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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 3 , P A G E S 3 8 3 – 4 0 9

A GLOBALLY CONVERGENT NEURODYNAMICS
OPTIMIZATION MODEL FOR MATHEMATICAL
PROGRAMMING WITH EQUILIBRIUM CONSTRAINTS

Soraya Ezazipour and Ahmad Golbabai

This paper introduces a neurodynamics optimization model to compute the solution of
mathematical programming with equilibrium constraints (MPEC). A smoothing method based
on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the
global optimization problem is estimated using a new neurodynamic system, which, in finite
time, is convergent with its equilibrium point. Compared to existing models, the proposed
model has a simple structure, with low complexity. The new dynamical system is investigated
theoretically, and it is proved that the steady state of the proposed neural network is asymptotic
stable and global convergence to the optimal solution of MPEC. Numerical simulations of
several examples of MPEC are presented, all of which confirm the agreement between the
theoretical and numerical aspects of the problem and show the effectiveness of the proposed
model. Moreover, an application to resource allocation problem shows that the new method is
a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.

Keywords: neural network, mathematical programming with equilibrium constraints,
asymptotically stability, globally convergence

Classification: 90C33 , 90C26

1. INTRODUCTION

In this paper, a neurodynamics model for solving the mathematical program with equi-
librium constraints (MPEC) is presented:

(MPEC) min F (z)

s.t. G1(z) ≤ 0, G2(z) = 0,

0 ≤ H1(z) ⊥ H2(z) ≥ 0.

(1)

where F : Rn → R,H1 : Rn → Rm, H2 : Rn → Rm, G1 : Rn → Rp, G2 : Rn → Rq. An
equally asymmetric formulation with the formulation (1) is the optimization problem
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with complementarity constraints (OPCC):

(OPCC) min f(x, y)

s.t. G1(x, y) ≤ 0, G2(x, y) = 0,

0 ≤ H(x, y) ⊥ y ≥ 0.

(2)

That’s a special case of optimization problem with variational inequality constraints
(OPVIC):

(OPVIC) min f(x, y)

s.t. G1(x, y) ≤ 0, G2(x, y) = 0,

y ∈ Ω, 〈H(x, y), y − y
′
〉 ≤ 0, ∀y

′
∈ Ω,

(3)

where f : Rn+m → R,H : Rn+m → Rm, G1 : Rn+m → Rp, G2 : Rn+m → Rq, and
Ω is a closed convex subset of Rm. Sometimes, x, y are called the upper and lower
level variables, respectively [17]. Apart of it, y is a solution of complementarity or
variational inequality constraints. These problems can be used to model many real-
world continuous or discrete events, such as multilevel games, shape optimization or
transportation networks [6, 21, 35]. In discrete cases, MPEC can be more efficient than
solving mixed-integer formulations of the optimization problems because it avoids the
combinatorial difficulties of searching for optimal discrete variables.

The major difficulty in dealing with MPECs is that the typical constraint qualifica-
tions such as Mangasarian-Fromovitz constraint qualification (MFCQ) do not hold at
any feasible point[26]. Because the feasible region of MPECs determines with the solu-
tion of complementarity or variational inequality problem, which is usually non-smooth
and non-convex [36]. This encouraged many researchers to conduct in-depth research on
MPEC resolution methods. Despite these efforts, few algorithms are capable of solving
MPECs successfully [1]. The main methods that have been used to solve MPECs so far
are the penalty, the implicit programming, and the piecewise programming approaches
[18]. In the application of MPECs, we will encounter high dimension and dense struc-
tures [6]. These features have led researchers to seek new ways to address these issues.
In recent years, due to the needs of engineers for real-time solutions, artificial neural net-
works (ANN) have been considered widely. The main purpose of using neural networks
for solving various problems is to exploit their parallel processing nature and access
to hardware implementations, which make it easier to deal with complex structures of
considered problems[12, 40]. Following the interesting work of Hopfield and Tank, the
theory, methodology, and application of neural networks have been expanded to solve
optimization problems [13, 14, 15, 24, 30, 31, 32].There are also several ANN models to
solve bilevel problems and MPECs. Sheng et. al., have suggested an ANN model for
solving bilevel programming problem (BLP), using Frank-Wolfe method [38]. Lana et.
al., have introduced a hybrid ANN for BLPs [22]. Li et. al. in [23] and He et. al.
in [11], have proposed two different models for solving convex quadratic BLP problems
based on Morrison method [33]. Using the Lagrange function, a neural network model
to solve MPEC proposed by Lv et. al. [25]. A feedback neural network presented in
[10] to solve MPECs.

In this paper, with the emphasis on the effectiveness and efficiency of the neural net-
works, we have tried to solve the MPECs using a novel neurodynamics model. Compared
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Abbreviation Full form

MPEC Mathematical program with equilibrium constraints
OPCC Optimization problem with complementarity constraints
OPVIC Optimization problem with variational inequality constraints
BLP Bilevel programming problem
ANN Artificial neural network
KKT Karush-Kuhn-Tucker conditions

Tab. 1. Summary of abbreviations.

to various iterative algorithms, the proposed network has a straightforward structure to
implement and can be used to solve MPEC problems with each sort of stationary point.
The smoothing technique in [5], is used to reformulate the non-smooth constraints i.e.
complementarity or variational inequality. A neurodynamics optimization model which
approximates the optimal solution of MPECs is presented. Unlike the existing networks
such as [25], the support of the minimum number of variables is the superior feature of
the suggested network. It is therefore particularly proper for large-scale problems and
pretty accessible to implement.

The structure of the rest of this article is as follows. In Section 2, MPECs stationary
points, and their properties are defined. In Section 3, the smoothing method, energy
function, and the corresponding gradient-based network is explained. The theoretical
aspects of the suggested model discussed in Section 4. Section 5 allocated to compu-
tational experiences on several academic examples and a resource allocation problem.
The conclusion of this paper presented in Section 6. In addition Table 7 summarizes the
abbreviations used in the remainder of this paper.

2. MPEC STATIONARY

Contrary to the classical nonlinear optimization problem, which has only one kind of
KKT conditions, in scientific texts, several different types of KKT-form conditions for
the MPEC have been used. The variation in terms of KKT-form conditions has created
various kind of stationary points for MPECs. These points are suitable candidates
for optimal solution. However, most available numerical algorithms designed to find a
specific type of these stationary points. In this section, we first review the definitions of
the most common stationary points. Then give some examples to reveal that checking all
type of stationary points to gain the optimal point is vital for an algorithm; otherwise,
it is highly probable that we lose the main optimal point. In the following the feasible
region of the problem (1) is called S, and for a given point z∗ ∈ S the below index-sets
is considered:

I(z∗) := {i|Gi1(z∗) = 0},
J(z∗) := {i|Hi

1(z∗) = 0, Hi
2(z∗) > 0},

K(z∗) := {i|Hi
1(z∗) = 0, Hi

2(z∗) = 0},
F (z∗) := {i|Hi

1(z∗) > 0, Hi
2(z∗) = 0}.
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Definition 2.1. (Jane [17]) Let z∗ ∈ S. Then z∗ is said to be

(1) Weakly stationary (W-stationary) if there exists λ = (λG1 , λG2 , λH1 , λH2) ∈ Rm×
Rm ×Rp ×Rq such that satisfies

0 = ∇F (z∗) + λG1∇G1(z∗) + λG2∇G2(z∗)− λH1∇H1(z∗)− λH2∇H2(z∗)

min{λG1 ,−G1(z∗)} = 0,

λH1
i = 0, ∀i ∈ F λH2

i = 0, ∀i ∈ J.

(2) Clarke stationary (C-stationary) if it is W-stationary and λH1
i · λ

H2
i ≥ 0, ∀i ∈ K.

(3) Mordukhovich stationary (M-stationary) if it is W-stationary and λH1
i · λ

H2
i = 0

or λH1
i > 0 λH2

i > 0, ∀ i ∈ K.

(4) Strongly stationary (S-stationary) if it is W-stationary and λH1
i ≥ 0 λH2

i ≥ 0, ∀i ∈
K.

(5) Alternatively stationary (A-stationary) if it is W-stationary and λH1
i ≥ 0 or λH2

i ≥
0, ∀ i ∈ K.

The relationship between these stationary concepts is summarized in Fig. 1. Nu-
merous algorithms are proposed to solve these problems, each of which converges to a
particular type of stationary point. Roger Fletcher et. al., in 2006 suggested a local
convergent SQP method that converges to S-stationary [7]. Lei Guo et. al. (2014)
has introduced three various smooth formulations for the C-/M-/S-stationary. Then, a
Levengerg-Marquardt method for solving MPECs offered [9]. The main difficulty with
this method is that in real problems we do not know at which type of stationeries, the
optimal value will happen and therefore we will have to try all these smooth formu-
lations. Christian Kanzow in [19] proposed a regularization method which converges
to M-stationary. Here, there are a few examples that confirm the optimum point may
occur in each of the stationary points. Accordingly, before-mentioned algorithms may
be useless in practice.

Example 2.2. (Guo et al. [9]) min x1 − 2x2 s.t. x1 − x2 ≥ 0, 0 ≤ x1⊥x2 ≥ 0.
x∗ = (0, 0) is a W and M-stationary point for this problem. But it is not S-stationary.

Example 2.3. (Guo et al. [9]) min x1 + x2 − x3 − 1
2x4 s.t. − 6x1 + x3 + x4 ≤ 0,

−6x2 + x3 ≤ 0, 0 ≤ x1⊥x2 ≥ 0. The optimal point x∗ = (0, 0, 0, 0), is a C-stationary
point. However, it is not M-stationary point.

Example 2.4. (Guo et al. [9]) In the example below
min (x1−1)2+(x2− 1

2 )2 s.t. x1 ≤ 0, x2 ≥ 0, 0 ≤ 2x1+x2⊥2−(x1−1)2−(x2−1)2 ≥ 0.

(1,
√

2 + 1), (0, 0) and (− 2
5 ,

4
5 ) are three W-stationary points. Although the (1,

√
2 + 1)

is also S-stationary point, the (0, 0) is an M-stationary point, but not S. Its global
minimizer point is (0, 0) and its global maximizer point is (1,

√
2 + 1).
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Fig. 1. The relationship between MPEC’s stationeries ([17]).

Example 2.5. (Guo et al. [9]) min (x1 − 1)2 + (x2 − 1
2 )2 + 1

2x3(x1 − 1) s.t. x1 ≤ 1,
x2 + x3(x1 − 1) ≥ 0, x23 ≤ 0, 0 ≤ 2x1 + x2⊥2 − (x1 − 1)2 − (x2 − 1)2 ≥ 0.
This problem has two W-stationary points: (1,

√
2 + 1, 0) and (0, 0, 0). (1,

√
2 + 1, 0)

is also S-stationary and its maximizer point. (0, 0, 0) is its minimizer and also its C-
stationary point. It is not M-stationary point.

Example 2.6. (Guo et al. [9]) min x1 +x2−x3 s.t. − 4x1 +x3 ≤ 0, −4x2 +x3 ≤ 0,
0 ≤ x1⊥x2 ≥ 0. The only weakly stationary point of this problem is: (0, 0, 0) which is
also M-stationary point and its global minimizer. However, it is not S-stationary point.

Several researchers have tested examples as mentioned earlier to illustrate the effec-
tiveness of their approach. In Section 5 and in Tables 3 – 5, we have outlined the results
of [9], [16] and [41]. These results indicate that each of these methods failed to solve
some of the above-mentioned examples. It motivates us to design an algorithm that
converges to the optimal point, regardless of its stationary point type. In the following,
we will show that the proposed model can reach the optimal point of all these examples
in a finite time.

3. NEURODYNAMICS OPTIMIZATION MODEL

It is well known that the complementarity constraints of problem (1) violate the usual
nonlinear constraint qualification especially, Mangasarian-Fromovitz constraint qualifi-
cation (MFCQ) at each feasible point. This failure has several unpleasant consequences
such as the linear dependence of the normal of active constraints and unbounded La-
grange multiplier set [26]. This is the greatest challenge in solving MPECs using con-
ventional numerical methods and even new methods such as artificial neural networks.
To get out of this situation, we reformulate the non-convex MPEC (1) as a non-smooth
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equivalence problem.

min F (z)
s.t. G1(z) ≤ 0,

G2(z) = 0,
H1(z)− v = 0,
H2(z)− u = 0,
2 min(v, u) = 0.

(4)

Where min(v, u) = (min(v1, u1), . . . ,min(vm, um)). In the next lemma, we will clarify
the necessity of the multiplicative factor 2 before the minimum function. Because of the
presence of the minimum function, the reformulation (4) does not satisfy any regularity
assumptions. Consequently, the usual methods of solving nonlinear optimization prob-
lems in the solution of this problem are inefficient. Using the smooth perturbation of
minimum function, Problem (4) is transferred to a smooth reformulation. See also [5].

Definition 3.1. (Facchinei et al. [5]) The smooth perturbation of the minimum func-
tion is the function φε : R2 → R,

φε(a, b) = a+ b−
√

(a− b)2 + 4ε2.

Here, ε ∈ R is a scalar.

Lemma 3.2. (Facchinei et al. [5]) For any scalar ε ∈ R,the function φε possesses the
properties:

(i) φε(a, b) is locally Lipschitz continuous and regular.

(ii) φε(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, a · b = ε2.

(iii) For every ε 6= 0, the function φε(a, b) is smooth for every (a, b) ∈ R2.

(iv) limε→0 φε(a, b) = 2 min(a, b), ∀ (a, b) ∈ R2.

Define the nonlinear functions G : Rn+2m → Rp and H : Rn+2m → R2m+q,

G(w) = G(z, u, v) = G1(z),

H(w) = H(z, u, v) =

 G2(z)
H1(z)− u
H2(z)− v

 .

Thus, using the gap functions φε(ui, vi) and these functions, the Problem (4) is equivalent
to the following problem:

min F (w)
s.t. G(w) ≤ 0,

H(w) = 0,
φiε(w) = 0, i = 1, . . . ,m.

(5)
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Definition 3.3. (Lv et al. [25]) Let w be a feasible point of Problem (5) and K = {j :
Gj(w) = 0, j = 1, . . . , p}. We say that w is a regular point if ∇H1(w), . . . ,∇H2m+q(w),
∇φiε(w), i = 1, . . . ,m and ∇Gj(w), j ∈ K are linearly independent.

The next theorem clarifies the relation between problem (1) and (5).

Theorem 3.4. [5] Let {ε} be a sequence of nonzero numbers with ε→ 0 and wε be the
global solution of Problem (5) corresponds to each ε. Then, the sequence {wε} contained
in a compact set, and any limit point of it ,w∗, which is regular, will be a global solution
of the MPEC problem (1).

To derive the new neurodynamics optimization model we will use the natural merit
function of φε.

Definition 3.5. (Chen [4]) The natural merit function of φε is defined by

Φε : R2m → R,
Φε(X) = 1

2‖φε(X)‖2 = 1
2

∑m
i=1 φε(ai, bi)

2,

where X = (a1, b1, . . . , am, bm).

Lemma 3.6. Let ψε(a, b) = 1
2φε(a, b)

2, then

(i) ψε(a, b) ≥ 0 ∀a, b ∈ R and ψε(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, a · b = ε2;

(ii) ψε(a, b) is continuously differentiable for all (a, b) ∈ R2, and the partial derivatives
are

∇aψε(a, b) = (1− a−b√
(a−b)2+4ε2

)φε(a, b)

∇bψε(a, b) = (1− a−b√
(a−b)2+4ε2

)φε(a, b);

(iii) the gradient of ψε(a, b) is locally Lipschitz continuous i.e. ∃L1 > 0 s.t.

‖∇ψε(a1, b1)−∇ψε(a2, b2)‖ ≤ L1‖(a1, b1)− (a2, b2)‖,

for all (a1, b1), (a2, b2) ∈ R2.

P r o o f . The results (i) and (ii) are directly derived from Lemma 3.2. The proof for
the (iii) is analogous to the proof of Proposition 3.5 in [8]. We ignore the details. �

Corollary 3.7. Let ε ∈ R be a fixed scalar, then Φε(X) ≥ 0 and Φε(X) = 0 ⇐⇒ X ≥
0, ai · bi = 0, i = 1, 2, . . . ,m.

Corollary 3.8. The gradient of Φε(X) is locally Lipschitz continuous.

Remark 3.9. (Li et al. [23]) for x ∈ Rn, we have

x ≤ 0 ⇐⇒ 1

2
xT (x+ |x|) = 0.
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Furthermore, 1
2x

T (x + |x|) = 0 is a nonnegative, continuously differentiable and
convex function, where |x| = (|x1|, |x2|, . . . , |xn|).

Remark 3.10. The smooth perturbation of the minimum function can be replaced by
any NCP-function which has the same properties, such as Fischer–Burmeister function.

With regard to solving a constrained optimization problem with neural networks, the
main method is to design an appropriate energy function so that the lowest energy state
corresponds to the optimal solution. With Remark 3.9, we construct following energy
function to approximate the problem (5).

E(w, ε) = F (w) +
λ

2
{‖H(w)‖2 +G(w)T [G(w) + |G(w)|] + Φε(w)}, (6)

where λ is a large positive scalar.

Lemma 3.11. For every fixed ε ∈ R, E(w, ε) is a non-negative and continuously differ-
entiable function.

We require the minimum value of E(w, ε). Hence, we will have the following uncon-
strained optimization problem:

min
w∈Rn+2m

E(w, ε) (7)

The well-known necessary optimality condition of (7) is ∇E(w, ε) = 0, i.e.

∇wF (w) + λ{∇wH(w) ·H(w) +∇wG(w)T [G(w) + |G(w)|] +∇wΦε(w)} = 0. (8)

Using the equation (8), Lemma 3.11 and the steepest descent method, we describe an
artificial neural network model for solving MPEC problem (1) by the following neuro-
dynamics system:

dw

dt
= −∇E(w, ε), (9)

where w = [wj ]j=1,...,n+2m = [z1, . . . , zn, u1, . . . , um, v1, . . . , vm] and Φε(w) =
1
2

∑m
i=1 φε(ui, vi)

2.

Let

Si =

{
1 if gi(w) > 0,
0 if gi(w) ≤ 0.

Then, the neurodynamics system (9) can be rewritten as follows:

dwj
dt

= −∂F (w)

∂wj
− λ

{
P∑
i=1

2SiGi(w)
∂Gi(w)

∂wi
+

2m+q∑
i=1

Hi(w)
∂Hi(w)

∂wi
+
∂Φε(w)

∂wj

}
, (10)

for j = 1, . . . , n+ 2m.
Figure 2, shows the practical structure for the simulations of the above equations. It

can be seen that the recommended model (9) is a one-layer recurrent neural network
with n+2m massively connected neurons. Using the ANN model (9), the next algorithm
is designed to obtain the optimal solution of the problem (1) with the proper accuracy.
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Fig. 2. The architecture of neural network model (9).

Algorithm A.

Step 0 Let {εk} be any sequence of nonzero numbers with limk→∞ εk = 0 and {λk} be
any sequence of large positive numbers with limk→∞ λk = +∞ and λk ≤ λk+1:
Choose (w0)T = (z0, u0, q0)T ∈ R2m+n ; and set k := 1.

Step 1 Find the stationary point wk of Neurodynamics model (9)with λk and εk.

Step 2 Terminate, if the solution of (9) is exact enough, otherwise; set k := k + 1 and go
Step 2.

The next theorem expresses the convergence behavior of the sequence {wk} generated
by Algorithm A.
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Theorem 3.12. Let {wk} be a sequence generated by Algorithm A. Then, any limit
point of the sequence is a solution to (5).

P r o o f . The proof is quite similar to convergence theorem in [20], pp 404. We ignore
the details. �

4. THEORETICAL ANALYSIS

In this section, the basic properties of the proposed model, such as its global convergence
and stability, are considered.

Definition 4.1. (Liao et al. [27]) A local solution x(t); t ∈ [t0; τ) is called maximal
solution, if it cannot be extended to a local solution on a larger interval [t0, τ1); τ1 > τ ,
and the interval [t0; τ) is the maximal interval of existence.

Theorem 4.2. (Liao et al. [27]) Let f : Rn → Rn be a continuous mapping. If
x(t); t ∈ [t0, τ(x0)); be a maximal solution and τ(x0) < +∞ then

lim
t→τ(x0)

‖x(t)‖ = +∞.

Theorem 4.3. Let ∇F (z) be a locally Lipschitz continuous function on Rn then

(i) for every initial point w(t0) = w0 ∈ R2m+n there exists a unique maximal solution
w(t); t ∈ [t0, τ(w0)) for the neural network model (9).

(ii) If the level set L(w0) = {w ∈ R2m+n|E(w, ε) ≤ E(w0, ε)} be bounded, then
τ(w0) = +∞.

P r o o f .

(i) By assumption, ∇E(w, ε) is locally Lipschitz, since the other terms in the right-
hand side of (8) belong to C1. Given the existence and uniqueness of ordinary
equations [34], there is a unique continuous solution w(t) t ∈ [t0, τ(w0)) for the
system (9).

(ii) By contradiction method, assume τ(w0) < +∞ , then Theorem 4.2 concludes

lim
t→τ(w0)

‖w(t)‖ = +∞.

Let µ0 = inf{t ≥ 0|t < τ(w0), w(t) ∈ Lc(w0)} < +∞. Where Lc(w0) denote the
complement of the set L(w0) ∈ Rn+2m. Due to the continuity of E(w, ε), L(w0) is closed.
It is also bounded by assumption. Hence, we have w(µ0) ∈ L(w0) and µ0 < τ(w0). It
concludes:

E(w(t), ε) > E(w(µ0), ε), (11)

for some t ∈ (µ0, τ(w0)). However,

dE(w(t), ε)

dt
= ∇E(w(t), ε)T · dw

dt
= −∇E(w(t), ε)2 ≤ 0.

i.e., E(w, ε) is nonincreasing on [t0, τ(w0)). This is contradictory with (11).Thus τ(w0) =
+∞. �
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Theorem 4.4. If the neurodynamic model (9) possesses a stable isolated equilibrium
point,w̄, then it is a local minimizer of the function E(w, ε).

P r o o f . The proof is by contradiction. Consider the simple function S(w) = E(w̄, ε)−
E(w, ε). Note that S(w̄) = 0, and S(w) is a continuously diffrentiable function. Suppose
that the equilibrium point w̄ is not a local minimizer of E(w, ε). Obviously, in each
neighborhood N of w̄ there exists ŵ ∈ N such that E(ŵ, ε) < E(w̄, ε). Consequently,
S(ŵ) > 0. Due to the fact that w̄ is an isolated equilibrium of point (9), we have

dS(w)

dt
= −∇E(w, ε)T · dw

dt
= ‖∇E(w, ε)‖2 > 0.

Thus, there exists a neighborhood R of w̄ so that if w ∈ R, w 6= w̄, then ∇E(w, ε) 6= 0.
The Instability Theorem [28] yields the desirable result �

Corollary 4.5. If the isolated equilibrium point of (9) be a local maximizer of E(w, ε),
then it is unstable.

Theorem 4.6. Suppose that w(t, w0) ∈ Ω is the trajectory of proposed neurodynamic
model (9) in which the initial point is w0 ∈ Ω and E(w, ε) is convex in Ω. Then,

(i) D+ = {w(t, w0)|t > 0} is bounded;

(ii) the neural network (9) has an equilibrium point w̄, so that

lim
t→+∞

w(t, w0) = w̄;

(iii) the neural network is Lyapunov stable with respect to w̄. Moreover, if E(w, ε) has
a unique minimum then, this network is asymptotically stable.

P r o o f .

(i) Let w∗ ∈ Ω be an equilibrium point of (9). Define the function H(w) as follows

H(w) =
1

2
‖w − w∗‖2.

Using the first order optimization condition, and the convexity of E(w, ε) for w(t) ∈
Ω, we have

E(w∗, ε)− E(w, ε) ≥ (w∗ − w)T∇E(w, ε).

Thus
dH(w)

dt
= (w − w∗)T dw

dt
= (w − w∗)T (−∇E(w, ε)) =

(w∗ − w)T∇E(w, ε) ≤ E(w∗, ε)− E(w, ε) ≤ 0.

Then, ‖w(t)− w∗‖2 = 2H(w(t)) ≤ 2H(w0).
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(ii) H(w) is a coercive function, i.e., H(w) → +∞, as w → ∞. So, LH(w0) = {w ∈
Rn+m+2l : H(w) ≤ H(w0)} is bounded. By Lasalle invariance set theory each
trajectory of (9) will converge to the maximum invariant subset N of {w ∈ LH(w0) :
d
dtH(w) = 0}.
If w(t) ∈ N, i.e., d

dtH(w) = 0, then

dH(w)

dt
= 0 ≤ E(w∗, ε)− E(w, ε) ≤ 0,

which means w is also an optimal solution of E(w, ε) and dw
dt = −∇E(w, ε) = 0.

On the other hand, if dw
dt = 0, then dH(w)

dt = (w − w∗)T dwdt = 0.

Thus,

N ⊆ {w ∈ LH(w0) :
d

dt
H(w) = 0} = {w ∈ LH(w0) :

dw

dt
= 0}.

Concludes that there exist a convergence subsequence {w(tk, w0)} such that

lim
k→+∞

w(tk, w0) = w̄.

It is clear that ∇E(w̄, ε) = 0. Finally, Define the following Lyapunov function

Ĥ(w) =
1

2
‖w − w̄‖2.

Similar H(w), it can be seen easily that Ĥ(w) is a decreasing function along the
trajectory of (9). Hence, for each ε̂ > 0, ∃q > 0 such that for t > tq

1

2
‖w(t)− w̄‖ = Ĥ(w(t)) < Ĥ(w(tq)) < ε̂.

So, limt→+∞ w(t) = w̄.

(iii) Ĥ(w) is a Lyapunov function over w̄ for proposed model (9). Thus the network is

Lyapunov stable. besides, if E(w, ε) has a unique minimum then, dĤ(w)
dt < 0; w 6=

w̄ i.e. the network is asymptotically stable.

�

5. ILLUSTRATIVE EXAMPLES

In this section, several different examples are presented to illustrate the performance of
the proposed network. We also compare the performance of the neural network (9) with
the methods presented in [9, 16, 41] in Examples 2.2 – 2.6. The computational results
indicate that the neurodynamics model (9) produces proper approximate solutions of
(1) in a small number of iterations.

Example 5.1. We first tested the method on the Examples 2.2 – 2.6 to compare our
method with the methods in [16, 41] and [9]. The neurodynamics model (9) with a dif-
ferent set of initial points, ε = 10−6 and λ = 105 is applied to solve problems mentioned
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above. Figure 3, shows the convergence behavior of the proposed neural network, starting
from random initial points. For all above examples and despite the methods presented
in [9, 16, 41], the proposed model successfully converges to optimal points regardless to
their stationary type. Table 2, summarizes the results obtained by the proposed neu-
ral network and confirms its convergence with the appropriate speed and accuracy in
Examples 2.2 – 2.6.
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Fig. 3. Convergence behavior of the proposed neural network with

random starting points in: 3(a) Example 2.2., 3(b) Example 2.3.,

3(c) Example 2.4., 3(d) Example 2.5., 3(e) Example 2.6.
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Example xk f(xk) G(xk)T ·H(xk) CPU time(s)

2.2 (2.9515e-04, 3.9515e-04) -4.9515e-04 1.1663e-07 0.2944
2.3 (3.6538e-04,2.7476e-05,1.6489e-04,0.0020) -7.8574e-04 1.0039e-08 0.4393
2.4 (2.3751e-04,-4.9999e-05) 1.2496 1.5937e-07 0.2787
2.5 (0.0010,-0.0010, -0.0010) 1.2494 1.2759e-08 0.3592
2.6 (3.1627e-04,3.1627e-04,0.0012) -6.3258e-04 1.0003e-07 0.4713

Tab. 2. Simulation results for Examples 2.2 – 2.6, using proposed

model (9) with one iteration.

In Tables 3 – 5, the results acquired by modified Levenberg–Marquardt method in
[9], l 1

2
penalty method in [41] and partial augmented Lagrangian method in [16], are

reported directly. Table 3, shows that the method presented in [9] is incapable of solving
Examples 2.3 and 2.5. Using Table 4, the method in [16] failed to solve Examples 2.2,
2.4, 2.6. However, it has the lowest CPU time among these methods. Results in Table 5,
show that the method in [41] failed to solve Example 2.3. A comparison of above tested
methods in terms of absolute objective function error is presented in Table 7.

M, S and C systems and function F (w) are defined in [9].

Example systems Iter xk ‖F (wk)‖ CPU time(s)

2.2 M 16 (0, 0.0000) 2.0683e− 07 0.4305
2.3 C 78 (0.0429,0,-0.0000,0) 0.4204 3.5504

2.4
C 11 (0.0000,0) 3.6890e-10 0.3430
M 15 (-0.0076,0.0157) 0.0013 1.3910
S 100 (-0.4594,0.7073) 1.1766 3.1200

2.5
C 22 (0.0720,-0.0671,-0.0721) 0.0052 1.0187
M 18 (-0.0768,0.1526,0.1188) 0.0166 1.1543
S 100 (0.3736,2.2679,0.0067) 13.4476 11.0329

2.6 M 12 (0.0000,0.0000,0.000) 8.9677e− 08 0.4540

Tab. 3. Simulation results for Examples 2.2 – 2.6, using the modified

Levenberg–Marquardt method in [9].

Example Iter xk f(xk) G(xk)T ·H(xk) CPU time(s)

2.2 100 (0.7937, 0.7937) -0.7937 0.6300 3.7640e− 04
2.3 1 (0.0001,0.0015,-0.0016,-0.0000) 0.0032 1.8072e− 07 1.2074e− 06
2.4 100 (0.4061,0.0000) 0.4061 0.5257 0.0015
2.5 1 (-0.0000,0.0000,0.0000) 1.2502 4.0747e− 19 1.5092e− 06
2.6 100 (1.0000,1.0000,4.000) -2.0000 1.0000 0.0010

Tab. 4. Simulation results for Examples 2.2 – 2.6, using the partial

augmented Lagrangian method in [16].
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Ex. Iter xk f(xk) min(G(xk), H(xk)) CPU time(s)

2.2 16 (−0.0000,−0.0000) 1.9158e− 07 -1.8035e-07 0.2974
2.3 100 1.0e+19*(-4.7764,-4.7359,2.9522,-0.1574) -1.2387e+20 -4.7764e+19 1.1181
2.4 18 (0.0000,0.0000) 1.2500 5.4404e-11 0.3184
2.5 24 (-0.0003,0.0008,0.0003) 1.2502 4.4384e-07 0.4752
2.6 13 (0.0000,0.0000,0.0000) -2.3305e-05 1.3595e-10 0.1985

Tab. 5. Simulation results for Examples 2.2 – 2.6, using the l 1
2

penalty method in [41].

Objective function
Numerical optimal value Numerical optimal solution CPU time (s)

f(x∗, y∗) x∗1 x∗2 y∗

f1(x, y) 10.4925 2.7101 0.5365 0.0 0.730450
f2(x, y) 2.00 2.5 0.0 0.0 0.536138

Tab. 6. Numerical results of proposed model (9) for Example 5.2.

with random initial point.

Example Proposed ANN Modified Levenberg–Marquardt [9] Partial augmented 1
2

Penalty[41]
Lagrangian [16]

2.2 4.9515e-04 0.0000 0.7937 1.9158e-07

2.3 7.8574e-04 0/04929 0.0032 1.2387e+20

2.4
6.0e-04 0.0000 (C system) 0.8439 0.0000

4.9579e-04 (M system)
0.9228 (S system)

2.5
4.0e-04 0.0338 (C system) 0.0002 0.0002

0.0338 (M system)
2.2657 (S system)

2.6 6.3258e0-4 0.0000 (M system) 2 3.3305e-05

Tab. 7. Comparison of above tested methods in terms of absolute

objective function error in Examples 2.2 – 2.6

Example 5.2. Next we tested the method on the problem:

min f(x, y)

s.t. min{y;x1 − ex2 − ey} = 0,

x2 ≥ 0.
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for various quadratic objective functions f(x, y),

f1(x, y) = x21 + 10(x2 − 1)2 + (y + 1)2,
f2(x, y) = (x1 − 2.5)2 + (x2 + 1)2 + (y + 1)2.

This problem has been given in [39], and was investigated in [29]. The neurodynamics
model (9) is applied to solve the above example. Let ε = 10−6, λ = 17× 103. Choosing
six random initial points, the problem was solved with MATLAB software and the results
show in Table 6. The method detected the optimal solutions reported in [39] and the
numerical results indicate global convergence in all cases. The solution trajectory with
(x, y) versus the run time, is shown in Figure 4, which converge to the optimal point.
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Fig. 4. 4(a) The transient conduct of the neural system model (9)

with six various initial points and f1(x, y) as its objective function in

Example 5.2.; 4(b) the output trajectory of (9) with nine various

initial points and f2(x, y) as its objective function in Example 5.2.

Example 5.3. Outrata in [36] and Facchinei in [8], use the following example to illus-
trate an implicit function-based bundle trust region and a homotopy method for MPECs,
respectively. The MPEC is of the form:

min f(x, y)

s.t. min{x1, (1 + 0.2y)x1 − 3 + 1.333y − 0.333x3 + 2x1x4} = 0,

min{x2, (1 + 0.1y)x2 − y + x3 + 2x2x4} = 0,

min{x3, 0.333x1 − x2 + 1− 0.1y} = 0,

min{x4, 9 + 0.1y − x21 − x22} = 0,

0 ≤ y ≤ 10,
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with the objective functions

f1(x, y) =
1

2
(x1 − 3)2 +

1

2
(x2 − 4)2

f2(x, y) =
1

2
(x1 − 3)2 +

1

2
(x2 − 4)2 +

1

2
(x3 − 1)2

f3(x, y) =
1

2
(x1 − 3)2 +

1

2
(x2 − 4)2 + 5x24

f4(x, y) =
1

2
(x1 − 3)2 +

1

2
(x2 − 4)2 +

1

2
(x3 − 1)2+

1

2
(x4 − 1)2 +

1

2
y2.

These problems differ in the objective f(x, y). The proposed neural network model is
used to obtain optimal solutions with λ = 7 × 103 and ε = 10−6. We tested at least
five random initial points for each problem. The model reaches to the optimal solutions
reported in [36]. The results summarized in Table 8, indicate global convergence in all
cases. Moreover, Figure 5 shows the output trajectory of (9) corresponding to every
objective function.

Objective function
Optimal objective value optimal solution CPU time (s)

x1 x2 x3 x4 y

f1(x, y) 3.2077 2.6822 1.484 0.0 0.662 4.0587 2.3
f2(x, y) 3.4487 2.7487 1.4 0.7253 0.8241 5.1553 3.9
f3(x, y) 4.6032 2.7892 1.2079 0.0 0.3696 2.3891 2.9
f4(x, y) 6.5918 2.8874 0.8944 0.0 0.1991 1.373 2.2

Tab. 8. Numerical results of proposed model (9) Example 5.3. with

random initial point.

Example 5.4. The following OPVIC problem is a Stackelberg leader-follower game
problem. Facchinei in [5] and LV in [25] used this example to test their methods.

n = 1, m = 1,
f(x, y) = 0.5x2 + 0.5xy − 95x,
x ∈ [0, 200],

y ≥ 0, 〈2y + 0.5x− 100, y − y′〉 ≤ 0, ∀y′ ≥ 0.

Using KKT conditions, the above variational inequality constraint can be written as
follows:

2y + 0.5x− 100− λ1 = 0,
y − µ1 = 0,
2 min{λ1, µ1} = 0.

So, the neurodynamics model (9) is used to solve this problem. To illustrate the validity
of theoretical analysis, ε and λ values is tended to zero and infinity, respectively. Results
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Fig. 5. The transient conduct of the neural system model (9) with

arbitrary, initial points and various objective functions in

Example 5.3.: 5(a) f1(x, y), 5(b) f2(x, y), 5(c) f3(x, y), 5(d) f4(x, y).

is reported in Table 9. It can be seen that a better estimate for w∗ = (x∗, y∗) is
obtained by ε → 0 and λ → ∞. As shown in Figure 6(a), the trajectories of (9) will
converge successfully to w∗ = (x∗, y∗) = (93.33, 26.67) i.e. the optimal solution of this
problem. The energy function E(w = (x, y)T , λ∗1, µ

∗
1) is drawn up in Figure 6(b), clearly,

E(w = (x, y)T , λ∗1, µ
∗
1) is convex. In this way, the assumptions of Theorem 10 will be

happen.

Example 5.5. The next problem is also an OPVIC problem which has tested by Facchinei
in [5] and Lv in [25], for their proposed models.

n = 2, m = 2,
f(x, y) = x21 − 2x1 + x22 − 2x2 + y21 + y22 ,
x1, x2 ∈ [0, 2],

H(x, y) =

(
2y1 − 2x1
2y2 − 2x2

)
,

y ∈ Ω, 〈H(x, y), y − y′〉 ≤ 0, ∀y′ ∈ Ω,
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Parameters Optimal solution Optimal value CPU time(s)
ε λ x∗ y∗ f(x∗, y∗)

0.01 100 93.432661975135200 26.496032022488870 -3273.474323938126 0.239
0.001 1000 93.342781461899750 26.649738610115150 -3267.346449808123 0.241
0.0001 10000 93.335142362283520 26.664757914192254 -3266.734636534589 0.281
0.00001 100000 93.333448077624440 26.666492334563888 -3266.673463484818 0.282

Tab. 9. Estimations of optimal solution w = (x, y), when ε→ 0 and

λ→∞ in Example 5.4.
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Fig. 6. 6(a) Convergent trajectories of the neural system (9) with ten

random starting points in Example 5.4. 6(b) The energy function

E(w = (x, y)T , λ∗
1, µ

∗
1) of Example 5.4.
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where Ω = {y| R1(x, y) = 0.25− (y1 − 1)2 ≥ 0; R2(x, y) = 0.25− (y2 − 1)2 ≥ 0}.
Similar to pervious example, the above variational inequality constraint can be refor-
mulated as follows:

2y1 − 2x1 + 2µ1(y1 − 1) = 0,
2y2 − 2x2 + 2µ2(y2 − 1) = 0,
0.25− (y1 − 1)2 − λ1 = 0,
0.25− (y2 − 1)2 − λ2 = 0,
min{µ1, λ1} = 0,
min{µ2, λ2} = 0.

The approach (9) is applied to solve the equivalence problem. Using the MATLAB soft-
ware, the problem was solved with ε = 10−7, λ = 105, and 20 random initial points.
See Figure 7(a), for the convergence to the optimal solution w = (x1, x2, y1, y2) =
(0.5, 0.5, 0.5, 0.5) with optimal value f(w) = −1.

Example 5.6. Jonathan F. BARD in [3], considers the following bilevel programming
problem which was tested in [5].

min F (x, y) = −x21 − 3x2 − 4y1 + y22

s.t. x21 + 2x2 ≤ 4,

x1 ≥ 0; x2 ≥ 0,

min f(x, y) = 2x21 + y21 − 5y2,

s.t. x21 − 2x2 + x22 − 2y1 + y2 ≥ −3,

x2 + 3y1 − 4y2 ≥ 4,

y1 ≥ 0; y2 ≥ 0.

Rewrite the lower level problem as below:

min{y1, 2y1 + 2λ1 − 3λ2} = 0,
min{y2,−5− λ1 + 4λ2} = 0,
min{λ1, x21 − 2x1 + x22 − 2y1 + y2 + 3} = 0,
min{λ2, x2 + 3y1 − 4y2 − 4} = 0,

where λ1 and λ2 are Lagrange coefficients of the lower level problem. The optimal
solution of this problem is x = (2, 0), y = (1.6, 0.2) [5]. For the neurodynamics op-
timization model 9, let λ = 104, ε = 10−6. We select four initial points: (x0, y0) =
(3, 1, 0, 0), (3, 1,−1,−1), (4,−2, 0, 0), (4, 0,−1, 0). Figure 7(b), displays the output tra-
jectories of proposed model corresponding to selected starting points. All trajectories
converge to the optimal solution successfully.

Example 5.7. The following example is a quadratic zero-one programming problem
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Fig. 7. 7(a) The output trajectories of the neural system (9) with

twenty random starting points in Example 5.5. 7(b) The

convergence behavior of the outgoing paths of the dynamic system to

the optimal solution in Example 5.6.

that can be rewritten equally as a MPEC.

min f(x) =
1

2
xTQx

s.t. x1 + x2 + x3 = 1,

x4 + x5 + x6 = 1,

x7 + x8 + x9 = 1,

x1 + x4 + x7 = 1,

x2 + x5 + x8 = 1,

x3 + x6 + x9 = 1,

xi ∈ {0, 1}, i = 1, . . . , 9,

where

Q =



175 4 11 10 9 27 18 17 49
4 175 13 11 20 32 19 36 58
11 13 175 28 33 10 50 59 18
10 11 28 178 16 44 22 21 60
9 20 33 16 185 52 23 44 71
27 32 10 44 52 179 61 72 22
18 19 50 22 23 61 174 4 11
17 36 59 21 44 72 4 177 13
49 58 18 60 71 22 11 13 174


.
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Binary variables are replaced by the following constraints:

ri + si = 1
2 ,

xi − ri + si = 1
2 ,

ri.si = 0,
ri, si ≥ 0, i = 1, . . . , 9.

Fischer–Burmeister NCP-function and the neural network 9, is applied to solve this
problem. The optimal solution is x = (0, 0, 1, 1, 0, 0, 0, 1, 0) [37] and according to Figure
8(a), it can be seen that the proposed model is convergent to the optimal solution.
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Fig. 8. 8(a) The convergence behavior of the outgoing paths of the

dynamic system to the optimal solution in Example 5.7.

8(b) The convergence behavior of the outgoing paths of the dynamic

system to the optimal solutions in resource allocation problem

corresponding with µ1 = µ2 = 0.72 and µ3 = 0.77.
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5.1. An application to resource allocation problem

Consider a product marketing company with a resource allocation center and two fac-
tories as a subsystem. Each factory generates two types of products using dedicated
resources. The center decides on the number of resources allocated to the factories to
maximize its overall profitability in product marketing. Based on three factors: effi-
ciency, quality, and performance, each factory is willing to achieve the goal of its pro-
duction activity. Let’s define the symbols as Table 10. The allocation resource problem
is:

min
x,y

F (Y (x)) = −(200− y11 − y21)(y11 + y21)− (160− y12 − y22)(y12 + y22)

s.t. x11 + x12 + x21 + x22 ≤ 40,

0 ≤ x11 ≤ 10, 0 ≤ x21 ≤ 5,

0 ≤ x21 ≤ 15, 0 ≤ x22 ≤ 20,

min f1(y1) = (y11 − 4)2 + (y12 − 13)2,

s.t. 0.4y11 + 0.7y12 ≤ x11
0.6y11 + 0.3y12 ≤ x12,
0 ≤ y11, y12 ≤ 20,

min f2(y2) = (y21 − 35)2 + (y22 − 2)2,

s.t. 0.4y21 + 0.7y22 ≤ x21,
0.6y21 + 0.3y22 ≤ x22,
0 ≤ y21, y22 ≤ 40.

This problem, prepared by E. Aiyoshi and K. Shimizu in [2] for the first time . It also,
has been tested in [3] and [5] by F. Bard and F. Facchinei. So far, two different optimal
solutions have been obtained. First, x̂ = (x11, x12, x21, x22) = (7, 3, 12, 18), ŷ1 =
(y11, y12) = (0, 10), ŷ2 = (y21, y22) = (30, 0). Second, x̄ = (x11, x12, x21, x22) =
(7.91, 4.37, 11.09, 16.63), ȳ1 = (y11, y12) = (2.29, 10), ȳ2 = (y21, y22) = (27.21, 0). Due
to the fact that the set of solutions to such problems is convex [3], any convex combina-
tion of these points will be optimal, i.e. the solutions will be in the form µ1x̂+(1−µ1)x̄,
µ2ŷ1 + (1 − µ2)ȳ1, µ3ŷ2 + (1 − µ3)ȳ2, with 0 ≤ µ1, µ2, µ3 ≤ 1. According to the con-
vexity of the lower level problem, this is equivalent with the following complementarity
constraints:

min{y11, 2(y11 − 4) + 0.4λ1 + 0.6λ2 + λ3} = 0,
min{y12, 2(y12 − 13) + 0.7λ1 + 0.3λ2 + λ4} = 0,
min{y21, 2(y21 − 35) + 0.4λ5 + 0.6λ6 + λ7} = 0,
min{y22, 2(y22 − 2) + 0.7λ5 + 0.3λ6 + λ8} = 0,
min{λ1,−0.4y11 − 0.7y12 + x11} = 0,
min{λ2,−0.6y11 − 0.3y12 + x12} = 0,
min{λ3,−y11 + 20} = 0,
min{λ4,−y2 + 20} = 0,
min{λ5,−0.4y21 − 0.7y22 + x21} = 0,
min{λ6, x22 − 0.6y21 − 0.3y22} = 0,
min{λ7, 40− y21} = 0,
min{λ8, 40− y22} = 0.
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λi, i = 1, . . . , 8 are Lagrange coefficients of the lower level problem. Utilizing pro-
posed model (9) with ε = 10−5, λ = 104, we will obtain different optimal solutions
by changing the starting point. For instance, Figure 8(b), displays optimal solution
x = (x11, x12, x21, x22) = (7.25, 3.38, 11.74, 17.61), ȳ1 = (y11, y12) = (0.64, 10), ȳ2 =
(y21, y22) = (29.35, 0), corresponding with µ1 = µ2 = 0.72 and µ3 = 0.77. The optimal
objective value is F = −6600.

xni, The amount of ith resource allocated to the
nth factory,

ynj The amount of jth products produced by the
nth factory ,

Yj The total product marketing j,
F (Y ) The profit function of marketing,
fn(yn) The goal function of the nth factory.

Tab. 10. Notation used in resource allocation problem.

We now have numerical experiments to explain the effectiveness of the proposed model
for solving a variety of MPEC problems. This model was implemented using Matlab
R2016b modeling language. Numerical results are obtained only in one iteration, with
the proper selection of the parameters λ and ε. The results show that the use of the
penalty method in designing neural networks to solve MPEC problems can be efficient.
Correctly, it can be recognized that the proposed network has made meaningful im-
provements over the partial augmented Lagrangian method, 1

2 penalty method, implicit
function-based bundle trust region, and other existing methods, both in terms of the
repetition number and CPU time. Also, the accuracy of the solutions obtained with this
method is quite competitive with other methods.

6. CONCLUSIONS

We prepare a simple model of neurodynamics optimization technique for solving MPECs
based on penalty method and NCP- function. The smooth perturbation of the mini-
mum function and its natural merit function are used to achieve a relaxed optimization
problem. Using the relaxed problem, a new energy function which its lowest energy
state corresponds to the optimal solution introduced. The novel recurrent neural net-
work model is constructed based on the steepest descent method and has a simple
one-layer structure. With the theory of stability in differential equations, significant
results proved. It demonstrated that its state vector converges to an optimal solution of
MPEC under a simple condition. Based on Lyapunov theorem, the proposed model, is
asymptotic stable over its equilibrium point. Computational experiences persuaded us
to validate theoretical results. As described in the first numerical example, the method
can reduce the number of repetitions needed to obtain an optimal response with optimal
accuracy than the partial augmented Lagrangian method, 1

2 penalty method, and mod-
ified Levenberg–Marquardt method. It led to reduced computational load and time. In
addition, the simulation of this example well illustrates that the new method converges
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to the optimal point, regardless of its stationary point type. The proposed model has
been used to solve some examples of OPVIC, OPCC, BLPs, and problems that reformu-
lated as an MPEC such as zero-one programming problems. However, if we specialize
the new method to bilevel programming problems, it does appear that after applying
the KKT approach, the crucial factor influences the transient behavior of the proposed
ANN model is its initial point. Thus, to get the optimal solution in this class, we have to
choose the appropriate starting point. A case study on the resource allocation problem
reveals the potential of the proposed model in engineering and economics applications.

(Received October 6, 2018)
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