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KYBERNET IKA — VOLUME 5 6 ( 2 0 2 0 ) , NUMBER 3 , PAGES 5 0 0 – 5 1 5

CONTINUOUS FEEDBACK STABILIZATION FOR A CLASS
OF AFFINE STOCHASTIC NONLINEAR SYSTEMS

Mohamed Oumoun, Lahcen Maniar and Abdelghafour Atlas

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear
stochastic systems when the drift is quadratic in the control and the diffusion term is affine in
the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary
conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in
probability by a continuous feedback explicitly computed. The interest of this work is that the
existing control methods are inapplicable to a lot of systems contained in the class of stochastic
systems considered in this paper.

Keywords: continuous state feedback, control stochastic nonlinear systems, global asymp-
totic stability in probability

Classification: 60H10, 93C10, 93D05, 93D15, 93E15

1. INTRODUCTION

In this paper, we consider a class of stochastic nonlinear systems described by

dx =
(
f0(x) + uf1(x) + u2f2(x)

)
dt+

(
g0(x) + ug1(x)

)
dω, (1)

where x ∈ Rn is the state and u ∈ R is the control and ω is a standard Rm-valued
Wiener process defined on a probability space (Ω,F ,Ft, P ) with Ω being a sample space,
F a σ-algebra on Ω, Ft a filtration and P a probability measure. f0, f1, f2 : Rn → Rn

and g0, g1 : Rn → Rn×m are continuous functions with f0(0) = g0(0) = 0.
Stochastic models have played an important role in many branches of manufac-

ture and engineering applications. Since the works, such as Khasminskii [13], Kush-
ner [15] and Mao [22] established a solid foundation for the stochastic stability theory,
the design of stabilization controller has been investigated widely for various stochastic
nonlinear systems. Several results on state-feedback stabilization and output-feedback
stabilization for various classes of stochastic nonlinear systems have been achieved in
[1, 5, 8, 16, 17, 32] and the references therein.

Most of the existing papers focus on the stabilization problems of nonlinear systems
using some fundamental stochastic stability theories presented in [13] and [22], which
were useful tools for the controller design of stochastic nonlinear systems. However, these
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theories require that the stochastic nonlinear systems satisfy the local Lipschitz condition
or have a unique strong solution. This indeed impedes the application of the stability
theory, because many practical stochastic systems do not satisfy the local Lipschitz
condition, which is inherent or caused by a specified feedback controller. To relax this
restriction, Li and Liu in [19] generalized the concepts and theorems of global stability
to the stochastic nonlinear systems without the local Lipschitz condition or having more
than one weak solution. Since then, many papers use the techniques developed in [19],
one can cite [11], [27].

Stochastic control systems (1) are of interest since thier coefficients are only contin-
uous, not necessary locally Lipschitz, and then can model many practical systems, such
as, the stochastic models for a sequencing-batch reactor and for a chemostat proposed
in [9], these models are affine in the control and have the coefficients involve the term√
x(t). Among other applications in which stochastic differential equations may be only

continuous, we can cite stochastic financial and biological models in which, as mentioned
in [26], the diffusion coefficients often contain the term

√
|x(t)|, or more general |x(t)|r,

r ∈ (0, 1), for more details, we refer the reader to [18, 23]. Therefore, the investigation
of systems 1 is practically relevant.

For deterministic nonlinear control systems, many techniques for studying the stabi-
lizability problem and for designing stabilizing feedback laws are known. Historically,
one of the first significant results is because of Artstein [2] who introduced the notion of
control Lyapunov function which gives a way to consider the choice of Lyapunov function
and the design of control simultaneously. For affine nonlinear control systems, knowing
a CLF, an explicit and simple proof of Artstein’s Theorem [2] is given by Sontag in [25]
and revisited later on by Lin and Sontag in [20].

In [6], Florchinger extends the Lin–Sontag’s formula to the particular class of stochas-
tic affine control systems

dx =
(
f0(x) + uf1(x)

)
dt+

(
g0(x)

)
dω. (2)

For these systems, the associated infinitesimal generator Lu satisfies LuV (x) = b(x)u+
c(x), with known functions b and c. Knowing a stochastic control Lyapunov function
(SCLF) V , the state-feedback control u(x) defined in [20, 25] yields LuV (x) < 0, for
all x ∈ Rn \ {0}, which allows, as in [20, 25] for the deterministic case, to state in [6],
by application of the stochastic versions of Lyapunov theorem [13], that the stochastic
affine system (2) is globally asymptotically stabilizable in probability.

Later, Chabour and Oumoun in [3] and Daumail and Florchinger in [4] considered,
respectively, the systems

dx =
(
f0(x) + uf1(x)

)
dt+

(
g0(x) + ug1(x)

)
dω, (3)

and the systems (1).
Contrary to system (2), for systems (3) and (1), in which everything is corrupted

by a noise, the associated infinitesimal generator Lu, applied to a Lyapunov function
V , leads to LuV (x) = a(x)u2 + b(x)u + c(x), with known functions a, b and c. So, it
appears that the Sontag feedback defined in [25, 20] is no more a stabilizing feedback for
(3) and (1). In [3] and [4], explicit stabilizing feedbacks are, respectively, constructed for
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systems (3) and (1), provided that known SCLFs V satisfy the assumption H: a(x) <
0 =⇒ b(x)2 − 4a(x)c(x) < 0.

More recently, Florchinger [7] gave an explicit stabilizer for system (1) under the
same assumption (H) with known stochastic α−control Lyapunov function.

Note that all the results in the last four cited papers [3, 4, 6, 7] require, respectively,
the coefficients of the systems (2), (3), (1) being continuously differentiable and the con-
structed feedbacks are, also, continuously differentiable to guarantee the local Lipschitz
condition of the closed-loop system.

The aim of this paper is to relax this restriction, allowing the coefficients of the
system (1) as well as the constructed feedback to be only continuous. Inspired by the
deterministic case Maniar et al. [21] and based on a known SCLF, we first give a
necessary condition for the stabilization in probability by a continuous feedback. After
that, we present a sufficient stabilization condition which improve the stabilizability
condition (H). The main tool used in this paper is the generalised stochastic Lyapunov
theorem proved by Li and Liu [19].

The remainder of this paper is organized as follows. Section 2 gives some preliminary
knowledge on stochastic stability in the sense of weak solution. In section 3, we recall
some definitions and preliminary results while section 4 gives the main results of this
paper. In section 5 we provide a numerical example illustrating our results. Finally,
section 6 draws some conclusions.

2. STOCHASTIC STABILITY OF WEAK SOLUTIONS

We first revisit some fundamental theory about the stochastic systems. Consider the
following stochastic nonlinear system:

dx = f(x) dt+ g(x) dω, x(0) = x0 ∈ Rn, (4)

where x ∈ Rn is the system state; ω is an m-dimensional independent standard Wiener
process. The functions f : Rn → Rn and g : Rn → Rn×m are continuous and satisfy
f(0) = 0 and g(0) = 0. Clearly, the origin is the equilibrium point of system (4).

As it is well known in stochastic differential equation theory (Khasminskii [13] and
Mao [22]), in order to guarantee the existence and uniqueness of strong solutions of the
stochastic systems (4), f(.) and g(.) are assumed to satisfy some definite conditions such
as local Lipschitz. But, here, since both f(.) and g(.) are only continuous, not locally
Lipschtiz, system (4) may not have the solution in the classical sense as in Khasminskii
[13] and Mao [22]. However, the system always has weak solutions which are essentially
different from the classical (or strong) solution since the former may not be unique and
may be defined on a different probability spaces. The following definition gives the
rigorous characterization of the weak solution of system (4), and for more details of this
subject, we refer the reader to Ikeda and Watanabe [10], Klebaner [14], Li and Liu [19],
Ondreját and Seidler [24], Zhang and Liu [31].

Definition 2.1. (Li and Liu [19]) If there exist a continuous adapted process x(t) on a
probability space (Ωx,Fx, P x) with a filtration {Ft}t≥t0 satisfying the usual conditions,
and an m-dimensional {Ft}-adapted Brownian motion ωx(t) with P x{ωx(t0) = 0} = 1,
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such that the initial condition x(t0) has the given distribution, and for all t ∈ [t0, τ
x
+∞)

x(t) = x(t0) +

∫ t

t0

f(x(s)) ds+

∫ t

t0

g(x(s)) dωx(s) a.s.,

then x(t) is called a weak solution of system (4), where τx+∞ is the explosion time of the
weak solution x(t), that is τx+∞ = limε→+∞inf{t ≥ t0, ‖x(t)‖ ≥ ε, ∀ε > 0}.

Now, we can introduce the notion of asymptotic stability in probability for the equilib-
rium solution of the stochastic differential equation (4) as follows.

Definition 2.2. (Li and Liu [19]) The zero solution of system (4) is said to be
(i) globally stable in probability: if for any ε ∈ (0, 1), there exists a class K function α
such that for ∀x0 ∈ Rn , every weak solution x(t) of system (4) satisfies

P x{sup
t≥0
‖x(t)‖ < α(‖x0‖)} ≥ 1− ε.

(ii) globally asymptotically stable in probability: if it is globally stable in probability and
for ∀x0 ∈ Rn , every weak solution x(t) of system (4) satisfies

P x{ lim
t→∞

x(t) = 0} = 1.

Definition 2.3. The infinitesimal generator associated with the stochastic differential
equation (4), denoted by L, is defined for any function Ψ in C2(Rn) by

LΨ(x) = ∇Ψ(x)f(x) +
1

2
Tr
(
g(x)g(x)>∇2Ψ(x)

)
,

where Tr{.} represents the trace of the argument.

Definition 2.4. Let V be a neighborhood of the origin in Rn. We say that a function
V ∈ C2(Rn,R+) is a stochastic Lyapunov function of system (4) on V if

(i) V (0) = 0 and V (x) > 0, ∀x ∈ V \ {0}.

(ii) LV (x) < 0, ∀x ∈ V \ {0}.

(iii) If V = Rn, then V is proper, that is, V (x)→∞ as ‖x‖ → ∞.

Lemma 2.5. (Li and Liu [19]) For system (4), suppose that there exist functions
V ∈ C2(Rn,R+), ξ ∈ C0(Rn,R+) and class K∞ functions α, β, such that

(i) α(‖x‖) ≤ V (x) ≤ β(‖x‖);

(ii) LV (x) ≤ −ξ(x).

Then the zero solution of system (4) is globally stable in probability, and for ∀x0 ∈ Rn,
every weak solution x(t) of system (4) satisfies

P x

{
lim

t→+∞
ξ(x(t)) = 0

}
= 1.

Particularly, if function ξ is positive definite, then the zero solution of system (4) is
globally asymptotically stable in probability.
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To conclude this section, we list a lemma which shows the connexion between a
positive definite function and class K functions (see [12], Lemma 4.3).

Lemma 2.6. (Khalil [12]) Let V : Rn → R be a continuous positive definite function,
then, there exit class K functions α and β, defined on [0,∞), such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Rn.

Moreover, if V is radially unbounded, then α and β can be chosen to belong to class K∞.

3. PRELIMINARY RESULTS

For a C2 function V (x), the infinitesimal operator LuV associated with the system (1)
is defined as

LuV (x) = av(x)u2 + bv(x)u+ cv(x),

with

av(x) = ∇V (x)f2(x) +
1

2
Tr
(
g1(x)g1(x)>∇2V (x)

)
,

bv(x) = ∇V (x)f1(x),

and

cv(x) = ∇V (x)f0(x) +
1

2
Tr
(
g0(x)g0(x)>∇2V (x)

)
.

In addition, for each fixed x ∈ Rn, let

∆v(x) = bv(x)2 − 4av(x)cv(x)

be the discriminant of the equation: av(x)λ2 + bv(x)λ+ cv(x) = 0, and

λ1,v(x) =
−bv(x)−

√
∆v(x)

2av(x)
, λ2,v(x) =

−bv(x) +
√

∆v(x)

2av(x)

its roots when ∆v(x) ≥ 0.

The following definitions come from [6].

Definition 3.1. (Florchinger [6]) A C2 positive definite and proper function defined
on Rn is a stochastic control Lyapunov function (SCLF) for the stochastic differential
system (1) if

inf
u∈R
LuV (x) = inf

u∈R

(
av(x)u2 + bv(x)u+ cv(x)

)
< 0, ∀x ∈ Rn \ {0}. (5)

Remark 3.2. If V is a SCLF for system (1) then it is positive definite and proper, ac-
cording to Lemma 2.6, there exit class K∞ functions α and β satisfying the inequality (i)
of Lemma 2.5, that is,

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Rn.
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Definition 3.3. (Florchinger [6]) A function V ∈ C2(Rn,R+) is said to satisfy the
small control property with system (1), if for each ε > 0 there is δ > 0 such that , if
x 6= 0 satisfies ‖x‖ < δ, then there is some u with ‖u‖ < ε such that

LuV (x) = av(x)u2 + bv(x)u+ cv(x) < 0.

Remark 3.4. Note that if V is a SCLF for system (1) then:

(i) the functions av(.), bv(.), cv(.) and ∆v(.) are continuous over Rn,

(ii) since V is positive definite, it has a minimum at 0, so ∇V (0) = 0 and consequently
bv(0) = 0 and then ∆v(0) = 0 since cv(0) = 0.

(iii) if ∆v(x) > 0, one has

λ1,v(x) < λ2,v(x), if av(x) > 0,

and
λ1,v(x) > λ2,v(x), if av(x) < 0.

Next, we recall the following result.

Proposition 3.5. (Chabour and Oumoun [3]) If V is a SCLF for the system (1), then
we have:

1.
(
∆v(x) < 0

)
=⇒ av(x) < 0,

2.
(
∆v(x) = 0 and av(x) 6= 0

)
=⇒ av(x) < 0,

3.
(
∆v(x) = 0 and av(x) = 0

)
=⇒ bv(x) = 0 and cv(x) < 0.

As far as possible, our objective is to define a state feedback law by explicit formulas
in such a way that the resulting equilibrium solution of the closed-loop system is asymp-
totically stable in probability. To be more precise, according to Remark 3.2 and Lemma
2.5, if V is a known SCLF for the system (1), we shall define a feedback law u and a
continuous definite function ξ such that

LuV (x) = av(x)u2(x) + bv(x)u(x) + cv(x) ≤ −ξ(x) < 0, ∀x ∈ Rn \ {0}.

The operator LuV (x) regarded as a polynomial in u(x), this last inequality leads to

u(x) ∈
]
λ1,v(x), λ2,v(x)

[
, if av(x) > 0 and ∆v(x) > 0,

and
u(x) /∈

[
λ2,v(x), λ1,v(x)

]
, if av(x) < 0 and ∆v(x) > 0.

In the next section, to prove main results of this paper, we use the following result.

Lemma 3.6. Let V be a SCLF for the system (1) and x0 ∈ Rn \{0} such that av(x0) =
0, we have:

lim
x→x0

av(x)>0

λ1,v(x) = −∞ and lim
x→x0

av(x)>0

λ2,v(x) = −cv(x0)

bv(x0)
, if bv(x0) > 0, (6)
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lim
x→x0

av(x)>0

λ1,v(x) = −cv(x0)

bv(x0)
and lim

x→x0

av(x)>0

λ2,v(x) = +∞, if bv(x0) < 0, (7)

lim
x→x0

av(x)>0

λ1,v(x) = −∞ and lim
x→x0

av(x)>0

λ2,v(x) = +∞, if bv(x0) = 0, (8)

lim
x→x0

av(x)<0

λ1,v(x) = +∞ and lim
x→x0

av(x)<0

λ2,v(x) = −cv(x0)

bv(x0)
, if bv(x0) > 0, (9)

lim
x→x0

av(x)<0

λ1,v(x) = −cv(x0)

bv(x0)
and lim

x→x0

av(x)<0

λ2,v(x) = −∞, if bv(x0) < 0, (10)

lim
x→x0

av(x)<0
bv(x)<0

λ1,v(x) = −∞ and lim
x→x0

av(x)<0
bv(x)<0

λ2,v(x) = −∞, if bv(x0) = 0, (11)

lim
x→x0

av(x)<0
bv(x)>0

λ1,v(x) = +∞ and lim
x→x0

av(x)<0
bv(x)>0

λ2,v(x) = +∞, if bv(x0) = 0. (12)

P r o o f . The proof is similar to Lemma 2.5 in [21] and is omitted here. �

4. MAIN RESULTS

The objective of this paper is to design a continuous feedback control law such that
the resulting closed-loop system deduced from system (1) is globally asymptotically in
probability.

4.1. Necessary condition for continuous feedback stabilization

Using Lemma 3.6, we can state the following necessary condition for the stabilization of
system (1) by a continuous feedback.

Suppose there exist a SCLF V for system (1) and a connected open set O such that:

A1 av(x) < 0 and ∆v(x) ≥ 0, for every x ∈ O.

A2 There exist x1 and x2 in ∂O (the border of O) such that av(x1) = av(x2) = 0.

A3 For any ε > 0, there exist x ∈ B(x1, ε)∩O and y ∈ B(x2, ε)∩O such that bv(x) ≥ 0
and bv(y) ≤ 0.

Remark 4.1. For reasons of continuity, if assumption A3 holds, then bv(x1) ≥ 0 and
bv(x2) ≤ 0.

In addition, if bv(x1) = 0 (respectively bv(x2) = 0), according to Proposition 3.5 we
have cv(x1) < 0 (respectively cv(x2) < 0).

From assumption A1 and definition of ∆v, the inequality in assumption A3 becomes
strict, i. e., for any ε > 0, there exist x ∈ B(x1, ε) ∩ O such that bv(x) > 0 (respectively
there exist y ∈ B(x2, ε) ∩ O such that bv(y) < 0).
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Based on Lemma 3.6, we obtain the first main result in the following theorem. It pro-
vides a necessary condition for a stochastic control Lyapunov function to be a stochastic
Lyapunov function.

Theorem 4.2. Let V be a neighborhood of the origin in Rn and assume that V is a
SCLF for system (1). If there exists a connected open set O ⊂ O ⊂ V such that assump-
tions A1 – A3 hold, then, system (1) is not asymptotically stabilizable in probability on
V by a continuous feedback with V as the stochastic Lyapunov function.

P r o o f . First, from Remark 4.1, for any ε > 0, the sets {x ∈ O|‖x−x1‖ < ε, bv(x) > 0}
and {x ∈ O|‖x− x2‖ < ε, bv(x) < 0} are not empty. Hence, from (10), (11) and (12)

lim
x→x1
x∈O

bv(x)>0

λ1,v(x) = +∞ and lim
x→x2
x∈O

bv(x)<0

λ2,v(x) = −∞. (13)

Now, assume that there exists a continuous feedback law u that asymptotically sta-
bilizes in probability system (1) and for which the SCLF V is a stochastic Lyapunov
function for the closed-loop system. Then, LuV (x) = av(x)u2(x)+bv(x)u(x)+cv(x) < 0,
for every x ∈ O. This implies that either u(x) < λ2,v(x) or λ1,v(x) < u(x) for every
x ∈ O (notice that λ2,v(x) ≤ λ1,v(x) for every x ∈ O). Hence

• If u(x) < λ2,v(x) for every x ∈ O then, from (13) and since u is continuous, we
have limx→x2

x∈O
u(x) ≤ lim x→x2

x∈O
bv(x)<0

λ2,v(x) = −∞.

• If u(x) > λ1,v(x) for every x ∈ O then, again from (13) and since u is continuous,
we have limx→x1

x∈O
u(x) ≥ lim x→x1

x∈O
bv(x)>0

λ1,v(x) = +∞.

In both cases, we have a contradiction. �

4.2. Control design

In this section, we give universal formulas for the continuous stabilizers of system (1)
via a known stochastic control Lyapunov function which not satisfies assumptions in
Theorem 4.2.

First, we choose the two following continuous functions mapping R into itself

ϕ(x) =

{
0 if x ≤ 0,
x if x ≥ 0,

and ψ(x) =

{
x if x ≤ 0,
0 if x ≥ 0.

We also need the following result.

Lemma 4.3. If V is a SCLF for system (1) which satisfies(
av(x) < 0 and ∆v(x) ≥ 0

)
=⇒ bv(x) 6= 0, (14)

then the function

K(x) =

 w(x) if ∆v(x) > 0,

0 if ∆v(x) ≤ 0,
(15)
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where

w(x) =



ψ
(
−bv(x)+

√
|∆v(x)|

2av(x) −
√
|∆v(x)|

2(1+a2
v(x))

)
if av(x) 6= 0 and bv(x) > 0,

ϕ
(
−bv(x)−

√
|∆v(x)|

2av(x) +

√
|∆v(x)|

2(1+a2
v(x))

)
if av(x) 6= 0 and bv(x) < 0,

ψ
(
− c(x)

b(x) −
b(x)

2

)
if a(x) = 0 and b(x) > 0,

ϕ
(
− c(x)

b(x) −
b(x)

2

)
if a(x) = 0 and b(x) < 0,

0 if a(x) > 0 and b(x) = 0

is continuous in Rn \ {0}. Moreover, the function K is continuous at the origin if V
satisfies the small control property.

P r o o f . Here, we follow the main lines of the proof of Theorem 3.9 from Maniar et al.
[21]. From the continuity of ϕ, ψ, av and ∆v, it is obvious that K is continuous on the
open sets: {av(x) 6= 0,∆v(x) > 0, bv(x) 6= 0} and {av(x) < 0,∆v(x) < 0}.

Since V is a SCLF, the set {av(x) > 0,∆v(x) ≤ 0} is empty, and by assumption (14),
the set {av(x) < 0,∆v(x) ≥ 0, bv(x) = 0} is also empty. Thus, it remains to study the
continuity of K at the origin and on the sets:
A1 = {x ∈ Rn \ {0} | ∆v(x) = 0},
A2 = {x ∈ Rn \ {0} | av(x) > 0,∆v(x) > 0, bv(x) = 0},
A3 = {x ∈ Rn \ {0} | av(x) = 0, bv(x) > 0},
A4 = {x ∈ Rn \ {0} | av(x) = 0, bv(x) < 0}.

1. If x0 ∈ A1 then, K(x0) = 0. Note that K(x) = 0 if ∆v(x) ≤ 0, so, from now on,
we will focus on the case when ∆v(x) > 0 and we will verify that K vanishes in some
neighborhood of x0. Since ∆v(x0) = 0, from Proposition 3.5, we either have av(x0) < 0
or av(x0) = bv(x0) = 0 and cv(x0) < 0.

Case 1. If av(x0) < 0, then the functions λ1,v and λ2,v are continuous at x0. Note
that ∆v and av are continuous and from assumption (14), bv(x0) 6= 0 since ∆v(x0) = 0.
Hence, for x close enough to x0 we have

• λ1,v(x) < λ1,v(x0)/2 and

√
∆v(x)

2(1+a2
v(x)) < −λ1,v(x0)/2, if bv(x0) < 0,

• λ2,v(x) > λ2,v(x0)/2 and

√
∆v(x)

2(1+a2
v(x)) < λ2,v(x0)/2, if bv(x0) > 0.

In both cases, from the definition of K, it follows that K(x) = 0.

Case 2. In the case where av(x0) = bv(x0) = 0 and cv(x0) < 0, again, from continuity,
there exists a positive number l and a neighborhood Vx0 of x0, such that if x ∈ Vx0 and

∆v(x) > 0, we have cv(x) < 0, |cv(x)|
|bv(x)| > l,

√
∆v(x)

2(1+a2
v(x)) < l and |bv(x)| < l. Moreover,
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• λ1,v(x) < −l if av(x) 6= 0 and bv(x) < 0 (cf. (8) and (11)),

• λ2,v(x) > l if av(x) 6= 0 and bv(x) > 0 (cf. (8) and (12)).

It follows from the definition of K that in every cases, K(x) = 0. As a matter of fact,
when bv(x) < 0, it follows from the above inequalities that

if av(x) 6= 0, K(x) = ϕ
(
λ1,v(x) +

√
∆v(x)

2(1+a2
v(x))

)
= 0, since λ1,v(x) < −l and

√
∆v(x)

2(1+a2
v(x)) < l,

if av(x) = 0, K(x) = ϕ
(
− cv(x)

bv(x) −
bv(x)

2

)
= 0, since − cv(x)

bv(x) < −l and − bv(x)
2 < l.

The cases when bv(x) > 0 can be treated similary and the cases when bv(x) = 0 are
obvious, because, in this case, we deduce immediately from the definition of ∆v(x) that
av(x) > 0. So, from the definition of K, K(x) = 0.

Thus, K is identically equal to 0 in a neighborhood of x0 and, therefore, is continuous
at x0.

2. If x0 ∈ A2, then K(x0) = 0. Denote α(x) = −
√

∆v(x)

2av(x) +

√
∆v(x)

2(1+a2
v(x)) . From the

definition of K and the fact that α(x0) < 0 , we obtain

lim
x→x0

av(x)>0
bv(x)<0

K(x) = lim
x→x0

av(x)>0
bv(x)<0

ϕ
(
λ1,v(x) +

√
∆v(x)

2(1 + a2
v(x))

)
= ϕ

(
α(x0)

)
= 0 = K(x0),

and

lim
x→x0

av(x)>0
bv(x)>0

K(x) = lim
x→x0

av(x)>0
bv(x)>0

ψ
(
λ2,v(x)−

√
∆v(x)

2(1 + a2
v(x))

)
= ψ

(
− α(x0)

)
= 0 = K(x0).

Also, if bv(x) = 0 and av(x) > 0, then K(x) = 0 = K(x0). Thus K is continuous at
x0 ∈ A2.

3. If x0 ∈ A3, for reasons of continuity, we have bv(x) > 0 and ∆v(x) > 0 whenever x
is close enough to x0. So, continuity of bv, cv and ψ lead to

lim
x→x0

av(x)=0
bv(x)>0

K(x) = lim
x→x0

av(x)=0
bv(x)>0

ψ
(
− cv(x)

bv(x)
− bv(x)

2

)
= ψ

(
− cv(x0)

bv(x0)
− bv(x0)

2

)
= K(x0),

and, from (6) and (9) we have

lim
x→x0

av(x)6=0
bv(x)>0

K(x) = lim
x→x0

av(x)6=0
bv(x)>0

ψ
(
λ2,v(x)−

√
∆v(x)

2(1 + a2
v(x))

)
= ψ

(
− cv(x0)

bv(x0)
− bv(x0)

2

)
= K(x0).

It then follows that K is continuous at x0 ∈ A3.

4. If x0 ∈ A4, using the defintion of K and the assertions (7) and (10), this case is
similar to the former one and is omitted here.
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Thus K is continuous in Rn \ {0}.
Finally, we wish to show that the function K is continuous at the origin. Note that

K(x) = 0 = K(0) when ∆v(x) ≤ 0, so from now on, we consider ∆v(x) > 0. Assume
that V satisfies the small control property and since ∆v, av and bv are continuous and
∆v(0) = bv(0) = 0 see Remark 3.4, then, for every ε > 0, let ε′ = ε/2 there exists δ > 0
such that for every x 6= 0 satisfying ‖x‖ < δ, there exists some w such that |w| < ε′ and

LwV (x) = av(x)w2 + bv(x)w + cv < 0, (16)

and √
∆v(x)

2(1 + a2
v(x))

< ε′ and |bv(x)| < ε′. (17)

The inequality (16) is equivalent to

if av(x) > 0, w ∈]λ1,v(x), λ2,v(x)[, (18)

if av(x) < 0, w /∈ [λ2,v(x), λ1,v(x)], (19)

if av(x) = 0 and bv(x) < 0, w > −cv(x)

bv(x)
, (20)

if av(x) = 0 and bv(x) > 0, w < −cv(x)

bv(x)
. (21)

Consider the three following cases according to the sign of bv(x).

• If bv(x) < 0, we consider again three cases according to the sign of av(x).

(i) If av(x) > 0, then we have K(x) = ϕ
(
λ1,v(x) +

√
∆v(x)

2(1+a2
v(x))

)
. From (18), we

have λ1,v(x) < w < ε′ which yields with (17), λ1,v(x) +

√
∆v(x)

2(1+a2
v(x)) < 2ε′ = ε.

Hence |K(x)| = ϕ
(
λ1,v(x) +

√
∆v(x)

2(1+a2
v(x))

)
< ϕ

(
ε
)

= ε.

(ii) If av(x) < 0, (19) is equivalent to w < λ2,v(x) < λ1,v(x) or λ2,v(x) <
λ1,v(x) < w. Since av(x) < 0 and bv(x) < 0, we have λ2,v(x) < 0 and
|λ1,v(x)| < |λ2,v(x)|. So, we always have λ1,v(x) < |w| < ε′. As above, we
show again that |K(x)| < ε.

iii) If av(x) = 0, in this case K(x) = ϕ
(
− cv(x)

bv(x) −
bv(x)

2

)
. From (20), we have

− cv(x)
bv(x) < w < ε′ and the conclusion follows, as above, since |bv(x)| < ε′.

• If bv(x) > 0, this case can be treated similary as the former one and is omitted
here.

• If bv(x) = 0, from assumption (14), we have av(x) ≥ 0 since ∆v(x) > 0. But
av(x) = 0 would contradict ∆v(x) > 0 and so we have av(x) > 0. It then follows
from the definition of K that K(x) = 0.
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Thus, K is continuous at the origin and this complets the proof of Lemma 4.3. �

Now we study the asymptotic stability in probability of the stochastic system (1).

Theorem 4.4. If V is a SCLF which satisfies assumption (14) and the small control
property, then the feedback law u(x) = K(x) renders the stochastic system (1) globally
asymptotically stable in probability.

P r o o f . From Lemma 4.3, since V satisfies the small control property, we deduce
that u is continuous on Rn. It follows that the coefficients of the closed-loop system
deduced from the stochastic system (1) with the control u are continuous on Rn, then
so is the associated infinitesimal operator LuV (x), since the fonctions av, bv and cv are
continuous.

Next, we will verify that

LuV (x) = av(x)u2(x) + bv(x)u(x) + cv(x) < 0, ∀x ∈ Rn \ {0},

according to the sign of ∆v(x). To do this, we again follow the main lines of the proof
of Theorem 3.9 from Maniar et al. [21].

1. If ∆v(x) < 0 then, av(x) < 0 according to Proposition 3.5, and the sign of LuV (x)
is that of av(x), so LuV (x) < 0.

2. If ∆v(x) = 0, then u(x) = 0, and so, LuV (x) = cv(x) < 0. As a matter of fact,
from Proposition 3.5, we know that av(x) = bv(x) = 0 and cv(x) < 0 or av(x) < 0.
If av(x) < 0, from assumption (14) we have bv(x) 6= 0 and so, from defintion of
∆v, we get cv(x) < 0 since ∆v(x) = 0.

3. If ∆v(x) > 0, in this case, we consider three cases according to the sign of bv(x).

i. If bv(x) < 0, let β(x) =

√
∆v(x)

2(1+a2
v(x)) then, u(x) = ϕ

(
λ1,v(x) + β(x)

)
. It is clear

that λ1,v(x) < λ1,v(x) +β(x) ≤ ϕ
(
λ1,v(x) +β(x)

)
= u(x). In case av(x) < 0,

we have λ2,v(x) < λ1,v(x) < u(x), and hence LuV (x) < 0.

If av(x) > 0, we have u(x) = ϕ
(
λ1,v(x) + β(x)

)
≤ max(0, λ1,v(x) + β(x)) <

λ2,v(x). Indeed, λ1,v(x)+β(x) < λ1,v(x)+

√
∆v(x)

2av(x) = −
√

bv(x)

2av(x) < λ2,v(x), and

since av(x) > 0 and bv(x) < 0, we also have 0 < λ2,v(x).

Thus, λ1,v(x) < u(x) < λ2,v(x) and then, LuV (x) < 0.

If av(x) = 0, since bv(x) < 0, we have

u(x) = ϕ
(
− cv(x)

bv(x)
− bv(x)

2

)
≥ −cv(x)

bv(x)
− bv(x)

2
> −cv(x)

bv(x)
,

therefore, LuV (x) = bv(x)u(x) + cv(x) < 0.

ii. If bv(x) > 0, this case can be treated similary to the previous one.

iii. If bv(x) = 0, from assumption (14), we have av(x) ≥ 0. But av(x) = 0 would
contradict ∆v(x) > 0, so, av(x) > 0 which gives cv(x) < 0, and therefore,
LuV (x) = cv(x) < 0, since u(x) = 0 according to the definition of u.
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Hence, LuV (x) is continuous and negative definite and since V (x) is a SCLF for system
(1), according to Lemma 2.6, there exit class K∞ functions α(x) and β(x) and class K
function ξ(x), defined on R+, such that

α(‖x‖) ≤ V (x) ≤ β(‖x‖), ∀x ∈ Rn,

and
LuV (x) = a(x)u2(x) + b(x)u(x) + c(x) ≤ −ξ(‖x‖), ∀x ∈ Rn.

The conclusion follows with help of Lemma 2.5 and this completes the proof of Theo-
rem 4.4. �

Remark 4.5. 1) In trying to build a continuous feedback u, the problem is when one
has the following situation: x0 ∈ Rn is such that, av(x0) < 0, ∆v(x0) ≥ 0 and bv(x0) = 0.
The global asymptotic stability require that LuV (x0) < 0, two choices of u(x0) are pos-
sible: u(x0) < λ2,v(x0) ≤ λ1,v(x0) or λ2,v(x0) ≤ λ1,v(x0) < u(x0). In both cases, due to
the continuity of u and according to Lemma 3.6, we can have u(x1) undefined for some
x1 ∈ Rn. To avoid this situation, we use assumption (14).

2) If Florchinger [6] used a universal formula for the system (1) when f2 ≡ g1 ≡ 0
under a known SCLF, the problem of stabilization of system (1) has not yet a universal
construction. Note that if V is a SCLF for the system (1), the sufficient condition:
av(x) < 0⇒ ∆v(x) < 0, stated in [3, 4, 8], is more restrictive than the assumption (14)
stated in this paper.

5. EXAMPLE

To illustrate the usefulness of the above result, let us give an example. Consider the
following stochastic system

dx =

 −x1 cos(2x1) + ux1 sin2(x1)− u2x1 sin2(x1)

−x2 cos(2x1) + ux2 sin2(x2)− u2x2 sin2(x2)

 dt+

 ux1 sin(x1)

ux2 sin(x2)

 dω.

(22)
Taking the following function V defined on R2 by

V (x) =
x2

1 + x2
2

2
,

we have
LuV (x) = av(x)u2(x) + bv(x)u(x) + cv(x),

with

av(x) = −1

2
(x2

1 sin2(x1) + x2
2 sin2(x2)), bv(x) = x2

1 sin2(x1) + x2
2 sin2(x2),

and
cv(x) = −(x2

1 + x2
2) cos(2x1).
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It is easy to see that for every x ∈ R2, we have av(x) ≤ 0, and if x 6= 0 is such that
av(x) = 0 then, bv(x) = 0 and cv(x) < 0, so

inf
u∈R
LuV (x) = inf

u∈R

(
av(x)u2 + bv(x)u+ cv(x)

)
< 0, ∀x ∈ R2 \ {0}.

It then follows that V is a SCLF for system (22) which satisfies the small control
property since cv(x) < 0 for all x 6= 0 such that x1 ∈]− π/4, π/4[.

It can be seen that the stabilizability condition: (av(x) < 0 =⇒ ∆v(x) < 0) stated
in Chabour and Oumoun [3] and Daumail and Florchinger [4] is not satisfied, since
av(π/4, π/4) < 0 and ∆v(π/4, π/4) > 0.

However, for every x ∈ R2 \ {0}, we have (av(x) < 0) ⇒ bv(x) > 0. Hence, as-
sumption (14) is satisfied, and thus, according to Theorem 4.4, system (22) is globally
asymptotically stable in probability with the feedback

u(x) =


ψ
(
−bv(x)+

√
∆v(x)

2av(x) −
√

∆v(x)

2(1+a2
v(x))

)
if ∆v(x) > 0,

0 if ∆v(x) ≤ 0.

6. CONCLUDING REMARKS

In this paper, the global state-feedback stabilization problem has been investigated for
nonlinear stochastic systems when the drift is quadratic in the control and the diffusion
term is affine in the control. In the sense of weak solution, under the assumption that
a stochastic control Lyapunov function is known, we gave a necessary condition for the
stabilization by a continuous state-feedback. Moreover, under appropriate condition,
we designed state-feedback that ensures the zero solution of the closed-loop system is
globally asymptotically stable in probability.

Since the studied system is with less restriction, this result can be applied to many
practical models which are only continuous.

The following two problems are interesting for further investigation:

1. If the method can be used for the stabilization of deterministic nonlinear systems
such as offshore structures, see [28, 29, 30]

2. The construction of a stabilizing controls in probability of multi-input nonlinear
stochastic systems.

(Received July 30, 2018)
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