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CONSENSUS OF HETEROGENEOUS MULTI-AGENT
SYSTEMS WITH UNCERTAIN DOS ATTACK:
APPLICATION TO MOBILE STAGE VEHICLES

Wen-Hai Yu, Hong-jie Ni, Hui Dong and Dan Zhang

In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain
Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchro-
nized and they communicate with each other with a constant sampling period normally. When
the system is under attack, all agents use the hold-input mechanism to update the control
protocol. By assuming that the attack duration is upper bounded and the occurrence of the
attack follows a Markovian jumping process, the closed-loop system in presence of such a kind
of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities
are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and
Markovian jumping system approach, sufficient conditions are proposed such that the output
consensus can be achieved, and the controller gains are determined by solving some matrix
inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the
effectiveness of main results.

Keywords: heterogeneous multi-agent systems (MASs), Markovian jumping system,
Deny-of-Service (DoS) attack, output feedback control

Classification: 93D05, 93C57, 60J05

1. INTRODUCTION

In recent years, cooperation of MASs has received increasing attention due to its wide
application in various areas such as coordination of intelligent transportation systems,
multi-spacecraft, mobile stages and smart grid, distributed target tracking of sensor net-
works [1, 2, 3, 4, 5, 6], and so on. The consensus problem is the basis of cooperation
and coordination control of MASs, which includes the leader-following consensus and
the leader-less one. In [7], a necessary and sufficient condition for the output consensus
of heterogeneous linear MASs based on the internal model principle was proposed. A
neural network-based adaptive leader-following consensus control method was proposed
for a class of nonlinear state-delay MASs in [8]. Hu et al. [9] proposed a distributed
dynamic event trigger mechanism to ensure the consensus of linear MASs. In [10], the
consensus problem of MASs with Markovian network topologies and external interfer-
ence was solved by introducing a new network topology mode regulator which consists
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of a randomly overlapping decomposer and a high-level decision maker. More work on
MASs can be found in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and references therein,
where the consensus of MASs was studied by means of adaptive control, reinforcement
learning and event-triggered control based on the matrix method and graph theory.

In reality, data transmission between each agent is usually realized through the wire-
less network. Therefore, how to ensure the consensus of MASs when the occurrence of
various network attacks has become a common concern. In [22], the distributed coor-
dinated control problem for a class of linear MASs affected by two types of network
attacks on the edges was addressed. A sufficient condition for secure consensus tracking
was given by using the so called average dwell time-based multiple Lyapunov function
approach. Leader-following consensus of heterogeneous linear MASs under DoS attack
was investigated by using a switched system approach in [23], where different attack
intensities were considered. In [24], Zhi et al. studied the event-triggered secure co-
operative control of linear MASs subject to DoS attacks. The frequency and duration
of DoS attacks were analyzed for the problem of secure average consensus. Due to the
existence of random DoS attack, the communication links would be broken and each
agent uses hold-input mechanism to update the state and therefore resulting in the
non-periodic sampling phenomena. Note that some ideas have been presented in the lit-
erature [25, 26, 27] for the non-periodic sampling problem of continuous systems whereas
most of the above studies assume that the sampling process is deterministic. As pointed
out in [28], random sampling schemes are preferable to deterministic sampling schemes.
[29, 30, 31, 32, 33, 34, 35, 36] considered the consensus problem of MASs during random
sampling of continuous systems for the purpose of reducing energy consumption or in
the case of network attacks during data transmission, and the sampling probabilities are
preciously known. However, it is worth mentioning that the above results were obtained
based on the accurate statistical information of DoS attack process, which has great
limitations in practical applications as the attack behavior is usually hard to capture.
To the best of the author’s knowledge, up to now, the consensus of heterogeneous MASs
with uncertain or unknown DoS attack behaviors has not been investigated yet, which
motivates our work.

Inspired by the recent works on the random sampling mechanism in existing works,
the consensus of heterogeneous MASs with uncertain DoS attacks is studied in this
paper, where the statistical information of DoS attack process is uncertain or even un-
known. Normally, the agent sampling process is time synchronized and the sampling
period is constant. Under the mild assumption that the attack is randomly triggered and
follows the Markovian process, we formulate the closed-loop MASs in presence of DoS
attack as a stochastic sampling system, where a Markovian jumping system approach is
adopted. In our framework, the uncertain or unknown DoS attack strategies are mod-
eled as uncertain and unknown elements of Markovian switching probabilities, where
the number of subsystem depends on the attack duration directly. A sufficient condition
for guaranteeing the consensus of heterogeneous MASs subject to uncertain DoS attack
is obtained by using the decomposition technique, Lyapunov stability theory and ma-
trix transformation method. An algorithm that calculating the gain of output feedback
controller is obtained by solving a set of matrix inequalities. Finally, the effectiveness of
main results is verified by a simulation study on the mobile stage vehicles.
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Notations: Rn denotes the n-dimensional Euclidean space. X > 0 denotes a positive-
definite matrix X. The superscript WT means the transpose of a real matrix W ,
he (X) = X + XT . E {•} and Pr {•} are the mathematical expectation and proba-
bility of the event “•”, respectively. ‖ • ‖ denotes the two-norm of matrix, “∗” stands
for the symmetry of a matrix. “⊗” denote the Kronecker product. diag {· · ·} is used to
describe the block-diagonal matrix. λmin {Ω} is the minimal eigenvalue of matrix Ω. I
and 0 represent the identity matrix and zero matrix with appropriate dimensions.

2. PROBLEM FORMULATION

First of all, we introduce some basic knowledge of graph theory. An undirected
graphs G is formed by set (V, E), where V= {ν1,ν2, . . . ,νn} represents a set of n nodes
and E ⊆ V ×V is a set of edges formed by ordered pairs of nodes. If there is a path from
ν1 to νn, then ν1 and νn are connected. We called the graph G is a connected graph if for
any two nodes in G are connected. Let the adjacency matrix be A = [aij ], where aij > 0
when (νi,νj) ∈ E , it represents the case that node i can receive the information from
node j, otherwise, aij = 0. Defining the set of neighbors of node i as Ni = {j : aij > 0},
and the matrix D = diag {di} is called as the in-degree matrix, where di =

∑
j∈Ni aij

is in-degree weights of node i. The Laplacian matrix is L = D −A. The pining matrix
G = diag{g1, g2,...,gn} is used to show the interaction between the leader and followers.
It is defined that gi = 1 if the ith follower can receive information from the leader,
otherwise, gi = 0.

Assumption 2.1. The communication graph is connected(connected graph indicates
that any two nodes in graph G are connected) and there is no isolated agent(nodes with
zero degree are called isolated nodes).

Assumption 2.2. The DoS attack duration is upper bounded, and the occurrence of
attack follows a Markov chain.

Remark 2.3. The DoS attack duration is generally upper bounded, see, e. g., the attack
detection problem studied in the connected vehicles, where a sliding mode observer was
designed in [37] to estimate the attack bound. In addition, the Markovian jumping
system approach was adopted in many works to model the DoS attack phenomenon,
see, e. g., [38]. In this work, we follow this method but extend it to the uncertain and
unknown case.

The state space model of N followers and one leader of the continuous-time hetero-
geneous MASs are described as follows.
Follower: {

ẋi = Aixi +Biui +Diωi
yi = Cixi i = 1, . . . , N

(1)

where xi(t) ∈ Rni , ui(t) ∈ Rpi , ωi(t) ∈ Rmi and yi(t) ∈ Rq are the state, control input,
external disturbance and output of agent i, respectively. Ai ∈ Rni×ni , Bi ∈ Rni×pi ,
Ci ∈ Rq×ni , Di ∈ Rni×mi are some constant matrices and they are generally different
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in heterogeneous MASs.
Leader: {

ẋ0 = Mx0

y0 = Rx0
(2)

where x0(t) ∈ Rm, y0(t) ∈ Rq are the state and measure output of the leader, respec-
tively. M ∈ Rm×m and R̄ ∈ Rq×m are two constant matrices.

Traditionally, the following output feedback controller was designed [39]:
ui = Ki (yi − CiΠiζi) + Γiζi

ζ̇i = Mζi + F

( ∑
j∈Ni

aij (ζj − ζi) + gi (x0 − ζi)

)
(3)

where Ki ∈ Rpi×q and F ∈ Rm×m are the gains of the output feedback controller. In
addition, matrices Πi ∈ Rni×m and Γi ∈ Rpi×m satisfy the following relationship:

AiΠi +BiΓi = ΠiM ;CiΠi = R̄ i = 1, . . . , N. (4)

Due to the fact that the control system is usually designed in a digital way, we assume
that each agent can trigger the sampling process periodically and synchronously, and
then send the real-time sampling data to the neighbor agent who needs to communicate.
So the sampling time instants are t

′

0, t
′

1. . . t
′

k. . . and normally the sampling period is

h
′

k = t
′

k+1 − t
′

k = T0. Due to the existence of adversaries, the communication links
would be broken and each agent uses hold-input mechanism to update the state. For
instance, the actual sampling period hk = tk+1 − tk may become 2T0, 3T0, 4T0. . . when

the DoS attack happens, where {t0, t1 . . . tk . . .} ⊆
{
t
′

0, t
′

1 . . . t
′

k . . .
}

. Under the mild

assumption that the attack is randomly triggered and follows the Markovian process,
the sampling period hk is thus taken from the set < = {δ1T0, δ2T0, . . . , δnT0}, where T0

is a fixed sampling time, δj , j = 1, 2, . . . , n is a positive integer. For the simplicity, tk
will be shortly denoted as k. Denote ρ(k) ∈ φ , {1, 2, . . . , n}, then we have the following
discrete-time system:
Follower: {

xi(k + 1) = Aiρ(k)xi(k) +Biρ(k)ui(k) +Diρ(k)ωi(k)
yi(k) = Cixi(k) i = 1, . . . , N.

(5)

Leader: {
x0(k + 1) = Mρ(k)x0(k)
y0(k) = Rx0(k)

(6)

where Aiρ(k) = (Ai0)δρ(k) , Biρ(k) =
∑δρ(k)
t=1 (Ai0)

t−1
Bi0, Diρ(k) =

∑δρ(k)
t=1 (Ai0)

t−1
Di0,

Mρ(k) = (M0)δρ(k) with Ai0 = eAiT0 , Bi0 = Bi
∫ T0

0
eAiτdτ , Di0 = Di

∫ T0

0
eAiτdτ , M0 =

eMT0 . In this paper, the Markov chain {ρ(k), k ∈ N+} is used to describe the DoS attack
process. Denote Pr(ρ(k + 1) = t|ρ(k) = s) = πst and for any s, t ∈ φ, we have πst > 0
and

∑n
t=1 πst = 1.
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The Markovian transition probability matrix is:

Λ =


π11 π12 · · · π1n

π21 π22 · · · π2n

. . .

πn1 πn2 · · · πnn

 . (7)

In this paper, we propose the following control protocol ζi(k + 1) = Mρ(k)ζi(k) + Fρ(k)

( ∑
j∈Ni

aij (ζj(k)− ζi(k)) + gi (x0(k)− ζi(k))

)
ui(k) = Ki (yi(k)− CiΠiζi(k)) + Γiζi(k)

(8)

where Fρ(k) =
∑δρ(k)
t=1 (M0)

t−1
F0, F0 = F

∫ T0

0
eMτdτ .

In the actual attack process, the attacker or hacker will deliberately hide the at-
tack behavior. Therefore, some elements of the Markovian transition probability ma-
trix is uncertain or even completely unknown. Inspired by [40], we assume that the
transition probability matrix Λ = [πst]n×n is affected by a polytopes PΛ, where PΛ ,{

Λ|Λ =
∑Z
r=1 αrΛr;αr > 0,

∑Z
r=1 αr = 1

}
with Λr = [πst]n×n, s, t ∈ φ, and r = 1, . . . ,Z

is a transition probability matrix containing uncertain elements. In addition, for the sake

of simplicity, we define φ = φ
(s)
K ∪ φ

(s)
UC ∪ φ

(s)
UK.

φ
(s)
K , {t : πst is know}, φ(s)

UC , {t : π̃st is uncertain}, φ(s)
UK , {t : π̂st is unknow}

π
(s)
UC ,

∑
t∈φ(s)

UC
π̃rst,∀r = 1, . . . ,Z and π

(s)
K ,

∑
t∈φ(s)

K
πst

where uncertain and unknown elements are indicated by the superscripts “∼” and “∧”,
respectively.

Remark 2.4. It is noted that the number of subsystems of (5) depends on the attack
duration directly. The sampling period can be T0 and 2T0 when the maximum attack
duration is T0, and the number of subsystems is 2. When the maximum attack duration
is 2T0, the sampling period can be T0, 2T0 and 3T0, so there are three subsystems. Thus
when the maximum attack duration is nT0, we may get n+1 subsystems.

Remark 2.5. It is assumed that the maximum attack duration is known in our work,
when the bound of attack duration is unknown, one can use the sliding mode observer
to estimate it, see [37] for more details.

Remark 2.6. The Markovian jumping system method was proposed in the paper [38]
to deal with the DoS attack. Due to the fact that the precious attack behavior is hard
to know, and the precise modeling method in [38] can not be applied. Although the
behavior is not completely known, it is possible to have the bound of attack probability
and the transition probability of different attack duration. Then we can transform those
bound to the polytope-type uncertainty. Therefore, our modeling method is much more
flexible than that in [38].
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Define ei(k) = yi(k) − y0(k) as the output tracking error signal and also define the
local tracking error and local reference synchronization error as follows{

εi(k) = xi(k)−Πiζi(k)
ηi(k) = ζi(k)− x0(k)

(9)

where εi(k) ∈ Rni and ηi(k) ∈ Rm. At the same time, we need to define the following
notations for the purpose of expression

e(k) =
[
eT1 (k), . . . , eTN (k)

]T
ε(k) =

[
εT1 (k), . . . , εTN (k)

]T
η(k) =

[
ηT1 (k), . . . , ηTN (k)

]T
xc(k) =

[
εT (k), ηT (k)

]T
ω(k) =

[
ωT1 (k), . . . , ωTN (k)

]T
Aρ(k) = diag(Aiρ(k)), Bρ(k) = diag(Biρ(k)), Dρ(k) = diag(Diρ(k))
C = diag(Ci),K = diag(Ki),Π = diag(Πi)

(10)

where Aρ(k), Bρ(k), Dρ(k), C,K,Π represent the system matrix of N -dimensional system
composed of low-dimensioal Aiρ(k), Biρ(k), Diρ(k), Ci,Ki,Πi. Then we can obtain the
following closed-loop tracking error system{

xc(k + 1) = Acxc(k) +Dcω(k)

e(k) = Ccxc(k)
(11)

where

Ac =

[
Aρ(k) +Bρ(k)KC Π(L+G)⊗ Fρ(k)

0 IN ⊗Mρ(k) − (L+G)⊗ Fρ(k)

]
Cc =

[
C R̄c

]
, Dc =

[
DT
ρ(k) 0

]T
, R̄c = IN ⊗ R̄.

The consensus problem of heterogeneous MASs with uncertain DoS attack could be
solved if we design the control protocol (8) such that:

1) for each initial condition εi(0), ηi(0) and ρ(0) ∈ φ, the following inequalities

E

{ ∞∑
k=0

‖ ηi(k)‖2|χ(0)

}
<∞ (12)

E

{ ∞∑
k=0

‖ εi(k)‖2|χ(0)

}
<∞ (13)

are true, where χ(0) = {ηi(0), εi(0), ρ(0)} is initial condition.

2) for all non-zero ωi(k) ∈ L [0,∞) and the zero-initial condition,

E

{ ∞∑
k=0

‖ ei (k) ‖2
}
6 γ2

∞∑
k=0

‖ ωi(k)‖2 (14)



284 WEN-HAI YU, HONG-JIE NI, HUI DONG AND DAN ZHANG

holds, where γ > 0 refers to the perturbation attenuation rate.
The following lemmas are the requirements to derive the main results.

Lemma 2.7. (Ni et al. [30]) For matrices with appropriate dimensions T, M, U and
W, the sufficient condition of T + he(MW) < 0 is[

T ∗
MT + UW −U− UT

]
< 0.

Lemma 2.8. There exists a positiive definite matrix Q such that inequality

−QT I−1Q 6 −Q−QT + I

holds for any real matrix I > 0.

P r o o f . For any I > 0, we have I − Q − QT + QT I−1Q =
(
I−QT

)
I−1 (I−Q) > 0.

so we can obtain that −QT I−1Q 6 −Q−QT + I. �

Lemma 2.9. (Schur complement): Given a symmetric matrix:

∆ =

[
∆11 ∆12

∆T
12 ∆22

]
then the following inequalities

(i) ∆ < 0;

(ii) ∆11 < 0,∆22 −∆T
12∆−1

11 ∆12 < 0;

(iii)∆22 < 0,∆11 −∆12∆−1
22 ∆T

12 < 0.

are equivalent.

3. MAIN RESULTS

Theorem 3.1. The consensus problem of heterogeneous MASs is solvable if the follow-
ing low-dimensional closed-loop systems{

ε̂i(k + 1) =
(
Aiρ(k) +Biρ(k)KiCi

)
ε̂i(k) +Diρ(k)ωi(k)

ei(k) = Ciε̂i(k) i = 1, . . . , N
(15)

are simultaneously asymptotically stable in the mean-square sense with a prescribed
attenuation level γ > 0, and the following low-dimensional closed-loop systems

η̂i(k + 1) =
(
Mρ(k) − λiFρ(k)

)
η̂i(k) i = 1, . . . , N (16)

are simultaneously asymptotically stable in the mean-square sense, where λi is non-zero
eigenvalue of topology matrix (L+G).
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P r o o f . We can easily find a transformation matrix T such that

T (L+G)T −1 = Λ =

 λ1 0
. . .

0 λN

 . (17)

Define x̂c(k) =

[
ε̂(k)
η̂(k)

]
=

[
I 0
0 T ⊗ I

]
xc(k), then we have

{
x̂c(k + 1) = A

′

cx̂c(k) +D
′

cω(k)

e(k) = C
′

cx̂c(k)
(18)

where

A
′

c =

[
Aρ(k) +Bρ(k)KC Π(L+G)T −1 ⊗ Fρ(k)

0 IN ⊗Mρ(k) − T (L+G)T −1 ⊗ Fρ(k)

]
C

′

c =
[
C T −1 ⊗ R̄c

]
, D

′

c = Dc.

It remains to show that the following low-dimensional systems x̂ci(k + 1) =

[
ε̂i(k)
η̂i(k)

]
= A

′

ci x̂ci(k) +D
′

ciωi(k)

ei(k) = C
′

ci x̂ci(k)
(19)

are simultaneously asymptotically stable, where

A
′

ci =

[
Aiρ(k) +Biρ(k)KC ℵ

0 Mρ(k) − λiFρ(k)

]
C

′

ci =
[
Ci =

]
, D

′

ci =

[
Diρ(k)

0

]
.

ℵ and = are two terms do not affect our analysis. It is easy to know that systems (19)
are a set of cascaded systems, where the input ωi(k) does not affect η̂i(k), then if we
design suitable Fρ(k) such that systems (16) are simultaneously asymptotically stable,
then ℵ and = block does not appear in the transfer function. Therefore, if systems (15)
are simultaneously asymptotically stable with a prescribed attenuation level γ > 0, the
consensus problem is solvable and the proof is completed. �

Theorem 3.2. For given controller gains Fs, Ki, if there exist a set of matrices Ps > 0
such that the following matrix inequalities[

ψTisP
(s)
Ω ψis − Ps + CTi Ci ψTisP

(s)
Ω Dis

∗ DT
isP

(s)
Ω Dis − γ2I

]
< 0 (20)

 −Ps (Ms − λiFs)T

∗ −
(
P(s)

Ω

)−1

 < 0 (21)
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are satisfied for all i ∈ {1, 2, . . . , N}, s ∈ φ, then for a given γ > 0, there exists a control
protocol in form of (8) which guarantees the consensus of heterogeneous MASs subject
to uncertain DoS attacks, where

P(s)
K ,

∑
t∈φ(s)

K
πstPt,P(s)

UC ,
∑
t∈φ(s)

UC
π̃rstPt,

P(s)
UK ,

∑
t∈φ(s)

UK
π̂stPt,

Ps , P(s)
K +

∑
t∈φ(s)

UC
(
∑Z
r=1 αrπ̃

r
st)Pt + P(s)

UK,

P(s)
Ω , P(s)

K + P(s)
UC + (1− π(s)

K − π
(s)
UC)Pt,∀t ∈ φ

(s)
UK

(22)

and ψis = Ais +BisKiCi.

P r o o f . First for the system (16): η̂i(k + 1) =
(
Mρ(k) − λiFρ(k)

)
η̂i(k) i = 1, . . . , N .

Define the Lyapunov function as V (η̂i(k), k, ρ(k)) = η̂Ti (k)Pρ(k)η̂i(k) and let ρ(k) = s,
ρ(k + 1) = t. Then we have

E{∆V (η̂i(k), k)}
= E{V (η̂i(k + 1), k + 1, ρ(k + 1)|η̂i(k), ρ(k) = s)− V (η̂i(k), k, ρ(k))}
= η̂Ti (k + 1)Psη̂i(k + 1)− η̂Ti (k)Psη̂i(k).

(23)

In addition, we define {
Φi = η̂i(k + 1)
Ωi = −η̂Ti (k)Psη̂i(k).

(24)

Then
E{∆V (η̂i(k), k)} = ΦTi PsΦi + Ωi. (25)

It is noted that Ps =
∑n
t=1 πstPt =P(s)

K +
∑
t∈φ(s)

UC
(
∑Z
r=1 αrπ̃

r
st)Pt+P

(s)
UK, where

∑Z
r=1 αrπ̃

r
st,

∀t ∈ φ(s)
UC represent an uncertain element in the polytope uncertainty description,

∑Z
r=1

αr = 1, αr ∈ [0, 1], then we can acquire that

E{∆V (η̂i(k), k)}

=
∑Z

r=1
αr

(
ΦTi

(
P(s)
K +

∑
t∈φ(s)

UC
π̃rstPt + P(s)

UK

)
Φi + Ωi

)
= ΦTi

(
P(s)
K +

∑
t∈φ(s)

UC
π̃rstPt + P(s)

UK

)
Φi + Ωi

= ΦTi

(
P(s)
K + P(s)

UC + (1− π(s)
K − π

(s)
UC)×

∑
t∈φsUK

π̂st

1− π(s)
K − π

(s)
UC

Pt

)
Φi + Ωi.

It is easy to know the fact that 0 6 π̂st
1−π(s)

K −π
(s)
UC
6 1 and

∑
t∈φsUK

π̂st
1−π(s)

K −π
(s)
UC

= 1, we

obtain

E{∆V (η̂i(k), k)}

=
∑

t∈φsUK

π̂st

1− π(s)
K − π

(s)
UC

(
ΦTi

(
P(s)
K + P(s)

UC + (1− π(s)
K − π

(s)
UC)Pt

)
Φi + Ωi

)
.
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Therefore, for 0 6 π̂st 6 1− π(s)
K − π

(s)
UC , the above formula is equivalent to

E{∆V (η̂i(k), k)} = ΦTi

(
P(s)
K + P(s)

UC + (1− π(s)
K − π

(s)
UC)Pt

)
Φi + Ωi (26)

for ∀t ∈ φ(s)
UK. Let P(s)

Ω , P(s)
K + P(s)

UC + (1− π(s)
K − π

(s)
UC)Pt,∀t ∈ φ

(s)
UK, we have

E{∆V (η̂i(k), k)} = η̂Ti (k)
[
(Ms − λiFs)TP(s)

Ω (Ms − λiFs)− Ps
]
η̂i(k)

= η̂Ti (k)Θη̂i(k)
(27)

where Θ
∆
= (Ms − λiFs)TP(s)

Ω (Ms − λiFs)−Ps. By using Lemma 2.9, it is easy to show
that Θ < 0 from (21). Then

E{∆V (η̂i(k), k)} 6 −λmin

{
Θ̄
}
η̂Ti (k)η̂i(k)

where Θ̄ = −Θ, thus for any T > 1, we have

E

{
T∑
k=0

‖ η̂i(k)‖2
}
6 − 1

λmin

{
Θ̄
} {E (V (η̂i(T + 1), T + 1))}

+
1

λmin

{
Θ̄
} {E (V (η̂i(0), 0))} .

(28)

Since the Lyapunov function is non-negative, that is V (η̂i(T + 1), T + 1) > 0, then we
can obtain

E

{
T∑
k=0

‖ η̂i(k)‖2
}
6

1

λmin

{
Θ̄
} {E (V (η̂i(0), 0))} . (29)

Let β = λmin

{
Θ̄
}

, it is easy to derive

E

{
T∑
k=0

‖ η̂i(k)‖2
}
6

1

β
{E (V (η̂i(0), 0))} <∞

It can be seen that the closed-loop system (16) is asymptotically stable.
Now we consider the stability of system (15). To do so, we let the external disturbance

be zero, and system (15) becomes

ε̂i(k + 1) =
(
Aiρ(k) +Biρ(k)KiCi

)
ε̂i(k).

Define the Lyapunov function as V (ε̂i(k), k, ρ(k)) = ε̂Ti (k)Psε̂i(k), then

E{∆V (ε̂i(k), k)} = E{V (ε̂i(k + 1), k + 1, ρ(k + 1)|ε̂i(k), ρ(k) = s)− V (ε̂i(k), k, ρ(k))}
= (Ais +BisKiCi)

T ε̂i(k)TPs(Ais +BisKiCi)ε̂i(k)− ε̂Ti (k)Psε̂i(k)

= ε̂Ti (k)(ψTisP
(s)
Ω ψis − Ps)ε̂i(k)

(30)
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where ψis = Ais +BisKiCi. By using Lemma 2.9, it is known from (20) that ψTisP
(s)
Ω ψis−

Ps +CTi Ci < 0, by the fact that CTi Ci > 0, then ψTisP
(s)
Ω ψis−Ps < 0. Thus, the system

(15) is asymptotically stable in the mean-square sense when ωi(k) = 0.
Now we consider the case when the external disturbance is ωi(k) 6= 0, we also define

the Lyapunov function as V (ε̂i(k), k, ρ(k)) = ε̂Ti (k)Psε̂i(k), then

E{∆V (ε̂i(k), k)}
= E{V (ε̂i(k + 1), k + 1, ρ(k + 1)|ε̂i(k), ρ(k) = s)− V (ε̂i(k), k, ρ(k))}

= ε̂Ti (k)(ψTisP
(s)
Ω ψis − Ps)ε̂i(k) + ωTi (k)DT

isP
(s)
Ω Disωi(k)

+ he((ψisε̂i(k))TP(s)
Ω Disωi(k)).

Define the Hamiltonian function as follows:

H = E{∆V (ε̂i(k), k)}+ eTi (k)ei(k)− γ2ωTi (k)ωi(k). (31)

Let ξk =
[
ε̂Ti (k) ωTi (k)

]
, it follows from (20) that

H = ξk

[
ψTisP

(s)
Ω ψis − Ps + CTi Ci ψTisP

(s)
Ω Dis

* DT
isP

(s)
Ω Dis − γ2I

]
ξTk < 0.

Accumulating from k = 0 to ∞ on both sides of the Hamiltonian function (31), we have

E {V (∞)− V (0)}+ E

{ ∞∑
k=0

‖ ei (k) ‖2
}
− γ2

∞∑
k=0

‖ ωi(k)‖2 < 0. (32)

According to the zero initial conditions V (0) = 0 and by the fact that the Lyapunov
function V (∞) > 0, it is easy to see that

E

{ ∞∑
k=0

‖ ei (k) ‖2
}
− γ2

∞∑
k=0

‖ ωi(k)‖2 < 0

that is

E

{ ∞∑
k=0

‖ ei (k) ‖2
}
< γ2

∞∑
k=0

‖ ωi(k)‖2.

Thus, it can be seen that the robust performance is guaranteed. In summary, the
consensus of heterogeneous MASs under uncertain DoS attacks is guaranteed and the
proof is completed. �

Based on Theorem 3.2, the method for solving the controller gain is given as below.

Theorem 3.3. If there exist positive definite matrix Q, H and a set of matrices Ps > 0,
as well as matrices Li, Vi,Ξi,Υ, H̄s with appropriate dimensions and a positive integer
γ > 0 such that the following matrix inequalities

−Q−QT + P(s)
Ω ∗ ∗ ∗

ATisQ+ CTi LiΥ CTi Ci − Ps ∗ ∗
DT
isQ 0 −γ2I ∗

BTis − ViΥ ΞTi L
T
i Ci 0 −ViΞi − ΞTi V

T
i

 < 0 (33)
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[
−Ps MT

s H − λiH̄s

∗ −HT −H + P(s)
Ω

]
< 0 (34)

have feasible solutions for all i ∈ {1, 2, . . . , N}, s ∈ φ, then the consensus performance
of MASs is guaranteed, where

P(s)
K ,

∑
t∈φ(s)

K
πstPt,P(s)

UC ,
∑
t∈φ(s)

UC
π̃rstPt,

P(s)
UK ,

∑
t∈φ(s)

UK
π̂stPt,

Ps , P(s)
K +

∑
t∈φ(s)

UC
(
∑Z
r=1 αrπ̃

r
st)Pt + P(s)

UK,

P(s)
Ω , P(s)

K + P(s)
UC + (1− π(s)

K − π
(s)
UC)Pt,∀t ∈ φ

(s)
UK

Ξi and Υ are given in advance and Ki =
(
LiV

−1
i

)T
, Fs =

(
H̄sH

−1
)T

.

P r o o f . First of all, left and right multiplying (21) by diag
{
I, HT

}
and its trans-

pose, respectively, we obtain −Ps (Ms − λiFs)TH

∗ −HT
(
P(s)

Ω

)−1

H

 < 0. (35)

Let H̄s = FTs H, and using Lemma 2.8, we have that if (36) is true that (21) must be
true [

−Ps MT
s H − λiH̄s

∗ −HT −H + P(s)
Ω

]
< 0. (36)

Now, applying Lemma 2.9, it follows from (20) that −(P(s)
Ω )
−1

ψis Dis

∗ −Ps + CTi Ci 0
∗ ∗ −γ2I

 < 0. (37)

Using the matrix diag
{
QT , I, I

}
and its transpose to pre- and post-multiply the

inequalities given in (37), respectively, then we have −QT (P(s)
Ω )
−1
Q ∗ ∗

ψTisQ CTi Ci − Ps ∗
DT
isQ 0 −γ2I

 < 0. (38)

By applying Lemma 2.8, we obtain that −QT −Q+ P(s)
Ω ∗ ∗

ψTisQ CTi Ci − Ps ∗
DT
isQ 0 −γ2I

 < 0. (39)

Due to the fact that ψis = Ais +BisKiCi, we can write the above formula as follows: −QT −Q+ P(s)
Ω ∗ ∗

ATisQ CTi Ci − Ps ∗
DT
isQ 0 −γ2I

+he

 0
I
0

CTi KT
i B

T
isQ

[
I 0 0

] < 0.

(40)
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Let KT
i = LiV

−1
i , we have −QT −Q+ P(s)

Ω ∗ ∗
ATisQ CTi Ci − Ps ∗
DT
isQ 0 −γ2I


+he

 0
I
0

CTi LiV −1
i [(BTisQ− ViΥ) + ViΥ]

[
I 0 0

] < 0

(41)

which is equivalent to −QT −Q+ P(s)
Ω ∗ ∗

ATisQ+ CTi LiΥ CTi Ci − Ps ∗
DT
isQ 0 −γ2I


+he

 0
I
0

CTi LiΞiΞ−1
i V −1

i (BTisQ− ViΥ)
[
I 0 0

] < 0.

(42)

Let: 

T =

 −QT −Q+ P(s)
Ω ∗ ∗

ATisQ+ CTi LiΥ CTi Ci − Ps ∗
DT
isQ 0 −γ2I


M =

 0
I
0

CTi LiΞi
W = Ξ−1

i V −1
i (BTisQ− ViΥ)

[
I 0 0

]
U = ViΞi.

By using Lemma 2.7, it is easy to know that
−QT −Q+ P(s)

Ω ∗ ∗ ∗
ATisQ+ CTi LiΥ CTi Ci − Ps ∗ ∗

DT
isQ 0 −γ2I ∗

BTisQ− ViΥ ΞTi L
T
i Ci 0 −ViΞi − ΞTi V

T
i

 < 0. (43)

Thus, the proof is completed. �

4. SIMULATION EXAMPLES

In this section, a simulation study on the mobile stage vehicles is performed, showing
the effectiveness of main results. The mobile stage vehicle is basically a mobile robot,
where many mathematical models are proposed to study the cooperative control prob-
lem.

In this example, a three-order LTI model in [39] is adopted to describe the dynamic

model of the mobile stage vehicles, where xi(t) =
[
x1i(t) x2i(t) x3i(t)

]T
, and x1i(t),

x2i(t), x3i(t) are the position state, the velocity state, the acceleration state, respectively.



Consensus of heterogeneous multi-agent systems with uncertain DoS attack 291

Fig. 1. An illustration of mobile stage vehicle tracking system.

The dynamics of each vehicle is modeled by

ẋi =

 0 1 0
0 0 ci
0 −di −ai

xi +

 0
0
bi

ui +

 0
0
ei

ωi

yi =
(

1 0 0
)
xi i = 1, 2, 3

where {ai, bi, ci, di, ei}, i = 1, 2, 3 for three vehicles are chosen as {2, 1, 1, 10, 1}, {2, 1, 1, 3, 1},
{2, 2, 1, 10, 1}, respectively. The leading vehicle dynamics is modeled as:

ẋ0 =

[
0 1
0 0

]
x0

y0 =
(

1 0
)
x0

Our main task is to design an output feedback controller so that the positions of
following stage vehicles can track the position of the leading stage vehicle in presence of
adversaries. Due to the network connection between mobile stage vehicles, adversaries
may randomly launch attacks on the network. Figure 1 illustrates the system structure.
In our system, the attack behavior is partially uncertain and unknown to the defender.
In simulation, we assume that the heterogeneous mobile stage vehicle tracking system
has one leader and three followers, and its topology is shown in Figure 2.

Based on equation (4), we can compute that Πi =

[
1 0
0 1
0 0

]
and Γi =

(
0 di/bi

)
.

In our system, the disturbances are set as 0.5 sin (k), sin (k), − sin (k). Normally, the
system sampling period is set to be T0 = 0.01, and the maximal attack duration is set
to be 2T0. The transition probability matrix of attack takes the following case: 0.5 0.2 0.3

?
[

0.5 0.6
]

?
0.4 0.1 0.5

 . (44)
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Fig. 2. Communication topology.

According to communication topology, we can obtain that λi = 0.2679, 3.0000, 3.7321
for i = 1, 2, 3, respectively, we choose Υ =

[
1 0 0

]
and Ξi = 0.6 for i = 1, 2, 3,

respectively, such that matrix inequalities (33), (34) have feasible solutions, and the
controller gains are listed as follows:

 K1 = −1.6456, K2 = −1.6051, K3 = −1.6342

F1 =

[
0.3043 0.0030
0.0000 0.3043

]
, F2 =

[
0.3043 0.0061
0.0000 0.3043

]
, F3 =

[
0.3043 0.0091
0.0000 0.3043

]

Choosing the initial conditions as x0(0) =
[

10 1
]T

, x1(0) =
[

15 1 1
]T

, x2(0) =[
18 1 1

]T
, x3(0) =

[
−5 1 1

]T
and ζ1(0) =

[
1 1

]T
, ζ2(0) =

[
1 2

]T
,

ζ3(0) =
[

2 1
]T

, and the attack process is assumed to be triggered as in Figure 3. The
consensus performance of the heterogenous mobile stage vehicles are shown in Figure 4

and Figure 5. The performance is generally satisfactory.
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Fig. 3. A possible DoS attack process.
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Fig. 4. Tracking performance of position.
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Fig. 5. Tracking error performance.

5. CONCLUSION

This paper has been concerned with the consensus of heterogeneous MASs with un-
certain DoS attack, where the attack is randomly triggered and assumed to satisfy the
Markovian process. The major feature is that the DoS attack strategy of MASs is al-
lowed to be partly uncertain or even unknown, which is more realistic in practice. A
sufficient condition for guaranteeing the output consensus of heterogeneous MASs sub-
ject to uncertain DoS attack is obtained by using the decomposition technique, Lyapunov
stability theory and matrix transformation method. In addition, a matrix inequality-
based controller gain design method has been proposed. Finally, the simulation study
on the mobile stage vehicles is performed, showing the effectiveness of main results. In
our future work, we will pay our attention to event-based communication mechanism
[41, 42, 43].
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