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BOUNDS FOR THE COUNTING FUNCTION OF THE
JORDAN-PÓLYA NUMBERS

Jean-Marie De Koninck, Nicolas Doyon,
A. Arthur Bonkli Razafindrasoanaivolala, and William Verreault

Abstract. A positive integer n is said to be a Jordan-Pólya number if it
can be written as a product of factorials. We obtain non-trivial lower and
upper bounds for the number of Jordan-Pólya numbers not exceeding a given
number x.

1. Introduction

A positive integer n is said to be a Jordan-Pólya number if it can be written as
a product of factorials. Jordan-Pólya numbers arise naturally in a simple combina-
torial problem. Given k groups of n1, n2, . . . , nk distinct objects, then the number
of distinct permutations of these n1 + n2 + · · ·+ nk objects which maintain objects
of the same group adjacent is equal to k! · n1! · n2! · · ·nk!, a Jordan-Pólya number.

The Jordan-Pólya numbers below 10,000 are
1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240, 256,
288, 384, 432, 480, 512, 576, 720, 768, 864, 960, 1024, 1152, 1296, 1440, 1536, 1728,
1920, 2048, 2304, 2592, 2880, 3072, 3456, 3840, 4096, 4320, 4608, 5040, 5184, 5760,
6144, 6912, 7680, 7776, 8192, 8640, 9216.

For a longer list, see the On-Line Encyclopedia of Integer Sequences, Sequence
A001013. Much study has been done on a particular subset of the Jordan-Pólya
numbers, namely those which are themselves factorials. In particular, consider the
equation
(1.1) n! = a1!a2! · · · ar! in integers n > a1 ≥ a2 ≥ · · · ≥ ar ≥ 2, r ≥ 2 .

This equation has infinitely many “trivial” solutions. Indeed, choose any integers
a2 ≥ · · · ≥ ar ≥ 2 and set n = a2! · · · ar!. Then, choose a1 = n− 1. One can easily
see that n! = n · (n− 1)! = a1!a2! · · · ar!. Besides these trivial solutions of equation
(1.1), we find the non-trivial solutions

(1.2) 9! = 2! · 3!2 · 7! , 10! = 6! · 7! = 3! · 5! · 7! , 16! = 2! · 5! · 14! .
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According to Hickerson’s conjecture, there are no other non-trivial solutions for
equation (1.1). In 2007, Luca [8] showed that if the abc conjecture holds, then
equation (1.1) has only a finite number of non-trivial solutions. In 2016, Nair and
Shorey [9] showed that any other non-trivial solution n of (1.1), besides those in
(1.2), must satisfy n > e80.

On the other hand, more than 40 years ago, Erdös and Graham [5] showed that
the number of distinct integers of the form a1!a2! · · · ar!, where a1 < a2 < · · · <
ar ≤ y is exp{(1 + o(1))y(log log y)/ log y} as y →∞.

Here, letting J stand for the set of Jordan-Pólya numbers and J (x) for its
counting function, we show that J (x) = o(x) and in fact, given any small ε > 0,
we show the much stronger estimate

(1.3) J (x) < exp
{

(4 + ε)
√

log x log log log x
log log x

}
(x ≥ x1)

for some x1 = x1(ε) > 0. We also show that, for any given ε > 0, there exists
x2 = x2(ε) such that

(1.4) J (x) > exp
{

(2− ε)
√

log x
log log x

}
(x ≥ x2) .

2. Preliminary results

We first mention some known results in the form of lemmas and propositions
that will prove useful in establishing the lower and upper bounds for J (x).

We start with a weak form of Stirling’s formula for the factorial function, a
proof of which can be found on page 11 in the book of De Koninck and Luca [2].

Lemma 1. For each integer m ≥ 1, we have

m! >
(m
e

)m
.

We now state a more precise form of Stirling’s formula, which is a particular
case of formula (4) in a 2009 paper of De Angelis [1].

Lemma 2. For all integers n ≥ 2,

n! =
(n
e

)n√
2πn

(
1 + 1

12n +O
( 1
n2

))
.

Lemma 3. Given any positive integers a and b,(
a+ b

a

)
≤
(e(a+ b)

a

)a
.

Proof. This follows from the following string of inequalities.(
a+ b

a

)
= b+ 1

1 × b+ 2
2 × · · · × b+ a

a
≤ (b+ a)a

a! ≤
(e(a+ b)

a

)a
,

where we used Lemma 1 for this last inequality. �
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Lemma 4. Given positive integers k ≤ R, the number Sk(R) of solutions (r1, r2, . . . ,
rk) in non-negative integers r1, r2, . . . , rk of the inequality

r1 + r2 + · · ·+ rk ≤ R

satisfies Sk(R) =
(
R+ k

R

)
.

Proof. It follows from formula (5.2) in the book of W. Feller [6] that the number
of ways of writing a positive integer m as a sum of k non-negative integers is equal
to
(
m+k−1
k−1

)
. Therefore, since Sk(R) is the sum of this last expression as m varies

from 0 to R, we find, using induction, that

Sk(R) =
R∑

m=0

(
m+ k − 1
k − 1

)
=
(
R+ k

k

)
=
(
R+ k

R

)
.

�

The next result, which is of independent interest, is a key element in the proof of
the upper bound for J (x). Essentially, it says that the sequence of the exponents
in the prime factorisation of m! decreases faster than the sequence of the primes to
which they are attached increases.

Lemma 5. Let the prime factorisation of m! be written as

m! = 2α2 · 3α3 · 5α5 · · · pαptt ,

where pt is the largest prime number not exceeding m. Then, given any primes p, q
such that p < q ≤ pt, we have

αp
αq
≥
⌊
q

p

⌋
.

Proof. Let p < q ≤ pt be fixed. Then, there exist two positive integers u ≥ v such
that

αp =
⌊
m

p

⌋
+
⌊
m

p2

⌋
+ · · ·+

⌊
m

pu

⌋
,(2.1)

αq =
⌊
m

q

⌋
+
⌊
m

q2

⌋
+ · · ·+

⌊
m

qv

⌋
.(2.2)

Let k be the unique positive integer satisfying kp < q < (k+ 1)p. Clearly, our claim
will be proved if we can show that

(2.3) αp ≥ k αq .

Now, if we can show that

(2.4)
⌊
m

p

⌋
≥ k

⌊
m

q

⌋
,

then surely we will have
⌊
m

pi

⌋
≥ k

⌊
m

qi

⌋
for each i = 2, 3, . . . , u and therefore, in

light of (2.1) and (2.2), inequality (2.3) will follow. This means that we only need
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to prove (2.4). Now, there exist two positive integers r1 and r2 such that
m = r1p+ θ1 for some non-negative integer θ1 ≤ p− 1 ,

m = r2q + θ2 for some non-negative integer θ2 ≤ q − 1 ,
and therefore,

1 = r1p+ θ1

r2q + θ2
≤ r1p+ p− 1

r2q
<
r1p+ p− 1
r2 · kp

,

thereby establishing that
r1p+ p− 1 > kr2p ,

so that

(2.5) r1 + p− 1
p

> kr2 .

Since r1 and r2 are two integers whereas p− 1
p

is a positive number smaller than

1, it follows from (2.5) that r1 ≥ kr2, which proves (2.4) since r1 =
⌊
m

p

⌋
and

r2 =
⌊
m

q

⌋
. �

The following result provides very useful explicit upper and lower bounds for
the k-th prime number.

Lemma 6. If pk stands for the k-th prime number, then
pk < k log k + k log log k (k ≥ 6)(2.6)

and

pk > k log k (k ≥ 1) .(2.7)

Proof. The first inequality is due to Rosser [10], whereas the second is due to
Rosser and Schoenfeld [11]. �

The prime number theorem can be written in various forms. We will be using
the following, which is essentially Theorem 5.1 in the book of Ellison and Ellison
[3].

Proposition 1. Setting θ(x) :=
∑
p≤x log p, there exists an absolute constant

a > 0 such that
θ(x) = x

(
1 +O

( 1
ea
√

log x

))
.

Let Ψ(x, y) := #{n ≤ x : P (n) ≤ y}, where P (n) stands for the largest prime
factor of n ≥ 2, with P (1) = 1. Moreover, let π(x) stand for the number of prime
numbers not exceeding x. The following estimate can be found in Granville [7].

Proposition 2. If y = o(log x) as x→∞, then

Ψ(x, y) =
( log x

y

)(1+o(1))π(y)
.
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The following is a 1969 result of Ennola [4], a proof of which is given in the
book of Tenenbaum [12].

Proposition 3. Let a1, a2, . . . be a sequence of positive real numbers and set

Nk(z) := #
{

(ν1, ν2, . . . , νk) ∈ Zk : ν1 ≥ 0, . . . , νk ≥ 0,
k∑
i=1

νiai ≤ z
}
.

Then, for each positive integer k,

(2.8) zk

k!

k∏
i=1

1
ai
< Nk(z) ≤

(z +
∑k
i=1 ai)k

k!

k∏
i=1

1
ai
.

3. The proof of the upper bound

Observe that for every integer n counted by J (x), each of its prime factors must
be smaller than 2 log x

log log x , provided x is sufficiently large. We now define the four
integers r, r1, r2, r3 each depending on x as follows.

r = π
(

2 log x
log log x

)
, so that r ≤ 3 log x

(log log x)2 ,

r1 = π
( √log x

log log x

)
, which is asymptotic to 2

√
log x

(log log x)2 as x→∞ ,

r2 = π
(√

log x
)
, which is asymptotic to 2

√
log x

log log x as x→∞ ,

r3 = π
(√

log x log log x
)
, which is asymptotic to 2

√
log x as x→∞ .

Let m be a positive integer and q1, q2 be two prime numbers such that q1 < q2 ≤ m.
Assuming that qη1

1 ‖m! and that qη2
2 ‖m!, it follows from Lemma 5 that
η1

η2
≥
⌊
q2

q1

⌋
.

Using these observations, we may write that J (x) ≤ #A(x), where

A(x) :=
{
a = (a1, a2, . . . , ar) ∈ Nr :

r∑
j=1

aj log pj ≤ log x, ai
aj
≥
⌊
pj
pi

⌋}
.

In order to derive an upper bound for #A(x), we introduce the four sets
B1(x) := {(b1, . . . , br1) : ∃a ∈ A(x), a1 = b1, . . . , ar1 = br1} ,

B2(x) := {(b1, . . . , br2−r1) : ∃a ∈ A(x), ar1+1 = b1, . . . , ar2 = br2−r1} ,

B3(x) := {(b1, . . . , br3−r2) : ∃a ∈ A(x), ar2+1 = b1, . . . , ar3 = br3−r2} ,

B4(x) := {(b1, . . . , br−r3) : ∃a ∈ A(x), ar3+1 = b1, . . . , ar = br−r3} .
It is then clear that

#A(x) ≤ #B1(x)×#B2(x)×#B3(x)×#B4(x) .
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We will now provide upper bounds for each of the quantities #Bj(x) for 1 ≤ j ≤ 4.
Let ε > 0 be an arbitrarily small number and let x be a large number.
First observe that

#B1(x) ≤ #
{

(b1, b2, . . . , br1) :
r1∑
j=1

bj log pj ≤ log x
}
.

From this, it follows from Proposition 2 that

#B1(x) ≤ Ψ (x, pr1) =
( log x
pr1

)(1+o(1))r1
≤ (
√

log x log log x)3
√

log x/(log log x)2
,

so that

(3.1) #B1(x) ≤ exp
(

2
√

log x
log log x

)
.

On the other hand, we have

#B2(x) ≤ #
{

(b1, . . . , br2−r1) :
( r2−r1∑

j=1
bj log pj+r1

)
+
(
b1

r1∑
j=1

⌊
pr1

pj

⌋
log pj

)
≤ log x

}
≤ #

{
(b1, . . . , br2−r1) : b1

r1∑
j=1

⌊
pr1

pj

⌋
log pj ≤ log x

}
,(3.2)

where we used the fact guaranteed by Lemma 5 that aj
b1
≥
⌊
pr1

pj

⌋
for 1 ≤ j ≤ r1.

We then perform a change of variable, namely the one given implicitly by

bk =
r2−r1∑
j=k

cj , 1 ≤ k ≤ r2 − r1 .

Given that the sequence b1, b2, . . . , br2−r1 is non-increasing, we have cj ≥ 0,
1 ≤ j ≤ r2 − r1. From (3.2), it follows that

(3.3) #B2(x) ≤ #
{

(c1, . . . , cr2−r1) :
( r2−r1∑

j=1
cj

)( r1∑
j=1

⌊
pr1

pj

⌋
log pj

)
≤ log x

}
.

Now, it follows from the prime number theorem that

(3.4)
∑
p≤y

log p
p

> (1− ε) log y ,

provided y is sufficiently large.
Using inequality (2.7) of Lemma 6, as well as inequality (3.4) and Proposition 1,

we may write that
r1∑
j=1

⌊
pr1

pj

⌋
log pj ≥ pr1

r1∑
j=1

log pj
pj
−

r1∑
j=1

log pj

≥ (1− ε)
√

log x
log log x

r1∑
j=1

log pj
pj
− θ(pr1)
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≥ (1− ε)
√

log x
log log x (1− ε) log pr1 − (1 + ε)pr1

≥ 1
3
√

log x .(3.5)

Using this in (3.3), we get

#B2(x) ≤ #
{

(c1, . . . , cr2−r1) :
r2−r1∑
j=1

cj ≤ 3
√

log x
}
,

which, in light of Lemma 4, yields

#B2(x) ≤
(
r2 − r1 + d3

√
log xe

d3
√

log xe

)
≤
(d 2
√

log x
log log x e+ d3

√
log xe

d3
√

log xe

)

=
(d √log x

log log xe+ d3
√

log xe

d
√

log x
log log xe

)
≤
(2d3

√
log xe

d
√

log x
log log xe

)
,

where we used the fact that for any positive integers a and b, we have
(
a+b
b

)
=
(
a+b
a

)
.

Using Lemma 3, it then follows that

(3.6) #B2(x) ≤ exp
{√log x log log log x

log log x

}
.

An upper bound for #B3(x) is obtained using a similar technique. We have
(3.7)

#B3(x) ≤ #
{

(b1, . . . , br3−r2) :
( r3−r2∑

j=1
bj log pj+r2

)
+
(
b1

r2∑
j=1

⌊
pr2

pj

⌋
log pj

)
≤ log x

}
.

Performing the change of variable

bk =
r3−r2∑
j=k

cj , 1 ≤ k ≤ r3 − r2 ,

we obtain from (3.7) that

(3.8) #B3(x) ≤ #
{

(c1, . . . , cr3−r2) :
( r3−r2∑

j=1
cj

)( r2∑
j=1

⌊
pr2

pj

⌋
log pj

)
≤ log x

}
.

Again using (2.7), (3.4) and Proposition 1, while proceeding as we did to obtain
(3.5), we find that

r2∑
j=1

⌊
pr2

pj

⌋
log pj ≥ pr2

r2∑
j=1

log pj
pj
−

r2∑
j=1

log pj ≥
1
3
√

log x log log x .

Using this in (3.8), we obtain

#B3(x) ≤ #
{

(c1, . . . , cr3−r2) :
r3−r2∑
j=1

cj ≤ 3
√

log x
log log x

}
,
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from which we can deduce that

(3.9) #B3(x) ≤
(d 3
√

log x
log log x e+ r3

d3
√

log x
log log xe

)
≤
(d 3
√

log x
log log x e+ d2

√
log xe

d3
√

log x
log log xe

)
.

Again using Lemma 3, we conclude from (3.9) that

(3.10) #B3(x) ≤ exp
{

(3 + ε)
√

log x log log log x
log log x

}
.

We finally provide an upper bound for #B4(x) again using the same approach.
We have

#B4(x) ≤ #
{

(b1, . . . , br−r3) :
( r−r3∑
j=1

bj log pj+r3

)
+
(
b1

r3∑
j=1

⌊
pr3

pj

⌋
log pj

)
≤ log x

}
.

Proceeding as before, we get
r3∑
j=1

⌊
pr3

pj

⌋
log pj ≥

1
3
√

log x (log log x)2 ,

which yields

#B4(x) ≤ #
{

(c1, . . . , cr) :
r∑
j=1

cj ≤ 3
√

log x
(log log x)2

}
,

from which we conclude

#B4(x) ≤
(d 3

√
log x

(log log x)2 e+ r

d3
√

log x
(log log x)2 e

)
≤
(d 3

√
log x

(log log x)2 e+ d3 log x
(log log x)2 e

d3
√

log x
(log log x)2 e

)
,

so that

#B4 ≤ exp
{

(3 + ε)
√

log x
log log x

}
.(3.11)

Gathering estimates (3.1), (3.6), (3.10) and (3.11) completes the proof of the upper
bound (1.3).

4. The proof of the lower bound

Many elements of J have two or more representations as a product of factorials.
For instance, the number 24 = 4! = 2!2 · 3! has two, whereas 576 = 4!2 = 2!4 · 3!2 =
2!2 · 3! · 4! has three. In fact, one can easily show that given an arbitrary integer
k ≥ 2, there exists a Jordan-Pólya number which has k representations as the
product of factorials. For instance, take the numbers nk := 23k+33k+1 (k = 1, 2, . . .).
One can easily check that

nk = 4! · 3!k · 2!2k

= 4!2 · 3!k−1 · 2!2(k−1)
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...

= 4!k−1 · 3!2 · 2!4

= 4!k · 3! · 2!2 ,

thereby revealing k distinct representations of nk as a product of factorials.
This phenomenon must be taken into account when establishing a lower bound

for J (x). This is why we will consider a subset of J whose elements have a unique
representation as a product of “prime factorials”. We choose J℘ as the set of those
elements n ∈ J which can be written as a product of prime factorials, that is,
as n =

∏r
i=1 pi!αi for some non negative integers αi’s, where p1, p2, . . . stands for

the sequence of primes. The interesting feature of this set is that one can easily
show that each of its elements has a unique representation as a product of prime
factorials. Observe that J \ J℘ 6= ∅ since it contains the number n = 14! and in
fact many more.

We will establish a lower bound for J℘(x), which will ipso facto provide a lower
bound for J (x). Given a large number x, let z = log x and set ai = log(pi!) for
i = 1, 2, . . . , k. Then, applying the first inequality in relation (2.8) of Proposition 3,
we get that, for each positive integer k,

(4.1) J℘(x) > logk x
k! ·
∏k
i=1 log(pi!)

.

Let ε > 0 and let k0 be a large integer. Using Lemma 2, we may write that for
each large prime pi, say with i ≥ k0,

log(pi!) = pi log pi − pi +O(log pi) = pi log pi
(

1− 1
log pi

+O
(1
p i

))
,

so that, for each k > k0, we have

(4.2)
k∏

i=k0

log(pi!) =
k∏

i=k0

pi ·
k∏

i=k0

log pi ·
k∏

i=k0

(
1− 1

log pi
+O

( 1
pi

))
.

We will now overestimate each of the above three products.
Using Proposition 1, we have

k∏
i=k0

pi < exp
{ ∑
p≤pk

log p
}

= exp {θ(pk)} = exp
{
pk

(
1 +O

( 1
log2 k

))}

< exp
{

(k log k + k log log k)
(

1 +O
( 1

log2 k

))}
,(4.3)

where we used inequality (2.6) of Lemma 6.
On the other hand, using once more the first inequality in Lemma 6, we easily

observe that log log pi < (1 + ε) log log i provided i is sufficiently large. It follows
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that
k∏

i=k0

log pi = exp
{ k∑
i=k0

log log pi
}

< exp
{ k∑
i=k0

(1 + ε) log log k
}
< exp{(1 + ε)k log log k} .(4.4)

Finally,
k∏

i=k0

(
1− 1

log pi
+O

( 1
pi

))
= exp

{
k∑

i=k0

log
(

1− 1
log pi

+O
( 1
pi

))}

= exp
{
−

k∑
i=k0

1
log pi

+O
( k∑
i=k0

1
log2 pi

)}
.(4.5)

Since
k∑

i=k0

1
log pi

=
∫ pk

pk0

1
log td π(t) = π(t)

log t

∣∣∣∣pk
pk0

+
∫ pk

pk0

π(t)
t log2 t

dt

= k

log pk
+O

( k

log2 pk

)
>

k

log k +O
(k log log k

log2 k

)
,(4.6)

using estimate (4.6) in (4.5), we find that

(4.7)
k∏

i=k0

(
1− 1

log pi
+O

( 1
pi

))
< exp

{
− k

log k +O
(k log log k

log2 k

)}
.

Setting C0 =
k0−1∏
i=1

log(pi!) and gathering inequalities (4.3), (4.4) and (4.7) in

(4.2), we find that

(4.8)
k∏
i=1

log(pi!) =
k0−1∏
i=1

log(pi!) ·
k∏

i=k0

log(pi!) < C0(k log2 k)k e−k/ log k .

Finally, using Lemma 2, we have that, provided k0 is large enough,

(4.9) k! < (1 + ε)kk e−k
√

2πk (k ≥ k0) .

Combining (4.8) and (4.9) in (4.1), we obtain that

(4.10) J℘(x) > 1
C0

( e1+1/ log k log x
(1 + ε)k2 log2 k

)k
(k ≥ k0) .

Our goal will be to search for an integer k = k(x) for which the function

f(k) :=
( e1+1/ log k log x

(1 + ε)k2 log2 k

)k
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reaches its maximum value, or equivalently for which real number s the function
g(s) := log f(s) reaches its maximum value. Since

g(s) = s
(

1 + 1
log s + log log x− 2 log s− 2 log log s

)
,

we have

g′(s) = 1 + 1
log s + log log x− 2 log s− 2 log log s+ s

(
− 1
s log2 s

− 2
s
− 2
s log s

)
= −1 + log log x− 2 log s− 2 log log s− 2

log s .

For large x and large s, the right hand side of the above expression will be near 0
when

log log x− 2 log s− 2 log log s = 0 ,
or similarly, log(s2 log2 s) = log log x and therefore s log s =

√
log x, from which we

find that

s =
√

log x
log s = (1 + o(1)) 2

√
log x

log log x (x→∞) .

Substituting this value of s in (4.10), we find that

J℘(x) > exp
{

(1 + o(1)) 2
√

log x
log log x

}
(x→∞) ,

thus establishing the required lower bound (1.4).
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