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MODULAR CLASSES OF Q-MANIFOLDS, PART II:
RIEMANNIAN STRUCTURES & ODD KILLING VECTORS

FIELDS

Andrew James Bruce

Abstract. We define and make an initial study of (even) Riemannian su-
permanifolds equipped with a homological vector field that is also a Killing
vector field. We refer to such supermanifolds as Riemannian Q-manifolds.
We show that such Q-manifolds are unimodular, i.e., come equipped with a
Q-invariant Berezin volume.

1. Introduction

This paper is a direct continuation of an earlier paper by the author [3] in
which the notion of the modular class of a Q-manifold was reviewed and various
illustrative examples are given. Q-manifolds (see [24]), i.e., supermanifolds equipped
with an odd vector field that ‘squares to zero’, have become an important part of
mathematical physics due to their prominence in the AKSZ-formalism [1] and the
conceptionally neat formalism they provide for describe Lie algebroids [28] and
Courant algebroids [23], as well as various generalisations thereof. The modular
class of a Q-manifold (see [18, 19]) is a natural generalisation of the modular class
of a Lie algebroid [7]. The super-geometric approach to the modular class of a Lie
algebroid was first given by Grabowski [12].

The modular class of a Q-manifold is given in terms of the divergence of the
homological vector field, though it does not depend on the chosen Berezin volume.
The vanishing of the modular class is a necessary and sufficiency condition for the
existence of a Q-invariant Berezin volume. Q-manifolds with vanishing modular class
are known as unimodular Q-manifolds. Here we given another class of examples
of unimodular Q-manifolds by considering (even) Riemannian supermanifolds
that admit an odd Killing vector field that is homological. We will refer to such
supermanifolds as Riemannian Q-manifolds. To our knowledge, such supermanifolds
have not appeared in the literature before now. The notion of supersymmetric
Killing structures appears in the work of Klinker [16].
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Riemannian Q-manifolds are reminiscent of even symplectic supermanifolds in
the sense that Killing vector fields are akin to Hamiltonian vector fields. Moreover,
we have a version of Liouville’s theorem on even symplectic supermanifolds that
states that there is always a Berezin volume that is invariant with respect to all
Hamiltonian vector fields. This implies, for example, that the modular class of a
Courant algebroid (or more properly, a symplectic Lie 2-algebroid [23]) vanishes.
The direct analogue of this is explicitly proved in this paper, though the result
should not come as a surprise: the canonical Berezin volume on a Riemannian
supermanifold is invariant under the action of Killing vector fields. This directly
implies that the modular class of a Riemannian Q-manifold vanishes. This paper
is devoted to explicitly proving this. Moreover, at each stage, we give concrete
examples.

An incomplete list of relatively recent papers on Riemannian supermanifolds
includes [8, 9, 10, 11, 14, 15]. We do not believe that this paper contains anything
truly new about Riemannian supergeometry. However, finding clear references to
the expressions we require is not so easy. Thus, part of this paper is devoted to
setting-up what we need to describe Riemannian Q-manifolds.

Arrangement. In Section 2 we recall the basic facets of Riemannian supergeometry
relevant to our needs. In particular, we pay attention to Killing vector fields, the
canonical Berezin volume and the divergence operator. We then move on to
Q-manifolds and their modular classes in Section 3. Much of this section is taken
from [3] and references therein. In Section 4 we define the notion of a Riemannian
Q-manifold and explore some of their basic properties. We end with Section 5 with
a few concluding remarks.

Our use of supermanifolds. We assume that the reader has some familiarity
with the basics of the theory of supermanifolds. We will understand a supermanifold
M := (|M |, OM ) of dimension n | m to be a supermanifold in the sense of Berezin
& Leites [2], i.e., as a locally superringed space that is locally isomorphic to
Rn|m :=

(
Rn, C∞(Rn)⊗ Λ(ξ1, . . . , ξm)

)
. In particular, given any point on |M | we

can always find a ‘small enough’ open neighbourhood |U | ⊆ |M | such that we can
employ local coordinates xa := (xµ, ξi) on M . We will call (global) sections of
the structure sheaf functions, and often denote the supercommutative algebra of
all functions as C∞(M). The underlying smooth manifold |M | we refer to as the
reduced manifold. We will make heavy use of local coordinates on supermanifolds
and employ the standard abuses of notation when it comes to describing, for
example, morphisms of supermanifolds. We will denote the Grassmann parity of
an object A by ‘tilde’, i.e., Ã ∈ Z2. By ‘even’ and ‘odd’ we will be referring to the
Grassmann parity of the objects in question. As we will work in the category of
smooth supermanifolds, all the algebras, commutators etc. will be Z2-graded.

The tangent sheaf TM of a supermanifold M is the sheaf of derivations of
sections of the structure sheaf – this is, of course, a sheaf of locally free OM -modules.
Global sections of the tangent sheaf we refer to as vector fields, and denote the
OM (|M |)-module of vector fields as Vect(M). The total space of the tangent sheaf
we will denote by TM and refer to this as the tangent bundle. By shifting the
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parity of the fibre coordinates one obtains the antitangent bundle ΠTM . We will
reserve the nomenclature vector bundle for the total space of a sheaf of locally free
OM -modules, that is we will be referring to ‘geometric vector bundles’.

There are several good books on the subject of supermanifolds and we suggest
Carmeli, Caston & Fioresi [4], Manin [20] and Varadrajan [29] as general references.
The encyclopedia edited by Duplij, Siegel & Bagger [6] is also indispensable, as is
the review paper by Leites [17]. DeWitt [5, Section 2.8] discusses in some detail
Riemannian geometry on DeWitt–Rogers supermanifolds. While some care is needed
in translating between supermanifolds (as locally ringed spaces) and DeWitt–Rogers
supermanifolds, most of the expressions given by DeWitt on Riemannian structures
remain valid in Riemannian supergeometry.

2. Riemannian supermanifolds

2.1. The tangent bundle of a supermanifold and symmetric tensors. The
tangent bundle TM of a supermanifold M , we define as a natural bundle via local
coordinates in almost exactly the same way as one can for a smooth manifold. For
convenience, we sketch the construction here.

Let M = (|M |,OM ) be a supermanifold equipped with an atlas {Ui,hi}i∈I. Here
|Ui| ⊂ |M | form an open cover of M and Ui = (|Ui|,OM ||Ui|). The maps

hi : Ui −→ U
n|m
i

are supermanifold diffeomorphisms. Here U
n|m
i are superdomains, i.e., open sub-

supermanifolds of Rn|m. Over non-empty |Uij | = |Ui| ∩ |Uj | we have transition
functions (induced glueing data)

hj ◦ h−1
i : U

n|m
i −→ U

n|m
j ,

where we have neglected to write out the obvious restrictions. It is clear that such
maps satisfy the cocycle conditions and so constitute glueing data. Suppose that
we have coordinates xa′ on U

n|m
j and xa on U

n|m
i . Then the changes of coordinates

we write as
xa
′

= xa
′
(x) ,

by employing the standard abuses of notation.
We define the tangent bundle TM by its atlas {TUi,Thi}i∈I induced from the

given atlas on M . That is, given any Ui in the atlas we have

Thi : TUi −→ U
n|m
i × Rn|m .

Clearly, |TUi| ∼= Uni × Rn. The induced glueing data is easiest to explain using
natural coordinates (xa, ẋb). Again using the standard abuses of notation, the
admissible coordinate transformations are of the form

xa
′

= xa
′
(x), ẋb

′
= ẋb

(∂xb′
∂xb

)
.

One can show that we do indeed construct a supermanifold of dimension 2n|2m in
this way. Moreover, it is clear that we have a vector bundle structure on TM . As such,
the tangent bundle can be considered as a non-negatively graded supermanifold



156 A.J. BRUCE

(see [13, 23, 30]). In particular, we assign weight zero to the base coordinates x and
weight one to the fibre coordinates ẋ. As the admissible coordinate transformations
respect the assignment of weight, it makes sense to speak of functions on TM
of a given weight. Moreover, it is known that homogeneous functions on TM
are monomial on the fibre coordinates. We will denote the polynomial algebra on
TM as A(TM). Clearly, A0(TM) = C∞(M). Note that the polynomial algebra
as a natural (right) C∞(M)-module structure. We will denote the submodule of
monomials of degree k as Ak(TM). We make the following definition.

Definition 2.1. The C∞(M)-module of rank k symmetric covariant tensors on
a supermanifold M is defined to be the C∞(M)-module of monomials on TM of
weight k.

Locally in natural coordinates, T ∈ Ak(TM) looks like
T = ẋa1 ẋa2 . . . ẋakTak...a2a1(x) ,

where the components Tak...a2a1 are (super)symmetric.

2.2. Riemannian structures.

Definition 2.2. A Riemannian metric on a supermanifold M , is an even, symme-
tric, non-degenerate, OM -linear morphisms of sheaves

TM ⊗OM TM −→ OM .

A Riemannian supermanifold is a supermanifold equipped with a Riemannian
metric.

In terms of vector fields, we have the following properties:

(1) ˜〈X|Y 〉g = X̃ + Ỹ ;

(2) 〈X|Y 〉g = (−1)X̃ Ỹ 〈Y |X〉g;
(3) If 〈X|Y 〉g = 0 for all Y ∈ Vect(M), then X = 0;
(4) 〈fX + Y |Z〉g = f〈X|Z〉g + 〈Y |Z〉g,

For all (homogeneous) X, Y , Z ∈ Vect(M) and f ∈ C∞(M).

Remark 2.3. A Riemannian metric on M naturally induces a pseudo-Riemannian
metric on the reduced manifold |M |. As we will not explicitly make use of this
reduced structure we will not spell-out the construction.

A Riemannian metric is specified by an even degree two function g ∈ A2(TM),
i.e., a Grassmann degree zero rank 2 symmetric covariant tensor. In local coordinates,
we write

g(x, ẋ) = ẋaẋb gba(x).
Under changes of coordinates xa 7→ xa

′(x) the components of the metric transform
as

gb′a′(x′) = (−1)̃a
′ b̃
( ∂xb
∂xb′

)( ∂xa
∂xa′

)
gab ,

where we have explicitly used the symmetry gab = (−1)̃a b̃ gba.
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If we denote the vertical lift of a vector field by ιX , which in local coordinates is
given by

X = Xa(x) ∂

∂xa
 ιX := Xa(x) ∂

∂ẋa
∈ Vect(TM) ,

then we observe that
〈X|Y 〉g = 1

2 ιXιY g ,
which leads to the local expression

〈X|Y 〉g = (−1)Ỹ ã Xa(x)Y b(x)gba(x) .
It is a straightforward exercise to show that the above local expression for the
metric pairing is invariant under changes of coordinates.

It is well-known that the non-degeneracy condition forces the dimensions of the
supermanifold M to be n|2 p, i.e., we require an even number of odd dimensions.

Example 2.4. As any manifold can be considered as a supermanifold with vani-
shing ‘odd directions’, i.e., a supermanifold of dimension n | 0, any (pseudo-)Rie-
mannian manifold can be considered as a Riemannian supermanifold.

Example 2.5. Consider R1|2 equipped with canonical global coordinates (t, ξ1, ξ2).
Any vector field decomposes as

X = X0 ∂

∂t
+X1 ∂

∂ξ1 +X2 ∂

∂ξ2 ,

where each component is a function of the canonical coordinates. The standard
metric is given by

g = (ṫ)2 ± 2 ξ̇1ξ̇2 ,

where we have a choice with the sign for the ‘odd part’ of the metric. Then a simple
calculation gives

〈X, | Y 〉g = X0Y 0 ± (−1)Ỹ (X1Y 2 −X2Y 1) .

Example 2.6. Consider R3|2 equipped with standard global coordinates (x, y, z, ξ1,
ξ2). The equation

x2 + y2 + z2 − 2 ξ1ξ2 = 1
defines the super-sphere S2|2 ⊂ R3|2 (using slight abuse of notation). As (local)
coordinates on S2|2 we can use the standard angles (θ, φ), i.e., the coordinates
inherited from using polar coordinates on R3, complemented by (ξ1, ξ2) inherited
from the ‘super-environment’. The reduced manifold is standard two-sphere. As
a sub-supermanifold of the Riemannian supermanifold R3|2, the super-sphere is
equipped with a non-degenerate metric inhered from the embedding. This metric
is given by

g = θ̇2 + sin2 θ φ̇2 − 2 ξ̇1ξ̇2 .

Example 2.7. Let M be an almost symplectic manifold, i.e., a manifold equipped
with a non-degenerate two-form ω, that this not necessary closed. This forces the
dimension of M to be even. Furthermore, let us assume that M is equipped with a
Riemannian metric, which we will denote as h. It is always possible to equip any
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smooth manifold with a Riemannian metric and we will not require any compatibility
condition between the almost symplectic structure ω and the Riemannian structure
h. We want to build a Riemannian metric on the supermanifold ΠTM . To do this,
consider the double supervector bundle T(ΠTM), which we equip with natural
coordinates (xa,dxb, ẋc,dẋd). Admissible changes of coordinates are of the form
(using standard abuses of notation)

xa
′

= xa
′
(x) , dxb

′
= dxa ∂x

b′

∂xa
,

ẋc
′

= ẋb
∂xc

′

∂xb
, dẋd

′
= dẋc ∂x

b′

∂xc
+ ẋbdxc ∂

2xd
′

∂xc∂xb
.

The Levi-Civita connection ∇ associated with the metric induces a splitting

T(ΠTM)
φh

−−−−→ ΠTM ×M TM ×M ΠTM ,

which we write in natural coordinates as
φ∗hξ

a = dẋa + dxbẋcΓacb(x) =: ∇ẋa .
Here ξa are the (fibre) coordinates on last factor of the decomposed or split double
supervector bundle. The splitting φh is understood as acting as the identity on the
remaining coordinates, i.e., we just canonically make the required identifications. On
the decomposed double supervector bundle we can take the sum of the Riemannian
metric and the almost symplectic structure. In natural coordinates we have

G := ẋaẋbgba(x) + ξaξbωba(x) .
The metric on T(ΠTM) is then the pull-back of G by the splitting. Thus, we write

g = φ∗hG = ẋaẋbgba(x) +∇ẋa∇ẋbωba(x) .

Remark 2.8. Odd Riemannian structures can similarly be defined. There are
no changes to the above definition except that the parity now is shifted, i.e., the
pairing between two vector fields will now be X̃ + Ỹ + 1. The condition of being
non-degenerate now forces there to be an equal number of even and odd dimensions.
We will only consider even metrics in this paper. The reason, in part, is that
while even metrics, together with even and odd symplectic structures, have found
application in physics, odd Riemannian structures remain a mathematical curiosity.

All the standard constructions of classical Riemannian geometry generalise to
Riemannian supermanifolds, for example the fundamental theorem holds. We will
not make use of the Levi-Civita connection or the curvature tensors in this paper.
They can all be defined via minor sign modifications of the classical definitions (see
for example [21]).

Remark 2.9. There is also the notion of a quasi-Riemannian structure due to
Mosman & Sharapov [22], which intriguingly exists on any supermanifold. This
structure understood as a pair (G,∇), where G symmetric positive definite tensor
field of type (0, 2) and ∇ is a compatible affine connection, which in general is not
symmetric. Naturally, an even Riemannian structures and metric compatible, but
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not necessarily torsion free affine connection is an example of a quasi-Riemannian
structure.

2.3. Killing vector fields. Killing vector fields are defined in exactly the same
way as in classical Riemannian geometry.

Definition 2.10. A vector field X ∈ Vect(M) is said to be a Killing vector field
if and only if

LXg = 0 .

At this juncture, we need to explain the above Lie derivative and derive a local
expression. Recall that any homogeneous vector field X ∈ Vect(M) defines a local
infinitesimal diffeomorphism (see [31, §2.3.9.]) of TM , which in local coordinates is
of the form

xa 7→ xa + λXa(x) ,

ẋa 7→ ẋa + λ ẋb
∂Xa

∂xb
(x) ,

where λ is an external parameter of degree λ̃ = X̃. Under this local diffeomorphism
a quick calculation shows that the metric g changes as

g(x, ẋ) 7→ g(x, ẋ)

+λ ẋaẋb
(

(−1)X̃ ã ∂X
c

∂xb
gca+ (−1)̃b(X̃+ã) ∂X

c

∂xa
gcb+ (−1)X̃ (̃a+̃b)Xc ∂gba

∂xc

)
+O(λ2) .

By definition, locally, the Lie derivative is given by the first-order term in λ. Thus,
we have the local expression

(2.1) (LXg)ba = (−1)X̃ ã ∂X
c

∂xb
gca + (−1)̃b(X̃+ã) ∂X

c

∂xa
gcb + (−1)X̃ (̃a+̃b)Xc ∂gba

∂xc
.

Naturally, this local expression is identical to the classical one up to some sign
factors.

Proposition 2.11. The set of all Killing vector fields on even Riemannian su-
permanifold (M, g) forms a Lie algebra with respect to the standard Lie bracket of
vector fields on M .

Proof. This follows in complete parallel with the classical case using L[X,Y ] =
[LX , LY ]. �

2.4. The inverse metric and the trace. The non-degeneracy of a metric implies
that the components, thought of as a rank-2 covariant tensor, is invertible. The
defining relation for the inverse metric is

gacgcb = gbcg
ca = δab ,

just as it is on a classical Riemannian manifold. Clearly, the inverse metric is even.
The above relation allows us to deduce the symmetry property of the inverse metric.

Proposition 2.12. The inverse metric gab has the following symmetry:

(−1)̃b gab = (−1)̃a b̃+ã gba .
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Proof. Let gab = (−1)λ gba, where λ is to be determined. From the defining
relation and the symmetry of the metric we have

gacgcb = (−1)̃ac̃+ã̃b+c̃+λ gbcgca .
Then, once a = b we see that λ = ã c̃+ ã+ c̃. This gives the required symmetry. �

Definition 2.13. Let (M, g) be a Riemannian supermanifold we define the metric
trace or just trace as the C∞(M)-linear map

A2(TM) −→ C∞(M) ,
given in local coordinates as

StrgT := (−1)̃a gabTba ,
for any arbitrary T = ẋaẋbTba(x) ∈ A2(TM).

In words, the metric trace is given by contraction of the rank two symmetric
rank two covariant tensor with the inverse metric to form a matrix, and then we
take the standard supertrace.

Remark 2.14. The metric trace can also be defined for rank two covariant tensors
without any symmetry condition. We focus on the symmetric case as this is what
we will need in later sections of this paper.

2.5. The divergence operator and the canonical Berezin volume. Let us
for simplicity assume that the supermanifolds that we will be dealing with are
superoriented (see [26] and/or [6, page 285]). That is the underlying reduced
manifold will be oriented, and we further require that we have chosen an atlas such
that the Jacobian associated with any change of coordinates is strictly positive.
The Berezin bundle Ber(M), is understood as the (even) line bundle over M whose
sections in a local trivialisation are of the form

s = D[x]s(x),
where D[x] is the coordinate volume element. Under changes of local coordinate we
have

D[x′] = D[x] Ber
(∂x′
∂x

)
.

Sections of Ber(M) are Berezin forms on M . Note the the Grassmann parity of
a Berezin density is determined by s(x). A Berezin volume on M is a nowhere
vanishing even Berezin form.

In the classical case on a manifold, one needs a volume form (or in the
non-oriented case a density) in order to define the divergence of a vector field. The
same is true for supermanifolds, and we take the definition of the divergence of a
vector field X ∈ Vect(M) with respect to a chosen Berezin volume to be
(2.2) ρDivρX = LXρ .

In local coordinates, this definition amounts to

(2.3) DivρX = (−1)̃a(X̃+1) 1
ρ

∂

∂xa
(Xaρ) .
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Up to a sign factor, this local expression is exactly the same as the classical case.
Moreover, one can show that the following expressions hold.

Divρ(f X) = f DivρX + (−1)f̃X̃X(f) ;
Divρ′X = DivρX +X(f ′) ;

Divρ[X,Y ] = X(DivρY )− (−1)X̃Ỹ Y (DivρX) ;

where X and Y ∈ Vect(M), f ∈ C∞(M), and ρ′ = exp(f ′)ρ with f ′ ∈ C∞(M) is
even. These properties, again up to some signs are identical to the properties of
the classical divergence operator on a manifold.

Much like the classical situation, a Riemannian metric defines a canonical Berezin
volume on M . This is well explained in [32, Appendix B] and our treatment of the
construction is taken directly from there. The transformation rules for (components
of) the metric can be written as

gb′a′(x′) = (−1)̃a
′ b̃
( ∂xb
∂xb′

)( ∂xa
∂xa′

)
gab

=
( ∂xb
∂xb′

)
gba

( ∂xa
∂xa′

)
(−1)̃a(̃a′+1) .

The third factor (along with the signs) is recognised as the supertranspose of the
Jacobian matrix. Note that Ber(Ast) = Ber(A). Thus, we obtain

Ber(gb′a′) = Ber
( ∂xb
∂xb′

)
Ber(gba) Ber

( ∂xa
∂xa′

)
= Ber

( ∂xb
∂xb′

)2
Ber(gba) .

Following classical notation, we set |g| := Ber(gba) and |g′| := Ber(gb′a′), and so
we can write

|g′| = |g| Ber
( ∂x
∂x′

)2
.

Definition 2.15. Let (M, g) be a Riemannian supermanifold. Then the canonical
Berezin volume is defined as

dV := D[x]
√
|g| ,

where |g| := Ber(gba).

Remark 2.16. It should be noted that there is no canonical Berezin volume on
an odd Riemannian supermanifold (or indeed, an odd symplectic supermanifold
and this has important consequences for the Batalin–Vilkovisky formalism). The
above considerations cannot be repeated for odd structures.

In complete parallel with the classical case, the divergence of a vector field with
respect to the canonical Berezin volume is related to the trace of the Lie derivative
of the metric.
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Proposition 2.17. Let (M, g) be a Riemannian supermanifold and let dV be the
canonical Berezin volume. Then

1
2Strg

(
LXg

)
= DivdVX .

Proof. Direct computation in local coordinates produces

(−1)̃a 1
2g

ab(LXg)ba = (−1)̃a(X̃+1)
(∂Xa

∂xa

)
+ 1

2

(
Xc ∂gab

∂xc

)
gba .

Next, we need the well-known formula δBer(A) = Ber(A) Str(δAA−1), which
implies

1
2Str(δAA−1) = 1√

Ber(A)
δ
√

Ber(A) .

Thus,

(−1)̃a 1
2g

ab(LXg)ba = (−1)̃a(X̃+1)
(∂Xa

∂xa

)
+ 1√

|g|
Xa ∂

√
|g|

∂xa

= (−1)̃a(X̃+1) 1√
|g|

( ∂

∂xa
(Xa

√
|g|)
)
.

Comparing this with (2.3) (and using Definition 2.15) establishes the proposition.
�

Proposition 2.18. Let (M, g) be a Riemannian supermanifold. If X ∈ Vect(M) is
a Killing vector field then it is divergenceless (with respect to the canonical Berezin
volume).

Proof. This is a direct consequence of Proposition 2.17 together with Defini-
tion 2.10. �

Corollary 2.19. The canonical Berezin volume on a Riemannian supermanifold
(M, g) is invariant under the action of a Killing vector field, i.e.,

LXdV = 0 ,
if X ∈ Vect(M) is a Killing vector field.

3. Q-manifolds and their modular classes

3.1. Homological vector fields and Q-manifolds. We now turn our attention
to homological vector fields and Q-manifolds.

Definition 3.1. A Q-manifold is a supermanifoldM , equipped with a distinguished
odd vector field Q ∈ Vect(M) that ‘squares to zero’, i.e., Q2 = 1

2 [Q,Q] = 0. The
vector field Q is referred to as a homological vector field or a Q-structure.

Note that due to extra signs that appear in supergeometry, [Q,Q] := Q◦Q+Q◦Q,
and hence Q2 = 0 is a non-trivial condition. In local coordinates, we have Q =
Qa(x) ∂

∂xa , and the condition that Q is homological is

Q2 = 0⇐⇒ Qa
∂Qb

∂xa
= 0 .
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Definition 3.2. Let (M1, Q1) and (M2, Q2) be Q-manifolds. Then a morphism of
supermanifolds ψ : M1 → M2 is a morphism of Q-manifolds if it relates the two
homological vector fields, i.e.,

Q1 ◦ ψ∗ = ψ∗ ◦Q2 .

To be explicit, let us employ local coordinates xa on M1 and yα on M2. We will
write, using standard abuses of notation ψ∗yα = ψα(x). The statement that ψ be
a morphism of Q-manifolds means locally that

Qa1(x)∂ψ
α(x)
∂xa

= Qα2
(
ψ(x)

)
.

Evidently, we obtain the category of Q-manifolds via standard composition of
supermanifold morphisms.

Definition 3.3. The standard cochain complex associated with a Q-manifold is
the Z2-graded cochain complex (C∞(M), Q). The resulting cohomology is referred
to as the standard cohomology of the Q-manifold.

We then see that morphisms of Q-manifolds are cochain maps between the
respective standard cochain complexes.

Theorem 3.4 (Shander [25]). Let Q be a homological vector field on a superdomain
Up|q, then the following are equivalent:

(1) Q is weakly non-degenerate at all points p ∈ Up, i.e., not all the components
of Q vanish at any given point;

(2) there exists a coordinate system (x1, . . . , xp; ξ1, . . . , ξq) on Up|q such that

Q = ∂

∂ξ1 .

The above theorem tells us that locally and assuming that the homological
vector field weakly non-degenerate on some appropriate neighbourhood, then we
can employ local coordinates xa = (xµ, ξλ, τ), where µ = 1, · · · p and λ = 1, . . . , q−1.
This theorem was extended by Vaintrob [27] in the following way.

Theorem 3.5 (Vaintrob [27]). Let Q be a homological vector field on a superma-
nifold M . If Q is non-singular (i.e., weakly non-degenerate in neighbourhoods of
any point on |M |), then there exists another a supermanifold N , such that

M ' N × R0|1 ,

and the homological vector field takes the form

Q = ∂

∂τ
,

where τ is the global coordinate on R0|1.
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3.2. Modular classes of Q-manifolds. The modular class of a Q-manifold
([19, 18]) is defined in terms of the divergence (see 2.2) of the homological vector
field.

Definition 3.6. The modular class of a Q-manifold is the standard cohomology
class of DivρQ, i.e.,

Mod(Q) := [DivρQ]St .

The modular class is independent of any chosen Berezin volume as any other
choice of volume leads to divergences that differ only by something Q-exact, and so
Q-closed (this follows directly from the properties of the divergence operator). This
means that the modular class is a characteristic class of a Q-manifold. The vanishing
of the modular class is a necessary and sufficient condition for the existence of a
Berezin volume that is Q-invariant.

In some given set of local coordinates, one can write out the divergence as

DivρQ = ∂Qa

∂xa
+Q

(
log(ρ)

)
.

The local (characteristic) representative of the modular class is understood as just
the term

(3.1) φQ(x) := ∂Qa

∂xa
(x) .

In general, this term is not invariant under changes of coordinates, only the full
expression for the divergence is. However, as we are always dropping terms that
are Q-exact, the local representative is still meaningful, though as written it is only
a local function on M .

Remark 3.7. The expression (3.1) gives the local representative of the standard
(coordinate) volume. In general we do not have a version of the Poincaré lemma:
meaning that Q-closed functions are not necessarily locally Q-exact. Thus, it makes
sense to speak of a local representative of the modular class.

Definition 3.8. A Q-manifold (M,Q) is said to be a unimodular Q-manifold if
its modular class vanishes. In other words, if there exists a Q-invariant Berezin
volume.

Example 3.9. The prototypical example of a Q-manifold is the antitangent bundle
ΠTM . In natural local coordinates (xa,dxb), we have the de Rham differential

d = dxa ∂

∂xa
.

Clearly, the local representative of the modular class vanishes and so ΠTM is
unimodular. The invariant Berezin volume is just the canonical coordinate volume
D[x, dx].
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4. Riemannian Q-manifolds

4.1. Homological-Killing vector fields. If a supermanifold is both simulta-
neously a Riemannian supermanifold and a Q-manifold, we have the natural
question of the compatibility of the two structures. In practice, this often reduces
to one structure generating a symmetry of the other and maybe vice-versa. We,
therefore, make the following definition.

Definition 4.1. Let (M, g) be a Riemannian supermanifold. Then a homological-Kil-
ling vector field Q ∈ Vect(M) is a homological vector field that is also a Killing
vector field. That is, it satisfies

(1) Q2 = 1
2 [Q,Q] = 0, and,

(2) LQg = 0.

Remark 4.2. The standard cohomology of a Q-manifold can be extended to all
tensor fields on (M,Q) via the Lie derivative. In particular, (A2(TM), LQ) is a
Z2-graded cochain complex. Thus, the Killing condition of a homological vector
field can be restated as the metric g being Q-closed.

Definition 4.3. A Riemannian Q-manifold is a triple (M, g,Q), where (M, g) is a
Riemannian manifold, (M,Q) is a Q-manifold such that Q is a homological-Killing
vector field.

Example 4.4 (Euclidean superspace). Consider R1|2 equipped with global coordi-
nates (t, ξ1, ξ2) and with standard metric

g = ṫ2 ± 2 ξ̇1ξ̇2 .

This metric is clearly invariant under translations of any of the even or odd
directions. We may take

Q = ∂

∂ξ1

as our distinguished homological-Killing vector field in this particular chart.

Example 4.5 (Positive half-superline). Consider R1|2 equipped with global co-
ordinates (t, ξ1, ξ2). The positive half-superline R1|2

>0 we define to be the open
subsupermanifold of R1|2 defined by t > 0. We equip the positive half-superline
with the metric

g = (ṫ2 ± 2 ξ̇1ξ̇2) t−2 .

This metric is clearly invariant under translation in either of the odd directions.
However, unlike the previous example, it is not invariant under translations in the
even direction. We may take

Q = ∂

∂ξ1

as our distinguished homological-Killing vector field in this particular chart.

We will shortly see that the above examples are somewhat generic (see Proposi-
tion 4.10 and Corollary 4.11).
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Definition 4.6. A morphism between two Riemannian Q-manifolds

φ : (M, g,Q) −→ (m′, g′, Q′) ,

is a morphism of supermanifolds such that
(1) φ∗g′ = g, and,

(2) Q ◦ φ∗ = φ∗ ◦Q′.

In local coordinates the two above condition can be written in the following
way. If we consider local coordinates xa on M and yα on M ′, and then denote
φ∗yα = φα(x), then we can write

(−1)̃a α̃
(∂φβ(x)

∂xb

)(∂φα(x)
∂xa

)
gαβ
(
φ(x)

)
= gab(x) ,

Qa(x)
(∂φα(x)

∂xa

)
= Qα

(
φ(x)

)
.

One can quickly see that morphisms between Riemannian Q-manifolds can be
composed (as morphisms between supermanifolds) and that in this way we obtain
the category of Riemannian Q-manifolds.

4.2. The modular class of a Riemannian Q-manifold. We are now in a
position to state the following.

Theorem 4.7. Let (M, g,Q) be a Riemannian Q-manifold. Then as a Q-manifold,
(M,Q) is unimodular (see Definition 3.8).

Proof. From Proposition 2.18 we see that any Killing vector field has vanishing
divergence with respect to the canonical Berezin volume. From the definition of
the divergence, it is clear that LQdV = 0. Moreover, the existence of a Q-invariant
Berezin volume is equivalent to the vanishing of the modular class. Hence, the
Q-manifold (M,Q) is unimodular. �

Remark 4.8. It is clear that not all unimodular Q-manifolds can be equipped
with a Riemannian metric that renders them a Riemannian Q-manifold. For one,
we require the dimension of the supermanifold to be n|2 p. This immediately
rules out the possibility of constructing a Riemannian metric on ΠTM such that
the de Rham differential d is a Killing vector field. However, it is known that
odd Riemannian metrics exist for which the de Rham differential is Killing. See
Monterde & Sánchez-Valenzuela [21] for details.

Example 4.9. Let (g, [−,−]) be a (non-super) Lie algebra of dimension 2p. Fur-
thermore, let us assume that this Lie algebra comes equipped with an almost
symplectic structure, i.e., a Lie algebra two form of maximal rank, which is not
necessarily closed with respect to the Chevalley–Eilenberg differential. Let us now
pass to the “super-picture”. As standard, Πg is a Q-manifold, were, in natural
linear coordinates, the homological vector field is

Q = 1
2ξ

αξβQγβα
∂

∂ξγ
,
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here Qγβα are the structure constants of the Lie algebra. The Jacobi identity for
the Lie bracket is equivalent to Q2 = 0. The almost symplectic structure we can
interpret as a Riemannian metric on Πg,

g = ξ̇αξ̇βgβα ,

where gβα = −gαβ . The Killing equation reduces to the algebraic condition

(4.1) Qγδαgγβ −Q
γ
δβgγα = 0 .

If (4.1) holds, then (Πg, Q) is a Riemannian Q-manifold. Assuming that this is the
case, then g is a unimodular Lie algebra in the classical sense. Note that the Killing
equation is a more restrictive condition that just unimodularity of the Lie algebra.
To see the classical unimodularity, consider contraction of the Killing equation

Qγδαgγβg
βε −Qγδβgγαg

βε = Qεδα −Q
γ
δβgγαg

βε = 0 .

Now setting ε = α, as this is what we are interested in when it comes to unimodu-
larity, gives

Qαδα −Q
γ
δβgγαg

βα = Qαδα +Qγδβg
βαgαγ = Qαδα +Qβδβ = 0 .

Thus, Qαβα = 0, which is precisely the condition that g be unimodular.

4.3. Killing–Shander coordinates. Assuming that Q is weakly non-degenerate
in the neighbourhood of a point p ∈ |U |, then using Theorem 3.4, we can employ
local coordinates xa = (xi, τ). In these privileged coordinates, the Killing equation
(see Definition 2.10 and (2.1)) reduces to

(4.2) ∂gba
∂τ

= 0 .

We will refer to this choice of coordinates as Killing–Shander coordinates. Thus we
are lead to the following:

Proposition 4.10. Let (M, g,Q) be a Riemannian Q-manifold. In the neighbou-
rhood of a point p ∈ |U | ⊂ |M | on which Q is weakly non-degenerate, there exists
coordinates xa := (xi, τ) such that all the components of the Riemannian metric
are independent of τ . Conversely, if in the neighbourhood of any point on |M | there
exists coordinates xa := (xi, τ) such that all the components of the Riemannian me-
tric are independent of τ , then there exists a nowhere vanishing homological-Killing
vector field Q.

Proof. The first part of the proposition is a direct consequence of (4.2). The
converse statement follows as in the given coordinate systems Q = ∂

∂τ is clearly
homological and Killing. The homological Killing vector field must be nowhere
vanishing in order for the required coordinates to exists in the neighbourhood of
any point. �

Corollary 4.11. With the conditions of the previous proposition in place, in
Killing–Shander coordinates the metric has the form

g = ẋiẋjgji(x) + τ̇ ẋigi(x) ,
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and the homological Killing vector field has the form

Q = ∂

∂τ
.

Using Theorem 3.5, if we have a nowhere vanishing homological vector field,
then we can consider M ' N × R0|1 as a trivial odd line bundle. Thus, changes of
Killing–Shander coordinates are of the form

xi
′

= xi
′
(x) , τ ′ = c τ ,

where c ∈ R∗. The naturally induced changes of coordinates on the tangent bundle
are

ẋi
′

= ẋi
(∂xi′
∂xi

)
, τ̇ ′ = c τ̇ .

Then, examining the local form of the metric show that the term ẋiẋjgji(x) belongs
to A2(TN). However, it is not a Riemannian metric as N has an odd number of
‘odd directions’, i.e., locally we have an odd number of anticommuting coordinates.
Examining the second term, we see that we have the transformation rule

gi′ = c−1
(
∂xi

∂xi′

)
gi ,

and this term as the interpretation (under the specified coordinate changes) as
an odd twisted covariant one-form. Under these transformations, the homological
vector field transforms by an irrelevant rescaling by c−1, i.e., simply rescaling the
odd coordinates again will remove this factor.

5. Concluding remarks

We have shown, rather explicitly, that Riemannian Q-manifolds represent a large
class of unimodular Q-manifolds, i.e., supermanifolds that admit a Q-invariant
Berezin volume. The Q-invariant volume is just the canonical Berezin volume
associated with the (even) Riemannian metric. If instead of an even metric one
considers an odd metric, then a Berezin volume needs to be separately specified.
Thus, in general, a Killing vector field on an odd Riemannian supermanifold does
not automatically preserve the volume. This is, of course, in complete parallel with
the case of even and odd symplectic supermanifolds and Hamiltonian vector fields.

It would be interesting to construct further examples of Riemannian Q-manifolds
and examine the interplay between their standard cohomology and their Riemannian
geometry. To the author’s knowledge there has been no published works in this
direction.
Acknowledgement. The author cordially thanks Steven Duplij and Janusz Gra-
bowski for their helpful comments on earlier drafts of this work.
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