ∈ V.

If a Finsler metric F onM restricted to any tangent space TpM is a Randers norm,

it is called a Randers metric. Obviously, the Randers metric F is determined by

a Riemannian metric α and a smooth 1-form β and formula (2) holds on each

tangent space TpM . We remark that, in the literature, the letter α is sometimes

used for the norm induced by the 2-form α and then formula (2) above is without

the square root. We choose the notation above because for β = 0, F is the

Riemannian norm and components gij of the fundamental tensor are just the

components of the Riemannian metric α.

Let M be a Finsler manifold (M,F ). If there is a connected Lie group G which

acts transitively on M as a group of isometries, then M is called a homogeneous

manifold. The following theorem gives the relation between the isometry group

of a Randers manifold and the isometry group of the corresponding underlying

Riemannian manifold. We shall use this theorem later.

Theorem 1 ([4]). Let (M,F ) be a Randers manifold with the Finsler function

F =
√
α+ β. Then the group of isometries of (M,F ) is a closed subgroup of the

group of isometries of the Riemannian manifold (M,α).

Homogeneous manifold M can be naturally identified with the homogeneous

space G/H , where H is the isotropy group of the origin p ∈ M . A homogeneous

Finsler space (G/H,F ) is always a reductive homogeneous space: We denote by g

and h the Lie algebras of G and H respectively and consider the adjoint represen-

tation Ad: H × g → g of H on g. There exists a reductive decomposition of the

form g = m+ h where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. For

a fixed reductive decomposition g = m + h there is the natural identification of

m ⊂ g = TeG with the tangent space TpM via the projection π : G → G/H = M .

Using this natural identification, from the Minkowski norm and its fundamental

tensor on TpM , we obtain the Ad(H)-invariant Minkowski norm and the Ad(H)-

invariant fundamental tensor on m and we denote these again by F and g. In

particular, for the invariant Randers metrics we shall use the following theorem.

Theorem 2 ([4]). Let (G/H,α) be a Riemannian homogeneous space with the

reductive decomposition g = m+h. Then there is a one-to-one correspondence be-

tween G-invariant Randers metrics on G/H whose underlying Riemannian metric

is α and the set

V = {V ∈ m : α(V ) < 1, Ad(H)(V ) = V }.

We further recall that the slit tangent bundle TM0 is defined as TM0 =

TM \ {0}. Using the restriction of the natural projection π : TM → M to TM0,
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we naturally construct the pullback vector bundle π∗TM over TM0. The Chern

connection is the unique linear connection on the vector bundle π∗TM which is

torsion free and almost g-compatible, see some monograph, for example [2] by

D. Bao, S.-S. Chern and Z. Shen or [4] by S. Deng for details. Using the Chern

connection, the derivative along a curve γ(t) can be defined. A regular smooth

curve γ with tangent vector field T is a geodesic if DT

(
T

F (T )

)
= 0. In particular,

a geodesic of constant speed satisfies DTT = 0.

A geodesic γ(s) through the point p is homogeneous if it is an orbit of a one-

parameter group of isometries. More explicitly, if there exists a nonzero vector

X ∈ g such that γ(t) = exp(tX)(p) for all t ∈ R. The vector X is called a geodesic

vector.

Definition 3. A homogeneous space (G/H,F ) is called a Finsler g.o. space, if

each geodesic of (G/H,F ) (with respect to the Chern connection) is an orbit of

a one-parameter subgroup {exp(tZ)}, Z ∈ g, of the group of isometries G.

We remark that a homogeneous manifold (M,F ) may admit more presenta-

tions as a homogeneous space in the form G/H , corresponding to various transi-

tive isometry groups. In a g.o. space G/H , we investigate some sets of geodesic

vectors which generate all geodesics through a fixed point. Those sets which are

reasonable in a good sense are called geodesic graphs. The first concept originated

from the work [17] by J. Szenthe.

Definition 4. Let (G/H,F ) be a g.o. space and g = m+ h an Ad(H)-invariant

decomposition of the Lie algebra g. A geodesic graph is an Ad(H)-equivariant

map ξ : m → h such that X + ξ(X) is a geodesic vector for each o 6= X ∈ m.

It often happens that the vector ξ(X) is uniquely determined. Then the map ξ

is Ad(H)-equivariant and we are interested in the algebraic structure of the map-

ping ξ. Sometimes, there are more choices for the vector ξ(X). Then we want to

choose it in a way that the algebraic structure of the mapping ξ is as simple as

possible.

Theory of Riemannian geodesic graphs (canonical and general) was devel-

oped and examples of geodesic graphs on compact and noncompact g.o. mani-

folds and also on g.o. nilmanifolds in dimensions 5, 6 and 7 were described by

O. Kowalski and S. Nikčević in [10]. Geodesic graph is either linear, which is

equivalent with the natural reductivity of the space G/H , or its components

are rational functions ξi = Pi/P , where Pi and P are homogeneous polynomi-

als and deg(Pi) = deg(P ) + 1. The degree of the geodesic graph ξ is defined as

deg(ξ) = deg(P ). The special situation of geodesic graph of degree 0 corresponds

to the linear geodesic graph. If the geodesic graph is unique, its degree is also
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the degree of the g.o. space G/H . If there are more geodesic graphs in G/H , the

degree of the g.o. space is the minimum of the degrees of these geodesic graphs.

The degree of the mentioned examples in [10] is 0 (linear geodesic graph) or 2.

Further geodesic graphs of degree 0 or 2 on H-type groups were described by the

author in [5]. Geodesic graph of degree 4 on the flag manifold SO(7)/U(3) was

constructed by the author in [6]. In [8], the author with O. Kowalski constructed

the canonical geodesic graph of degree 6 and a general geodesic graph of degree 3

on the H-type group of dimension 13 with 5-dimensional center.

We recall that in dimension less than or equal to 5, all Riemannian g.o. mani-

folds (M, g) are naturally reductive, hence they admit a presentation M = G/H

in which a linear geodesic graph exists. Equivalently, they admit a reductive de-

composition g = m+ h such that all vectors from m are geodesic. In dimension 6,

all g.o. manifolds which are not naturally reductive were classified by O. Kowalski

and L. Vanhecke in [11]. Interesting compact Riemannian g.o. manifolds are, for

example, the two series of flag manifolds described by D. Alekseevsky, A. Arvani-

toyeorgos in [1]. Interesting Riemannian g.o. nilmanifolds are the modified H-type

groups, see Section 3 for details. For a more detailed exposition about geodesic

graphs in Riemannian g.o. manifolds, some related topics and further references,

we refer the reader to the recent survey paper [7] by the author. Another struc-

tural approach to Riemannian g.o. manifolds using the Lie theory can be found

in the recent papers [9] and [14] by C. S. Gordon and Yu.G. Nikonorov.

In [18], Z. Yan and S. Deng studied Finsler g.o. spaces and their relation with

Riemannian g.o. spaces. Some nilpotent examples of reversible non-Berwaldian

Finsler g.o. spaces and examples of invariant Randers g.o. metrics on spheres

S2n+1 were constructed in this paper. For the study of the Randers case, the

navigation data and G-invariant Killing vector fields were used. In the paper

[15] by D. Latifi and M. Parhizkar, geodesic vectors of some Randers metrics on

nilmanifolds were analyzed, but it was not done properly in detail.

In the present paper, we determine all invariant Randers g.o. metrics on mod-

ified H-type groups which admit a Riemannian g.o. metric. We remark that

Randers metrics are not reversible. We construct Finslerian geodesic graphs on

these homogeneous Randers g.o. manifolds. In all these examples, geodesic graph

is unique. We focus on the difference of Finslerian geodesic graph of a Randers

metric and Riemannian geodesic graph of underlying Riemannian metric.

The simplest geodesic graph of the Randers metric is a cone. This is the situa-

tion when the underlying Riemannian metric α is naturally reductive with respect

to a group G and the Randers metric F =
√
α+ β admits G as a group of isome-

tries. This situation occurs for H-type groups with dim(z) = 1. If dim(z) = 2,

geodesic graph of the Randers metrics with the same group of isometries as the
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underlying Riemannian metrics arise as the Riemannian geodesic graph with a de-

formation term. Interesting situation occurs for H-type groups with dim(z) = 3

whose invariant Riemannian metrics are naturally reductive and they admit a lin-

ear Riemannian geodesic graph with respect to a group G. With respect to this

group of transformations, there are no invariant Randers metrics. However, there

exist invariant Randers metrics with respect to different groupG and the degree

of the Finslerian geodesic graph with respect toG is equal to 2.

2. Geodesic lemma for Randers metrics

Geodesic vectors are characterized by the following geodesic lemma, proved by

D. Latifi.

Lemma 5 ([12]). Let (G/H,F ) be a homogeneous Finsler space with a reductive

decomposition g = m+ h. A nonzero vector Y ∈ g is geodesic vector if and only

if it holds

(3) gYm
(Ym, [Y, U ]m) = 0 ∀U ∈ m,

where the subscript m indicates the projection of vector from g to m.

We shall now adapt formula (3) for the Randers space and obtain a formula

in terms of the Riemannian metric α and the 1-form β. Let us remark that the

formula (5) below appeared in previous works [15] or [18]. However, in [15], it

refers to verification by the direct calculations and in [18], it is proved using the

navigation data, which is an alternative description of the Randers metric. For

the convenience of the reader and to remain self-contained, we include a complete

proof in our notation here.

Proposition 6. Let F =
√
α + β be a homogeneous Randers metric on G/H ,

let g = m + h a reductive decomposition and V ∈ m be the vector α-equivalent

with β. The fundamental tensor g satisfies the formula

(4) gy(y, v) = F (y) · α
( y√

α(y, y)
+ V, v

)
∀ y, v ∈ m.

Proof: For any vector w = y + su+ tv ∈ m, for arbitrary s, t ∈ R, it holds

F 2(w) =
(√

α(w,w) + β(w)
)2

= α(w,w) + 2
√
α(w,w)β(w) + β2(w)

= α(w,w) + 2
√
α(w,w)α(V,w) + α2(V,w),
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dF 2(w)

ds
= 2α(u,w) + 2

α(u,w)α(V,w)√
α(w,w)

+ 2
√
α(w,w)α(V, u) + 2α(V,w)α(V, u),

d2F 2(w)

dsdt
= 2α(u, v) + 2

α(u, v)α(V,w)√
α(w,w)

+ 2
α(u,w)α(V, v)√

α(w,w)

− 2
α(u,w)α(V,w)α(v, w)

√
α(w,w)

3 + 2
α(v, w)α(V, u)√

α(w,w)

+ 2α(V, v)α(V, u),

and finally

gy(u, v) =
1

2

dF 2(y + su+ tv)

dsdt

∣∣∣
s=t=0

= α(u, v)− α(u, y)α(v, y)α(V, y)
√
α(y, y)

3

+
α(u, v)α(V, y)√

α(y, y)
+

α(u, y)α(V, v)√
α(y, y)

+
α(v, y)α(V, u)√

α(y, y)
+ α(V, v)α(V, u).

In the special case u = y, we obtain

gy(y, v) = α(y, v)− α(y, y)α(v, y)α(V, y)
√
α(y, y)

3 +
α(y, v)α(V, y)√

α(y, y)

+
α(y, y)α(V, v)√

α(y, y)
+

α(v, y)α(V, y)√
α(y, y)

+ α(V, v)α(V, y)

= α(y, v) +
√
α(y, y)α(V, v) +

α(V, y)α(y, v)√
α(y, y)

+ α(V, y)α(V, v)

=
(√

α(y, y) + α(V, y)
)
· α

( y√
α(y, y)

+ V, v
)

= F (y) · α
( y√

α(y, y)
+ V, v

)
.

�

In the corollaries which follow, notation ξ(X) refers to geodesic graph ξ : m → h

introduced in Definition 4.

Corollary 7. Let F =
√
α + β be a homogeneous Randers metric on G/H , let

g = m + h be a reductive decomposition and V ∈ m be the vector α-equivalent

with β. The vector X + ξ(X), where X ∈ m and ξ(X) ∈ h, is geodesic vector if

and only if

(5) α
(
X +

√
α(X,X) · V, [X + ξ(X), U ]m

)
= 0 ∀U ∈ m.
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Proof: From Lemma 5 and using Proposition 6, we obtain that the vector Y =

X + ξ(X) is geodesic if and only if for any vector U ∈ m it holds

0 = gX
(
X, [X + ξ(X), U ]m

)
= F (X) · α

( X√
α(X,X)

+ V, [X + ξ(X), U ]m

)

and the statement follows. �

Corollary 8. Let F =
√
α+ β be a homogeneous Randers metric on G/H , such

that α be the naturally reductive Riemannian metric. Let g = m + h be the

naturally reductive decomposition and V ∈ m be the vector α-equivalent with β.

The vector X + ξ(X), where X ∈ m and ξ(X) ∈ h, is geodesic vector if and only

if

(6) −α
(
X, [ξ(X), U ]

)
=

√
α(X,X) · α

(
V, [X,U ]m

)
∀U ∈ m.

Proof: We use formula (5) and continue. For any vector U ∈ m it holds

α
(
X +

√
α(X,X) · V, [X + ξ(X), U ]m

)
= α

(
X, [X,U ]m

)
+ α

(
X, [ξ(X), U ]m

)

+
√
α(X,X) · α

(
V, [X,U ]m

)
+
√
α(X,X) · α

(
V, [ξ(X), U ]m

)
.

Here the first summand is zero, because α is naturally reductive. Next, ξ(X) ∈ h

and V is Ad(H)-invariant, hence [ξ(X), V ] = 0. Because α is Ad(H)-invariant,

the last term is also zero. Finally, ξ(X) ∈ h and the vector space m is Ad(H)-

invariant. Hence, in the second term, [ξ(X), U ] ∈ m and the statement follows. �

3. Geodesic graphs in modified H-type groups

Let n be a 2-step nilpotent Lie algebra with an inner product 〈 , 〉. Let z be the
center of n and let v be its orthogonal complement. For each vector Z ∈ z, define

the operator JZ : v → v by the formula

〈JZ(X), Y 〉 = 〈Z, [X,Y ]〉 ∀X,Y ∈ v.

The algebra n is called a modified H-type algebra if for each o 6= Z ∈ z the operator

JZ satisfies the identity

(JZ)
2 = λ(Z) · idv

for some λ(Z) < 0. A connected and simply connected Lie group whose Lie alge-

bra is a modified H-type algebra is diffeomorphic to R
n and it is called a modified

H-type group. It is endowed with a left-invariant Riemannian metric. The spe-

cial case of a generalized Heisenberg algebra (H-type algebra) and corresponding
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generalized Heisenberg group (H-type group) is obtained for

λ(Z) = −〈Z,Z〉.

It was proved by J. Lauret in [13], that modified H-type algebras are just the

pairs (n, 〈 , 〉S), where (n, 〈 , 〉) is an H-type algebra and S is a positive definite

symmetric transformation of z which determines the inner product 〈 , 〉S by the

formula

〈X + U, Y + V 〉S = 〈X,Y 〉+ 〈S(U), V 〉 ∀X,Y ∈ v, ∀U, V ∈ z.

H-type algebras are completely classified, see for example the book [3] by

J. Berndt, F. Tricerri and L. Vanhecke. For each dimension of the center z, there

is a series of H-type algebras. Each algebra of the series contains the center z

and the complement v which decomposes into irreducible z-modules (the opera-

tors JZ make v a z-module). Irreducible z-modules are all equivalent if dim(z) 6=
3( mod 4), otherwise there exist two nonequivalent irreducible modules of the

same dimension (called nonisotypic modules). From the classification by C. Riehm

in [16], the following result follows:

An H-type group is a Riemannian g.o. manifold if and only if

◦ dim(z) ∈ {1, 2, 3} or

◦ dim(z) ∈ {5, 6, 7} and dim(v) = 8, or

◦ dim(z) = 7 and dim(v) ∈ {16, 24} and isotypic modules in v.

An H-type group is naturally reductive if and only if

◦ dim(z) = 1 or

◦ dim(z) = 3 and isotypic modules in v.

The refinement of this classification for modified H-type groups was obtained

by J. Lauret in [13]: A modified H-type group with dim(z) ≤ 3 is a Riemannian

g.o. manifold if and only if the corresponding H-type group is a Riemannian g.o.

manifold. If dim(z) ≥ 5, only some of the modified H-type groups (corresponding

to the above g.o. H-type groups) are g.o. manifolds, see [13] for details. Further,

a modified H-type group is naturally reductive if and only if

◦ dim(z) = 1 or

◦ dim(z) = 3, S = k · Idz and isotypic modules in v.

In the following part, we determine all invariant Randers g.o. metrics on mod-

ified H-type groups with dim(z) ≤ 3, which admit Riemannian g.o. metrics, and

we construct geodesic graphs on these Randers g.o. manifolds. For each of these

groups N , its presentation as a Randers g.o. space N = G/H is unique and

geodesic graph is also unique. We also show that modified H-type groups with



Geodesic graphs in Randers g.o. spaces 203

dim(z) = 5 which are Riemannian g.o. manifolds do not admit invariant Randers

g.o. metrics.

3.1 dim(z)= 1. We start with the 5-dimensional modified H-type group with

1-dimensional center and two 2-dimensional z-modules vi. This example can be

easily simplified into the simplest possible example—the 3-dimensional Heisenberg

group. General behaviour of all modified H-type groups with dim(z)=1 can be

also easily determined from this example.

Let us consider the Lie algebra n with the scalar product α determined by the

orthonormal basis {E1, . . . , E4, Z} and generated by the nontrivial relations

[E1, E2] = Z, [E3, E4] = µZ, µ > 0.

We obtain the 1-parameter family of modified H-type algebras and corresponding

modified H-type groups with the Riemannian metric induced by the above scalar

product, in the sense of J. Lauret, see [13]. Let us further denote by Aij the

elementary operators on n with the action generated by the relations

Aij(Ei) = Ej , Aij(Ej) = −Ei, Aij(Ek) = 0, i 6= k 6= j.

It is easy to verify that the operators D1 = A12 and D2 = A34 act as derivations

on n. Because these two operators commute, it holds h = span(D1, D2) ≃ so(2)×
so(2). We put g = n + h and we express each group N in the form N = G/H ,

where H = SO(2)× SO(2) and G = N ⋊H .

The Lie groups N with the above Riemannian metrics α are known to be

naturally reductive, however, the decomposition g = n + h is not the naturally

reductive one. We define Z̃ = Z+A12+µA34 and we put n′ = span(E1, . . . , E4, Z̃).

The nontrivial Lie brackets of the new elements are

[E1, E2]n′ = Z̃, [E3, E4]n′ = µZ̃

and

[E1, Z̃]n′ = −E2, [E2, Z̃]n′ = E1,

[E3, Z̃]n′ = −µE4, [E4, Z̃]n′ = µE3.

Now g = n′ + h is the naturally reductive decomposition.

We now introduce a family of invariant Randers metrics on each group N .

Consider a vector V = vZ̃ ∈ n for 0 < v < 1, its α-equivalent 1-form β on n

and the Randers norm F defined on n by formula (2). Because the vector V is

invariant with respect to the group H , this norm F gives rise to the invariant

Randers metric on N = G/H .
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Proposition 9. The modified H-type group N with dim(z) = 1 and dim(v) = 4

admits a 1-parameter family of invariant Randers g.o. metrics with respect to the

isometry group G = N ⋊SO(2)2 whose isotropy representation on the z-module v

is given by the operators A12, A34.

Proof: We are going to construct the canonical geodesic graph in the above

reductive decomposition g = n′ + h. We put Y = X + ξ(X), where X = x1E1 +

· · ·+ x4E4 + x5Z̃ ∈ n′ and ξ(X) = ξ1D1 + ξ2D2 ∈ h; ξ1, ξ2 to be determined. We

write down the Lie brackets

[X + ξ(X), E1]n′ = −x2Z̃ + x5E2 + ξ1E2,

[X + ξ(X), E2]n′ = x1Z̃ − x5E1 − ξ1E1,

[X + ξ(X), E3]n′ = −x4µZ̃ + x5µE4 + ξ2E4,

[X + ξ(X), E4]n′ = x3µZ̃ − x5µE3 − ξ2E3.

Now we use these expressions in formula (6) from Corollary 8, where we put

V = vZ̃ and we substitute, step by step, U = E1, . . . , E4, Z̃. We obtain the

system of equations

−x2ξ1 = −‖x‖ · vx2,

x1ξ1 = ‖x‖ · vx1,

−x4ξ2 = −‖x‖ · vµx4,

x3ξ2 = ‖x‖ · vµx3.

Here ‖x‖ stands for
√
x2
1 + · · ·+ x2

5. The last equation, for U = Z̃ is satisfied

identically. We want to determine ξ1 and ξ2 depending on x1, . . . , x5. We obtain

easily the unique solution

(7) ξ1 = v‖x‖, ξ2 = vµ‖x‖

and geodesic vectors are X+ξ1D1+ξ2D2. These formulas determine the geodesic

graph. �

Geodesic vectors X + ξ(X) determined by the formula (7) above form a cone

in g. Geodesic graphs with similar components were not observed in Riemannian

geometry. If we consider V = 0, the Randers norm F becomes Riemannian

and the geodesic graph given by formulas (7) becomes a zero map. Geodesic

graph given by formulas (7) seems to be the simplest possibility for the Randers

g.o. space, which motivates the following definition (see the discussion following

Definition 4 for the motivation).
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Definition 10. A geodesic graph whose components have no rational expres-

sions and contain just multiples of terms ‖x‖ is called Randers geodesic graph of

degree 0.

The example above (with two 2-dimensional z-modules vi) can be easily gener-

alized to the Lie algebra n with arbitrary number of z-modules vi. Components of

the unique geodesic graph to the respective operators Aij are then just a multiple

of components given by the formula (7), see [5] for the similar generalization with

Riemannian geodesic graphs. We obtain the following conclusion.

Corollary 11. Each modified H-type group N with dim(z) = 1 and dim(v) = 2k

admits a 1-parameter family of invariant Randers metrics with respect to the

isometry group G = N⋊SO(2)k whose isotropy representation on each irreducible

z-module vi is given by the operator A12. Corresponding homogenous spaces

N = G/H are Randers g.o. spaces of degree 0.

3.2 dim(z)= 2. Let us consider the Lie algebra n with the scalar product α

determined by the orthonormal basis {E1, . . . , E4, Z1, Z2} and generated by the

nontrivial relations

[E1, E2] = 0, [E2, E3] = bZ1 + cZ2,

[E1, E3] = aZ1, [E2, E4] = −aZ1,

[E1, E4] = bZ1 + cZ2, [E3, E4] = 0

for arbitrary parameters a, b, c ∈ R. We have the 3-parameter family of modified

H-type algebras in the sense of J. Lauret, see [13]. Some of these modified H-

type algebras are isometric, because in [13], the modified H-type metrics in this

case form a 2-parameter family. However, we keep this notation from [10] to

keep the possibility to compare Randers geodesic graphs with the Riemannian

formulas in [10]. We denote by N the modified H-type groups corresponding to

Lie algebras n. The skew-symmetric derivations on n are

D1 = A12 −A34,

D2 = A13 +A24,

D3 = A14 −A23.

If a2 = c2 and b = 0, then also the operator

D4 = 2B12 +A12 +A34

is the derivation on n. There are no invariant vectors in n with respect to

the operator D4 and consequently no invariant Randers metrics with respect

to any isotropy group whose Lie algebra contains this operator. Hence put
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h = span(D1, D2, D3) for all groups N . If we write down the commutator re-

lations for these operators, we easily verify that h ≃ su(2). We put g = n+ h and

we consider the homogeneous space N = G/H , whereH = SU(2) and G = N⋊H .

We now introduce a family of invariant Randers metrics on each group N .

Any vector V = v1Z1 + v2Z2 ∈ n is invariant with respect to the group H . If

v21 + v22 < 1, it gives rise to the invariant Randers norm F on n determined by

the 1-form β which is α-equivalent to V and formula (2) on n. Consequently, this

Randers norm F determines invariant Randers metric on N = G/H .

Proposition 12. Each modified H-type group with dim(z) = 2 and dim(v) = 4

admits a 2-parameter family of invariant Randers g.o. metrics with respect to the

isometry group G = N ⋊ SU(2) whose isotropy representation on the z-module v

is given by the operators D1, D2, D3.

Proof: Again, we construct the geodesic graph. The homogeneous space N =

G/H with the Riemannian metric induced by α is not naturally reductive and we

shall work in the reductive decomposition g = n+h. We put again Y = X+ξ(X),

where X = x1E1 + · · · + x4E4 + x5Z1 + x6Z2 ∈ n and ξ(X) = ξ1D1 + ξ2D2 +

ξ3D3 ∈ h. First, we write down the Lie brackets

[X + ξ(X), E1] = −x3aZ1 − x4(bZ1 + cZ2) + ξ1E2 + ξ2E3 + ξ3E4,

[X + ξ(X), E2] = −x3(bZ1 + cZ2) + x4aZ1 − ξ1E1 + ξ2E4 − ξ3E3,

[X + ξ(X), E3] = x1aZ1 + x2(bZ1 + cZ2)− xi1E4 − ξ2E1 + ξ3E2,

[X + ξ(X), E2] = x1(bZ1 + cZ2)− x2aZ1 + ξ1E3 − ξ2E2 − ξ3E1.

Now we use these expressions in formula (5) from Corollary 7, where we put

V = v1Z1 + v2Z2 and we substitute, step by step, U = E1, . . . , E4, Z1, Z2. We

obtain the system of equations

−ξ1x2 − ξ2x3 − ξ3x4 = −(x3a+ x4b)(x5 + v1‖x‖)− x4c(x6 + v2‖x‖),
ξ1x1 − ξ2x4 + ξ3x3 = (x4a− x3b)(x5 + v1‖x‖)− x3c(x6 + v2‖x‖),
ξ1x4 + ξ2x1 − ξ3x2 = (x1a+ x2b)(x5 + v1‖x‖) + x2c(x6 + v2‖x‖),

−ξ1x3 + ξ2x2 + ξ3x1 = (−x2a+ x1b)(x5 + v1‖x‖) + x1c(x6 + v2‖x‖).

Here ‖x‖ stands for
√
x2
1 + · · ·+ x2

6. The last two equations for U = Zi are satis-

fied identically. This is the system of linear equations for variables ξi depending

on parameters. The rank of this system is equal to 3 and using the Cramer’s rule,
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we obtain the unique solution

ξ1 =
(
2a(x5 + v1‖x‖)(x1x4 + x2x3) + 2

[
b(x5 + v1‖x‖) + c(x6 + v2‖x‖)

]

× (x2x4 − x1x3)
) 1

(x2
1 + · · ·+ x2

4)
,

ξ2 =
(
a(x5 + v1‖x‖)(x2

1 − x2
2 + x2

3 − x2
4) + 2

[
b(x5 + v1‖x‖) + c(x6 + v2‖x‖)

]

× (x1x2 + x3x4)
) 1

(x2
1 + · · ·+ x2

4)
,

ξ3 =
(
2a(x5 + v1‖x‖)(x3x4 − x1x2) +

[
b(x5 + v1‖x‖) + c(x6 + v2‖x‖)

]

× (x2
1 − x2

2 − x2
3 + x2

4)
) 1

(x2
1 + · · ·+ x2

4)
.

These formulas determine the geodesic graph. For v1 = v2 = 0, we obtain the

Riemannian geodesic graph from [10]. �

Again, the structure of components of the above geodesic graph motivates the

following definition.

Definition 13. A geodesic graph with homogeneous polynomial of degree d in

denominator and containing terms ‖x‖ in numerators is called Randers geodesic

graph of degree d.

The construction can be also generalized to the arbitrary modified H-type al-

gebra n with dim(z) = 2 and k z-modules vi. The components of geodesic graph

to each corresponding triplet of the operators D1, . . . , D3 have the same expres-

sions as the components ξi above, see [5] for similar construction with Riemannian

metrics. We obtain the following conclusion.

Corollary 14. Each modified H-type group with dim(z) = 2 and dim(v) = 4k

admits a 2-parameter family of invariant Randers metrics with respect to the

isometry groupG = N⋊SU(2)k whose isotropy representation on each z-module vi

is given by the operatorsD1, D2, D3. Corresponding homogenous spaces G/H are

Randers g.o. spaces of degree 2.

3.3 dim(z)= 3. To avoid formulas with many parameters, we now consider just

the 7-dimensional H-type group. Its invariant Riemannian metrics are naturally

reductive. Other 7-dimensional modified H-type groups behave similarly. The Lie

algebra n is generated by the relations

[E1, E2] = Z1, [E2, E3] = Z3,

[E1, E3] = Z2, [E2, E4] = −Z2,

[E1, E4] = Z3, [E3, E4] = Z1
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and {E1, . . . , E4, Z1, Z2, Z3} is the orthonormal basis with respect to the scalar

product α. The skew-symmetric derivations on n are

D1 = A12 −A34, D4 = 2B23 +A12 +A34,

D2 = A13 +A24, D5 = 2B13 −A13 +A24,

D3 = A14 −A23, D6 = 2B12 +A14 +A23.

The Lie algebra h = span(D1, . . . , D6) is isomorphic to su(2)× su(2). We can put

g = n+h and we haveH = SU(2)×SU(2) andG = N⋊H . The homogeneous space

N = G/H with the Riemannian metric determined by α is naturally reductive.

The group N admits another naturally reductive presentation N = G′/H ′, where

the corresponding isotropy algebra h′ is generated by the operators D4, D5, D6,

see [5] for details and for Riemannian geodesic graphs. However, with respect

to any of these groups G or G′, there are no invariant Randers metrics, because

there are no invariant vectors V ∈ n with respect to the operators D4, D5, D6.

To obtain some invariant Randers metrics, we have to choose h̄ =

span(D1, D2, D3) ≃ su(2) and we put ḡ = n + h̄. We consider the homoge-

neous space N = G/H , where H = SU(2) and G = N ⋊H . This homogeneous

space with the Riemannian metric determined by α is not naturally reductive,

but any vector V = v1Z1 + v2Z2 + v3Z3 is invariant with respect to the isotropy

representation of H . If v21 + v22 + v23 < 1, it gives rise to the invariant Randers

g.o. metric on N .

Proposition 15. The H-type group with dim(z) = 3, dim(v) = 4 admits a 3-

parameter family of invariant Randers g.o. metrics with respect to the isometry

group G = N ⋊ SU(2) whose isotropy representation on the z-module v is given

by the operators D1, D2, D3.

Proof: We determine the geodesic graph inG/H . We put again Y = X+ ξ(X),

where X = x1E1 + · · · + x4E4 + x5Z1 + x6Z2 + x7Z3 ∈ n and ξ(X) = ξ1D1 +

ξ2D2 + ξ3D3 ∈ h̄. We write down the Lie brackets

[X + ξ(X), E1] = −x2Z1 − x3Z2 − x4Z3 + ξ1E2 + ξ2E3 + ξ3E4,

[X + ξ(X), E2] = +x1Z1 + x4Z2 − x3Z3 − ξ1E1 + ξ2E4 − ξ3E3,

[X + ξ(X), E3] = −x4Z1 + x1Z2 + x2Z3 − ξ1E4 − ξ2E1 + ξ3E2,

[X + ξ(X), E4] = +x3Z1 − x2Z2 + x1Z3 + ξ1E3 − ξ2E2 − ξ3E1.

Now we use these expressions again in formula (5) from Corollary 7, where we

put V = v1Z1 + v2Z2 + v3Z3 and we substitute, step by step, U = E1, . . . , E4,
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Z1, . . . , Z3. We obtain the system of equations

−ξ1x2 − ξ2x3 − ξ3x4 = −x2(x5 + v1‖x‖)− x3(x6 + v2‖x‖)− x4(x7 + v3‖x‖),
ξ1x1 − ξ2x4 + ξ3x3 = x1(x5 + v1‖x‖) + x4(x6 + v2‖x‖)− x3(x7 + v3‖x‖),
ξ1x4 + ξ2x1 − ξ3x2 = −x4(x5 + v1‖x‖) + x1(x6 + v2‖x‖) + x2(x7 + v3‖x‖),

−ξ1x3 + ξ2x2 + ξ3x1 = x3(x5 + v1‖x‖)− x2(x6 + v2‖x‖) + x1(x7 + v3‖x‖).

Here ‖x‖ stands for
√
x2
1 + · · ·+ x2

7. The last three equations for U = Zi are

satisfied identically. The rank of this system is equal to 3 and using Cramer’s

rule, we obtain the unique solution

ξ1 =
(
(x5 + v1‖x‖)(x2

1 + x2
2 − x2

3 − x2
4) + 2(x6 + v2‖x‖)(x2x3 + x1x4)

+ 2(x7 + v3‖x‖)(x2x4 − x1x3)
) 1

x2
1 + · · ·+ x2

4

,

ξ2 =
(
2(x5 + v1‖x‖)(x2x3 − x1x4) + (x6 + v2‖x‖)(x2

1 − x2
2 + x2

3 − x2
4)

+ 2(x7 + v3‖x‖)(x1x2 + x3x4)
) 1

x2
1 + · · ·+ x2

4

,

ξ3 =
(
2(x5 + v1‖x‖)(x1x3 + x2x4) + 2(x6 + v2‖x‖)(x3x4 − x1x2)

+ (x7 + v3‖x‖)(x2
1 − x2

2 − x2
3 + x2

4)
) 1

x2
1 + · · ·+ x2

4

.

These formulas determine the geodesic graph ξ. �

Again, the construction can be also generalized to the arbitrary modified H-

type algebra n with dim(z) = 3 and isotypic z-modules. The components of

geodesic graph to each corresponding triplet of the operators D1, D2, D3 have the

same expressions as the components ξi above, see [5] for similar construction with

Riemannian metrics. We obtain the following conclusion.

Corollary 16. Each modified H-type group with dim(z) = 3, dim(v) = 4k and

isotypic z-modules admits a 3-parameter family of invariant Randers metrics with

respect to the isometry group G = N ⋊ SU(2)k whose isotropy representation on

each z-module vi is given by the operators D1, D2, D3. Corresponding homoge-

neous spaces G/H are Randers g.o. spaces of degree 2.

We remark here once more the interesting point, that Riemannian g.o. metrics

on these groups are g.o. manifolds of degree 0. The crucial difference here is that

the isotropy group for Riemannian metrics is bigger than the maximal isotropy

group for the Randers g.o. metric.
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3.4 dim(z)= 5. For the modified H-type groups with dim(z) = 5, we obtain the

following result.

Proposition 17. Modified H-type groups with dim(z) = 5 and dim(v) = 8 do

not admit invariant non-Riemannian Randers g.o. metrics.

Proof: According to [13], a modified H-type group of the given type is Riemann-

ian g.o. space if and only if S = k ·Idz. Any such 13-dimensional group admits two

presentations as a Riemannian g.o. space. First, N = G/H , where H = SO(5)

and second, N = G′/H ′, where H ′ = SO(5) × SO(2). The isotropy representa-

tion of H = SO(5) on n is transitive on z and also on v, see [8] for details about

the isotropy representation and geodesic graphs for Riemannian metrics. Hence

there are no invariant vectors V ∈ n and consequently no invariant Randers g.o.

metrics on N with respect to any of these groups G or G′. On the other hand,

the group H is the smallest isotropy group for which we obtain the g.o. property

of a Riemannian metric, hence there are no invariant Randers g.o. metrics with

respect to any smaller isotropy group. �
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