Czechoslovak Mathematical Journal

Kwang Soon Park

H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds

Czechoslovak Mathematical Journal, Vol. 70 (2020), No. 3, 631-656

Persistent URL: http://dml.cz/dmlcz/148319

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

H-CONFORMAL ANTI-INVARIANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

Kwang Soon Park, Seoul

Received May 30, 2018. Published online August 4, 2020.

Abstract

We introduce the notions of h-conformal anti-invariant submersions and hconformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.

Keywords: horizontally conformal submersion; quaternionic manifold; totally geodesic
MSC 2020: 53C15, 53C26, 53C43

1. InTRODUCTION

To study geometric structures and geometric properties on Riemannian manifolds with some additional structures, we usually use C^{∞}-maps. There are two ways: We take these ones as either base manifolds or target manifolds. As we know, isometric immersions are examples for studying target manifolds and Riemannian submersions are examples for investigating base manifolds. As a generalization of isometric immersions and Riemannian submersions, Riemannian maps were used to study both cases. The author introduced several types of new notions on this topic and by using them, the author obtained many interesting results on them. We recall some historical events on this topic, which are related with this paper.

In 1960s, Riemannian submersions between Riemannian manifolds were independently introduced by O'Neill in [20] and Gray in [11].

In 1976, Watson in [31] introduced the notion of almost Hermitian submersions between almost Hermitian manifolds. Given an almost Hermitian submer-
sion $F:\left(M, g_{M}, J_{M}\right) \mapsto\left(N, g_{N}, J_{N}\right)$, we know that $J_{M}\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$ and $J_{M}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, where $\left(\operatorname{ker} F_{*}\right)^{\perp}$ denotes the orthogonal complement of ker F_{*} in $T M$. Using this notion, he obtained some differential geometric properties among fibers, base manifolds, and total manifolds.

In 2010, by changing the invariance of $\operatorname{ker} F_{*}$ under almost complex structure J_{M}, Şahin in [26] defined an anti-invariant Riemannian submersion F from an almost Hermitian manifold $\left(M, g_{M}, J_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. It satisfies $J_{M}\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$. Using this notion, he also obtained lots of properties: the integrability of distributions, the geometry of foliations, the condition for such a map to be totally geodesic, some decomposition theorems, etc.

In 2017, as a generalization of an anti-invariant Riemannian submersion from an almost Hermitian manifold, the author in [23] introduced the notions of an h-antiinvariant submersion and an h-Lagrangian submersion from an almost quaternionic Hermitian manifold.

In 1970s, as a generalization of Riemannian submersions, a horizontally conformal submersion was introduced independently by Fuglede in [10] and Ishihara in [17].

In 1997, Gudmundsson and Wood in [13] studied conformal holomorphic submersions between almost Hermitian manifolds. They found the condition for a conformal holomorphic submersion to be a harmonic morphism.

In 2016, Akyol and Şahin in [1] defined a conformal anti-invariant submersion from an almost Hermitian manifold onto a Riemannian manifold. And they obtained some interesting propertis on it.

In 2016, Jin and Lee in [18] investigated a conformal anti-invariant submersion from a hyperkähler manifold.

Given a C^{∞}-submersion F from a Riemannian manifold $\left(M, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$, with some additional structures, we get several types of submersions, see [1], [3], [7], [9], [11], [12], [14], [20], [21], [22], [23], [24], [26], [27], [28], [29], [31].

Riemannian submersions are related with physics and have their applications in the Yang-Mills theory (see [6], [32]), Kaluza-Klein theory (see [5], [15]), supergravity and superstring theories (see [16], [19]). We know that the quaternionic Kähler manifolds have applications in physics as the target spaces for nonlinear σ-models with supersymmetry, see [8].

The paper is organized as follows. In Section 2 we recall some notions, which are needed in the following sections. In Section 3 we introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions and obtain some properties on them: the characterization of such maps, the harmonicity of such maps, the conditions for such maps to be totally geodesic, the integrability of distributions, the geometry of foliations, etc. In Section 4 we obtain some decomposition theorems.

In Section 5 we give some examples of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions.

2. Preliminaries

In this section we recall some notions, which will be used in the following sections.
Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds, where g_{M} and g_{N} are Riemannian metrics on C^{∞}-manifolds M and N, respectively.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a C^{∞}-map.
We call the map F a C^{∞}-submersion if F is surjective and the differential $\left(F_{*}\right)_{p}$ has maximal rank for any $p \in M$.

Then the map F is said to be a Riemannian submersion (see [9], [20]) if F is a C^{∞}-submersion and

$$
\left(F_{*}\right)_{p}:\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp},\left(g_{M}\right)_{p}\right) \mapsto\left(T_{F(p)} N,\left(g_{N}\right)_{F(p)}\right)
$$

is a linear isometry for any $p \in M$, where $\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}$ is the orthogonal complement of the space $\operatorname{ker}\left(F_{*}\right)_{p}$ in the tangent space $T_{p} M$ to M at p.

The map F is called horizontally weakly conformal at $p \in M$ if it satisfies either (i) $\left(F_{*}\right)_{p}=0$ or (ii) $\left(F_{*}\right)_{p}$ is surjective and there exists a number $\lambda(p)>0$ such that

$$
\begin{equation*}
g_{N}\left(\left(F_{*}\right)_{p} X,\left(F_{*}\right)_{p} Y\right)=\lambda^{2} g_{M}(X, Y) \quad \text { for } X, Y \in\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp} . \tag{2.1}
\end{equation*}
$$

We call the point p a critical point if it satisfies the type (i) and call the point p a regular point if it satisfies the condition (ii). And the positive number $\lambda(p)$ is said to be dilation of F at p. The map F is called horizontally weakly conformal if it is horizontally weakly conformal at any point of M. If the map F is horizontally weakly conformal and it has no critical points, then we call the map F a horizontally conformal submersion.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion.
Given any vector field $U \in \Gamma(T M)$, we have

$$
\begin{equation*}
U=\mathcal{V} U+\mathcal{H} U \tag{2.2}
\end{equation*}
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Define the (O 'Neill) tensors \mathcal{T} and \mathcal{A} by

$$
\begin{align*}
\mathcal{A}_{E} F & =\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F \tag{2.3}\\
\mathcal{T}_{E} F & =\mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V} E} \mathcal{H} F \tag{2.4}
\end{align*}
$$

for $E, F \in \Gamma(T M)$, where ∇ is the Levi-Civita connection of g_{M}, see [9], [20]. Then it is well-known that

$$
\begin{align*}
g_{M}\left(\mathcal{T}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{T}_{U} W\right), \tag{2.5}\\
g_{M}\left(\mathcal{A}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{A}_{U} W\right) \tag{2.6}
\end{align*}
$$

for $U, V, W \in \Gamma(T M)$.
Define $\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y$ for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a C^{∞}-map.
Then the second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$

where ∇^{F} is the pullback connection and we denote conveniently by ∇ the LeviCivita connections of the metrics g_{M} and g_{N}, see [3].

Remind that F is said to be harmonic if the tension field $\tau(F)=\operatorname{trace}\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma(T M)$, see [3].

Lemma 2.1 ([30]). Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and F : $\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ a C^{∞}-map. Then we have

$$
\begin{equation*}
\nabla_{X}^{F} F_{*} Y-\nabla_{Y}^{F} F_{*} X-F_{*}([X, Y])=0 \tag{2.7}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)$.

Remark 2.2.

(1) By (2.7), we see that the second fundamental form ∇F_{*} is symmetric.
(2) By (2.7), we obtain

$$
\begin{equation*}
[V, X] \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{2.8}
\end{equation*}
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proposition 2.3 ([12]). Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ. Then we obtain

$$
\begin{equation*}
\mathcal{A}_{X} Y=\frac{1}{2}\left\{\mathcal{V}[X, Y]-\lambda^{2} g_{M}(X, Y) \nabla_{\mathcal{V}}\left(\frac{1}{\lambda^{2}}\right)\right\} \tag{2.9}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Here, $\nabla_{\mathcal{V}}$ denotes the gradient vector field in the distribution ker $F_{*} \subset T M$
 of $\operatorname{ker} F_{*}$).

Lemma $2.4([3])$. Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ. Then we have

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, Y)=X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*}(\nabla \ln \lambda) \tag{2.10}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
We remind some notions. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold, where J is an almost complex structure on M (i.e. $J^{2}=-\mathrm{id}, g_{M}(J X, J Y)=g_{M}(X, Y)$ for $X, Y \in \Gamma(T M))$.

We call a horizontally conformal submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ a conformal anti-invariant submersion $($ see $[1])$ if $J\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Let M be a $4 m$-dimensional C^{∞}-manifold and let E be a rank 3 subbundle of $\operatorname{End}(T M)$ such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
J_{\alpha}^{2}=-\mathrm{id}, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2},
$$

where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call E an almost quaternionic structure on M and (M, E) an almost quaternionic manifold, see [2].

Moreover, let g be a Riemannian metric on M such that for any point $p \in M$ with a neighborhood U, there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
\begin{gather*}
J_{\alpha}^{2}=-\mathrm{id}, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}, \tag{2.11}\\
g\left(J_{\alpha} X, J_{\alpha} Y\right)=g(X, Y) \tag{2.12}
\end{gather*}
$$

for all vector fields $X, Y \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call (M, E, g) an almost quaternionic Hermitian manifold, see [14].
Conveniently, the above basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ satisfying (2.11) and (2.12) is said to be a quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kähler manifold if there exist locally defined 1 -forms $\omega_{1}, \omega_{2}, \omega_{3}$ such that for $\alpha \in\{1,2,3\}$

$$
\nabla_{X} J_{\alpha}=\omega_{\alpha+2}(X) J_{\alpha+1}-\omega_{\alpha+1}(X) J_{\alpha+2}
$$

for $X \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 , see [14].

If there exists a global parallel quaternionic Hermitian basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on M (i.e. $\nabla J_{\alpha}=0$ for $\alpha \in\{1,2,3\}$, where ∇ is the Levi-Civita connection of the metric g), then (M, E, g) is said to be a hyperkähler manifold. Furthermore, we call $\left(J_{1}, J_{2}, J_{3}, g\right)$ a hyperkähler structure on M and g a hyperkähler metric, see [4].

Let $\left(M, E_{M}, g_{M}\right)$ and $\left(N, E_{N}, g_{N}\right)$ be almost quaternionic Hermitian manifolds.
A map $F: M \mapsto N$ is called a $\left(E_{M}, E_{N}\right)$-holomorphic map if given a point $x \in M$ for any $J \in\left(E_{M}\right)_{x}$ there exists $J^{\prime} \in\left(E_{N}\right)_{F(x)}$ such that

$$
F_{*} \circ J=J^{\prime} \circ F_{*} .
$$

A Riemannian submersion $F: M \mapsto N$ which is a $\left(E_{M}, E_{N}\right)$-holomorphic map is called a quaternionic submersion, see [14].

Moreover, if $\left(M, E_{M}, g_{M}\right)$ is a quaternionic Kähler manifold (or a hyperkähler manifold), then we say that F is a quaternionic Kähler submersion (or a hyperkähler submersion), see [14]. It is well known that any quaternionic Kähler submersion is a harmonic map, see [14].

Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold.

A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an h-anti-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $R\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$, see [23].

We call such a basis $\{I, J, K\}$ an h-anti-invariant basis.
A Riemannian submersion $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is called an h-Lagrangian submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $I\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, and $K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, see [23].

We call such a basis $\{I, J, K\}$ an h-Lagrangian basis.
Throughout this paper, we will use the above notations.

3. Almost h-Conformal anti-Invariant submersions

In this section, we introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc.

Definition 3.1. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally
conformal submersion. We call the map F an h-conformal anti-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $R\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$.

We call such a basis $\{I, J, K\}$ an h-conformal anti-invariant basis.
Remark 3.2. Let F be an h-conformal anti-invariant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}). Then it is impossible to satisfy the condition $\operatorname{dim}\left(\operatorname{ker} F_{*}\right)=\operatorname{dim}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

If not, then we choose a local quaternionic Hermitian basis $\{I, J, K\}$ of E with $R\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$. This means

$$
R\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp} \quad \text { for } R \in\{I, J, K\}
$$

so

$$
K\left(\operatorname{ker} F_{*}\right)=I J\left(\operatorname{ker} F_{*}\right)=I\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right),
$$

contradiction!
Due to Remark 3.2, we have:
Definition 3.3. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion. We call the map F an h-conformal Lagrangian submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $I\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}, J\left(\operatorname{ker} F_{*}\right)=$ $\operatorname{ker} F_{*}$, and $K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$.

We call such a basis $\{I, J, K\}$ an h-conformal Lagrangian basis.

Remark 3.4.

(1) We easily check that $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$ implies $J\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$.
(2) In a similar way to Remark 3.2, there does not exist a horizontally conformal submersion F from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that

$$
I\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}, \quad J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}, \quad K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

for a local quaternionic Hermitian basis $\{I, J, K\}$ of E, i.e. $K\left(\operatorname{ker} F_{*}\right)=$ $I J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, contradiction!

Let F be an h-conformal anti-invariant submersion (or an h-conformal Lagrangian submersion) from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$. Given a point $p \in M$ with a neighborhood U, we have an h-conformal anti-invariant basis (or an h-conformal Lagrangian basis) $\{I, J, K\}$ of sections of E on U.

Then given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we write

$$
\begin{equation*}
R X=B_{R} X+C_{R} X \tag{3.1}
\end{equation*}
$$

where $B_{R} X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C_{R} X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
If $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ is an h-conformal anti-invariant submersion, then we have the orthogonal decomposition

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=R\left(\operatorname{ker} F_{*}\right) \oplus \mu^{R}
$$

for $R \in\{I, J, K\}$. Then it is easy to check that μ^{R} is R-invariant for $R \in\{I, J, K\}$.
Given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we obtain

$$
\begin{equation*}
X=P_{R} X+Q_{R} X \tag{3.2}
\end{equation*}
$$

where $P_{R} X \in \Gamma\left(R\left(\operatorname{ker} F_{*}\right)\right)$ and $Q_{R} X \in \Gamma\left(\mu^{R}\right)$.
Furthermore, given $R \in\{I, J, K\}$, we get

$$
\begin{equation*}
C_{R} X \in \Gamma\left(\mu^{R}\right) \quad \text { for } X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}\left(C_{R} X, R V\right)=0 \tag{3.4}
\end{equation*}
$$

for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Then we easily obtain:
Lemma 3.5. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then we have:
(1) for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$

$$
\mathcal{T}_{V} R W=B_{R} \mathcal{T}_{V} W, \quad \mathcal{H} \nabla_{V} R W=C_{R} \mathcal{T}_{V} W+R \widehat{\nabla}_{V} W
$$

(2) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$
$\mathcal{A}_{X} C_{R} Y+\mathcal{V} \nabla_{X} B_{R} Y=B_{R} \mathcal{H} \nabla_{X} Y, \quad \mathcal{H} \nabla_{X} C_{R} Y+\mathcal{A}_{X} B_{R} Y=R \mathcal{A}_{X} Y+C_{R} \mathcal{H} \nabla_{X} Y$,
(3) for $V \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$

$$
\mathcal{A}_{X} R V=B_{R} \mathcal{A}_{X} V, \quad \mathcal{H} \nabla_{X} R V=C_{R} \mathcal{A}_{X} V+R \mathcal{V} \nabla_{X} V .
$$

Now, we will study the integrability of distributions and the geometry of foliations. From [18], we obtain:

Theorem 3.6. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{I} X\right. & \left.-\nabla_{X}^{F} F_{*} C_{I} Y, F_{*} I V\right) \\
= & g_{M}\left(\mathcal{A}_{Y} B_{I} X-\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X+C_{I} X(\ln \lambda) Y\right. \\
& \left.\quad+2 g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right)
\end{aligned}
$$

(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{J} X\right. & \left.-\nabla_{X}^{F} F_{*} C_{J} Y, F_{*} J V\right) \\
= & g_{M}\left(\mathcal{A}_{Y} B_{J} X-\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X+C_{J} X(\ln \lambda) Y\right. \\
& \left.+2 g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right)
\end{aligned}
$$

(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{K} X\right. & \left.-\nabla_{X}^{F} F_{*} C_{K} Y, F_{*} K V\right) \\
= & g_{M}\left(\mathcal{A}_{Y} B_{K} X-\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X+C_{K} X(\ln \lambda) Y\right. \\
& \left.+2 g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right)
\end{aligned}
$$

We deal with the condition for an h-conformal anti-invariant submersion to be horizontally homothetic.

Theorem 3.7. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Assume that the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable. Then the following conditions are equivalent:
(a) the map F is horizontally homothetic,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-\mathcal{A}_{Y} B_{I} X, I V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{I} X-\nabla_{X}^{F} F_{*} C_{I} Y, F_{*} I V\right)
$$

(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-\mathcal{A}_{Y} B_{J} X, J V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{J} X-\nabla_{X}^{F} F_{*} C_{J} Y, F_{*} J V\right)
$$

(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-\mathcal{A}_{Y} B_{K} X, K V\right)=g_{N}\left(\nabla_{Y}^{F} F_{*} C_{K} X-\nabla_{X}^{F} F_{*} C_{K} Y, F_{*} K V\right)
$$

Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$ with some computation we have

$$
\begin{align*}
0=g_{M}([X, Y], V)= & g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X+C_{R} X(\ln \lambda) Y\right. \tag{3.5}\\
& \left.-C_{R} Y(\ln \lambda) X+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right) \\
& -\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{Y}^{F} F_{*} C_{R} X-\nabla_{X}^{F} F_{*} C_{R} Y, F_{*} R V\right) .
\end{align*}
$$

Using (3.5), we easily get (a) $\Rightarrow(\mathrm{b}),(\mathrm{a}) \Rightarrow(\mathrm{c}),(\mathrm{a}) \Rightarrow(\mathrm{d})$.
Conversely, from (3.5) we have

$$
\begin{equation*}
g_{M}\left(C_{R} X(\ln \lambda) Y-C_{R} Y(\ln \lambda) X+2 g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right)=0 \tag{3.6}
\end{equation*}
$$

Applying $Y=R V$ to (3.6) and using (3.4) we obtain

$$
g_{M}\left(\nabla(\ln \lambda), C_{R} X\right) g_{M}(R V, R V)=0
$$

so

$$
\begin{equation*}
g_{M}(\nabla(\lambda), X)=0 \quad \text { for } X \in \Gamma\left(\mu^{R}\right) \tag{3.7}
\end{equation*}
$$

Applying $Y=C_{R} X, X \in \Gamma\left(\mu^{R}\right)$ to (3.6) we have

$$
2 g_{M}\left(X, C_{R}^{2} X\right) g_{M}(\nabla(\ln \lambda), R V)=-2 g_{M}(X, X) g_{M}(\nabla(\ln \lambda), R V)=0
$$

so

$$
\begin{equation*}
g_{M}(\nabla(\lambda), R V)=0 \quad \text { for } V \in \Gamma\left(\mathcal{D}_{2}^{R}\right) \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8), we get $(\mathrm{b}) \Rightarrow(\mathrm{a}),(\mathrm{c}) \Rightarrow(\mathrm{a}),(\mathrm{d}) \Rightarrow(\mathrm{a})$. Therefore, the result follows.

Lemma 3.8. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable,
(b) $\mathcal{A}_{X} I Y=\mathcal{A}_{Y} I X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(c) $\mathcal{A}_{X} K Y=\mathcal{A}_{Y} K X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(d) $\mathcal{A}_{X} J Y=\mathcal{A}_{Y} J X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. Since $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$, from Theorem 3.6 we obtain (a) \Leftrightarrow (b) and (a) \Leftrightarrow (c).

Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we get

$$
g_{M}([X, Y], J V)=-g_{M}\left(\nabla_{X} J Y-\nabla_{Y} J X, V\right)=g_{M}\left(\mathcal{A}_{Y} J X-\mathcal{A}_{X} J Y, V\right),
$$

which implies (a) $\Leftrightarrow(\mathrm{d})$. Therefore, the result follows.
From [18], we obtain:

Theorem 3.9. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$
$g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} Y\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X+g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right)$,
(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$
$g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} Y\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X+g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right)$,
(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$
$g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} Y\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X+g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right)$.

Theorem 3.10. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Assume that the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M. Then the following conditions are equivalent:
(a) the map F is horizontally homothetic,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
g_{N}\left(F_{*} C_{I} Y, \nabla_{X}^{F} F_{*} I V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y, I V\right),
$$

(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
g_{N}\left(F_{*} C_{J} Y, \nabla_{X}^{F} F_{*} J V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y, J V\right),
$$

(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
g_{N}\left(F_{*} C_{K} Y, \nabla_{X}^{F} F_{*} K V\right)=\lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y, K V\right)
$$

Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right), V \in \Gamma\left(\operatorname{ker} F_{*}\right)$, and $R \in\{I, J, K\}$, by Theorem 3.9, we get

$$
\begin{align*}
g_{N}\left(\nabla_{X}^{F} F_{*} R V, F_{*} C_{R} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{R} Y-C_{R} Y(\ln \lambda) X\right. \tag{3.9}\\
& \left.+g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right) .
\end{align*}
$$

Hence, it means $(\mathrm{a}) \Rightarrow(\mathrm{b}),(\mathrm{a}) \Rightarrow(\mathrm{c}),(\mathrm{a}) \Rightarrow(\mathrm{d})$.
Conversely, from (3.9) we obtain

$$
\begin{equation*}
0=g_{M}\left(-C_{R} Y(\ln \lambda) X+g_{M}\left(X, C_{R} Y\right) \nabla(\ln \lambda), R V\right) \tag{3.10}
\end{equation*}
$$

Applying $X=C_{R} Y$ to (3.10) and using (3.4), we have

$$
0=g_{M}\left(C_{R} Y, C_{R} Y\right) g_{M}(\nabla(\ln \lambda), R V)
$$

so

$$
\begin{equation*}
g_{M}(\nabla(\lambda), R V)=0 \quad \text { for } V \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{3.11}
\end{equation*}
$$

Applying $X=R V$ to (3.10) and using (3.4), we get

$$
0=g_{M}\left(\nabla(\ln \lambda), C_{R} Y\right) g_{M}(R V, R V)
$$

so

$$
\begin{equation*}
g_{M}(\nabla(\lambda), Y)=0 \quad \text { for } Y \in \Gamma\left(\mu_{R}\right) \tag{3.12}
\end{equation*}
$$

By (3.11) and (3.12), we have $(\mathrm{b}) \Rightarrow(\mathrm{a}),(\mathrm{c}) \Rightarrow(\mathrm{a}),(\mathrm{d}) \Rightarrow(\mathrm{a})$.
Therefore, the result follows.

Lemma 3.11. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M,
(b) $\mathcal{A}_{X} I Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(c) $\mathcal{A}_{X} K Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(d) $\mathcal{A}_{X} J Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. Since $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$, from Theorem 3.9 we get $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ and (a) \Leftrightarrow (c).

Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$ we have

$$
g_{M}\left(\nabla_{X} Y, J V\right)=-g_{M}\left(\nabla_{X} J Y, V\right)=-g_{M}\left(\mathcal{A}_{X} J Y, V\right)
$$

which implies (a) \Leftrightarrow (d). Therefore, we get the result.
From [18], we obtain:
Theorem 3.12. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\operatorname{ker} F_{*}$ defines a totally geodesic foliation on M,
(b) for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{I W}^{F} F_{*} I V, F_{*} I C_{I} X\right)=g_{M}\left(\mathcal{T}_{V} I W, B_{I} X\right)+g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), I C_{I} X\right)
$$

(c) for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$
$-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{J W}^{F} F_{*} J V, F_{*} J C_{J} X\right)=g_{M}\left(\mathcal{T}_{V} J W, B_{J} X\right)+g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), J C_{J} X\right)$,
(d) for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{K W}^{F} F_{*} K V, F_{*} K C_{K} X\right)= & g_{M}\left(\mathcal{T}_{V} K W, B_{K} X\right) \\
& +g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), K C_{K} X\right)
\end{aligned}
$$

Lemma 3.13. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) the distribution $\operatorname{ker} F_{*}$ defines a totally geodesic foliation on M,
(b) $\mathcal{T}_{V} I W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(c) $\mathcal{T}_{V} K W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(d) $\mathcal{T}_{V} J W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proof. Since $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$, from Theorem 3.12 we have (a) \Leftrightarrow (b) and (a) \Leftrightarrow (c).

Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we get

$$
g_{M}\left(\nabla_{V} W, J X\right)=-g_{M}\left(\nabla_{V} J W, X\right)=-g_{M}\left(\mathcal{T}_{V} J W, X\right)
$$

which implies (a) \Leftrightarrow (d). Therefore, we obtain the result.

Lemma 3.14 ([3]). Let F be a horizontally conformal submersion from a Riemannian manifold (M, g_{M}) onto a Riemannian manifold (N, g_{N}) with dilation λ.

Then the tension field $\tau(F)$ of F is given by

$$
\begin{equation*}
\tau(F)=-m F_{*} H+(2-n) F_{*}(\nabla(\ln \lambda)), \tag{3.13}
\end{equation*}
$$

where H is the mean curvature vector field of the distribution $\operatorname{ker} F_{*}, m=\operatorname{dim} \operatorname{ker} F_{*}$, $n=\operatorname{dim} N$.

Using Lemma 3.14, we easily get:

Corollary 3.15. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Assume that F is harmonic with $\operatorname{dim} \operatorname{ker} F_{*}>0$ and $\operatorname{dim} N>2$. Then the following conditions are equivalent:
(a) all the fibers of F are minimal,
(b) the map F is horizontally homothetic.

Corollary 3.16. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Assume that $\operatorname{dim} \operatorname{ker} F_{*}>0$ and $\operatorname{dim} N=2$. Then the following conditions are equivalent:
(a) all the fibers of F are minimal,
(b) the map F is harmonic.

Lemma 3.17. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that $(I, J, K$) is an h-conformal Lagrangian basis. Then we have

$$
\begin{equation*}
\tau(F)=(2-2 m) F_{*}(\nabla(\ln \lambda)) \tag{3.14}
\end{equation*}
$$

where $2 m=\operatorname{dim} \operatorname{ker} F_{*}$.

Proof. Since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, it means $J\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$. So, we can choose a local orthonormal frame $\left\{e_{1}, J e_{1}, \ldots, e_{m}, J e_{m}\right\}$ of $\operatorname{ker} F_{*}$.

Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
\mathcal{T}_{V} J W=\mathcal{H} \nabla_{V} J W=\mathcal{H} J \nabla_{V} W=\mathcal{H} J\left(\mathcal{T}_{V} W+\hat{\nabla}_{V} W\right)=J \mathcal{T}_{V} W,
$$

so

$$
\begin{aligned}
2 m H & =\sum_{i=1}^{m}\left(\mathcal{T}_{e_{i}} e_{i}+\mathcal{T}_{J e_{i}} J e_{i}\right)=\sum_{i=1}^{m}\left(\mathcal{T}_{e_{i}} e_{i}+J \mathcal{T}_{J e_{i}} e_{i}\right) \\
& =\sum_{i=1}^{m}\left(\mathcal{T}_{e_{i}} e_{i}+J \mathcal{T}_{e_{i}} J e_{i}\right)=\sum_{i=1}^{m}\left(\mathcal{T}_{e_{i}} e_{i}-\mathcal{T}_{e_{i}} e_{i}\right)=0
\end{aligned}
$$

By Lemma 3.14, we obtain the result.
From Lemma 3.17, we easily have:
Lemma 3.18. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Assume that $\operatorname{dim} \operatorname{ker} F_{*}>2$.

Then the map F is harmonic if and only if F is horizontally homothetic.
Definition 3.19. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then given $R \in\{I, J, K\}$, we call the map $F\left(R \operatorname{ker} F_{*}, \mu^{R}\right)$-totally geodesic if it satisfies $\left(\nabla F_{*}\right)(R V, X)=0$ for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\mu^{R}\right)$.

Theorem 3.20. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the map F is horizontally homothetic,
(b) the map F is $\left(I \operatorname{ker} F_{*}, \mu^{I}\right)$-totally geodesic,
(c) the map F is $\left(J \operatorname{ker} F_{*}, \mu^{J}\right)$-totally geodesic,
(d) the map F is $\left(K \operatorname{ker} F_{*}, \mu^{K}\right)$-totally geodesic.

Proof. Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\mu^{R}\right)$ and $R \in\{I, J, K\}$, by (2.10), we have

$$
\begin{aligned}
\left(\nabla F_{*}\right)(R V, X) & =R V(\ln \lambda) F_{*} X+X(\ln \lambda) F_{*} R V-g_{M}(R V, X) F_{*}(\nabla \ln \lambda) \\
& =R V(\ln \lambda) F_{*} X+X(\ln \lambda) F_{*} R V
\end{aligned}
$$

Since $g_{N}\left(F_{*} X, F_{*} R V\right)=\lambda^{2} g_{M}(X, R V)=0,\left\{F_{*} X, F_{*} R V\right\}$ is linearly independent for nonzero X, V.

Hence, we get $(\mathrm{a}) \Leftrightarrow(\mathrm{b}),(\mathrm{a}) \Leftrightarrow(\mathrm{c}),(\mathrm{a}) \Leftrightarrow(\mathrm{d})$. Therefore, the result follows.

From [18], we obtain:
Theorem 3.21. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the map F is a totally geodesic map,
(b) (i) $\mathcal{T}_{V} I W=0$ and $\mathcal{H} \nabla_{V} I W \in \Gamma\left(I \operatorname{ker} F_{*}\right)$,
(ii) F is horizontally homothetic,
(iii) $\widehat{\nabla}_{V} B_{I} X+\mathcal{T}_{V} C_{I} X=0, \mathcal{T}_{V} B_{I} X+\mathcal{H} \nabla_{V} C_{I} X \in \Gamma\left(I\right.$ ker $\left.F_{*}\right)$ for $V, W \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(c) (i) $\mathcal{T}_{V} J W=0$ and $\mathcal{H} \nabla_{V} J W \in \Gamma\left(J \operatorname{ker} F_{*}\right)$,
(ii) F is horizontally homothetic,
(iii) $\widehat{\nabla}_{V} B_{J} X+\mathcal{T}_{V} C_{J} X=0, \mathcal{T}_{V} B_{J} X+\mathcal{H} \nabla_{V} C_{J} X \in \Gamma\left(J \operatorname{ker} F_{*}\right)$ for $V, W \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(d) (i) $\mathcal{T}_{V} K W=0$ and $\mathcal{H} \nabla_{V} K W \in \Gamma\left(K \operatorname{ker} F_{*}\right)$,
(ii) F is horizontally homothetic,
(iii) $\widehat{\nabla}_{V} B_{K} X+\mathcal{T}_{V} C_{K} X=0, \mathcal{T}_{V} B_{K} X+\mathcal{H} \nabla_{V} C_{K} X \in \Gamma\left(K \operatorname{ker} F_{*}\right)$ for $V, W \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Remark 3.22. Using the proof of Theorem 3.21, we can show that F is horizontally homothetic if and only if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Lemma 3.23. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) the map F is a totally geodesic map,
(b) (i) $\mathcal{T}_{V} I W=0$,
(ii) F is horizontally homothetic,
(iii) $\mathcal{A}_{X} I V=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(c) (i) $\mathcal{T}_{V} K W=0$,
(ii) F is horizontally homothetic,
(iii) $\mathcal{A}_{X} K V=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$,
(d) (i) $\mathcal{T}_{V} J W=0$,
(ii) F is horizontally homothetic,
(iii) $\mathcal{A}_{X} J V=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. We know $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$ and we get

$$
\hat{\nabla}_{V} R X=\mathcal{V} R \nabla_{V} X=\mathcal{V} R \nabla_{X} V=\mathcal{V} \nabla_{X} R V=\mathcal{A}_{X} R V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

By Theorem 3.21, we have (a) $\Leftrightarrow(\mathrm{b})$ and (a) $\Leftrightarrow(\mathrm{c})$.
Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we get

$$
\left(\nabla F_{*}\right)(V, W)=F_{*}\left(J \nabla_{V} J W\right)=F_{*}\left(J\left(\mathcal{T}_{V} J W+\widehat{\nabla}_{V} J W\right)\right)=F_{*} J \mathcal{T}_{V} J W,
$$

so

$$
\left(\nabla F_{*}\right)(V, W)=0 \Leftrightarrow \mathcal{T}_{V} J W=0
$$

We claim that F is horizontally homothetic if and only if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

By (2.10), we have

$$
\begin{equation*}
\left(\nabla F_{*}\right)(X, Y)=X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*}(\nabla \ln \lambda) \tag{3.15}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, so the part from left to right is obtained.
Conversely, from (3.15) we obtain

$$
\begin{equation*}
0=X(\ln \lambda) F_{*} Y+Y(\ln \lambda) F_{*} X-g_{M}(X, Y) F_{*}(\nabla \ln \lambda) \tag{3.16}
\end{equation*}
$$

Applying $X=Y$ to (3.16), we have

$$
\begin{equation*}
0=2 X(\ln \lambda) F_{*} X-g_{M}(X, X) F_{*}(\nabla \ln \lambda) . \tag{3.17}
\end{equation*}
$$

Taking the inner product with $F_{*} X$ at (3.17), we get

$$
0=\lambda^{2} g_{M}(X, X) g_{M}(X, \nabla \ln \lambda)
$$

which implies our result.
Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
\left(\nabla F_{*}\right)(X, V)=F_{*}\left(J \nabla_{X} J V\right)=F_{*}\left(J\left(\mathcal{A}_{X} J V+\mathcal{V} \nabla_{X} J V\right)\right)=F_{*} J \mathcal{A}_{X} J V,
$$

so

$$
\left(\nabla F_{*}\right)(X, V)=0 \Leftrightarrow \mathcal{A}_{X} J V=0 .
$$

Hence, we have (a) \Leftrightarrow (d). Therefore, result follows.

4. Decomposition theorems

We will consider some decomposition theorems and we need to remind some notions.

Let (M, g) be a Riemannian manifold and L a foliation of M. Let ξ be the tangent bundle of L considered as a subbundle of the tangent bundle $T M$ of M.

We call L a totally umbilic foliation (see [25]) of M if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \quad \text { for } X, Y \in \Gamma(\xi), \tag{4.1}
\end{equation*}
$$

where h is the second fundamental form of L in M and H is the mean curvature vector field of L in M.

The foliation L is said to be a spheric foliation (see [25]) if it is a totally umbilic foliation and

$$
\begin{equation*}
\nabla_{X} H \in \Gamma(\xi) \quad \text { for } X \in \Gamma(\xi) \tag{4.2}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g.
We call L a totally geodesic foliation (see [25]) of M if

$$
\begin{equation*}
\nabla_{X} Y \in \Gamma(\xi) \quad \text { for } X, Y \in \Gamma(\xi) \tag{4.3}
\end{equation*}
$$

Let $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}) be Riemannian manifolds, $f_{i}: M_{1} \times M_{2} \mapsto \mathbb{R}$ a positive C^{∞}-function, and $\pi_{i}: M_{1} \times M_{2} \mapsto M_{i}$ the canonical projection for $i=1,2$.

We call $M_{1} \times_{\left(f_{1}, f_{2}\right)} M_{2}$ a double-twisted product manifold (see [25]) of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if it is the product manifold $M=M_{1} \times M_{2}$ with a Riemannian metric g such that

$$
\begin{equation*}
g(X, Y)=f_{1}^{2} \cdot g_{1}\left(\pi_{1 *} X, \pi_{1 *} Y\right)+f_{2}^{2} \cdot g_{2}\left(\pi_{2 *} X, \pi_{2 *} Y\right) \quad \text { for } X, Y \in \Gamma(T M) \tag{4.4}
\end{equation*}
$$

We call $M_{1} \times{ }_{\left(f_{1}, f_{2}\right)} M_{2}$ nontrivial if all the functions f_{1} and f_{2} are nonconstant.
A Riemannian manifold $M_{1} \times{ }_{f} M_{2}$ is said to be a twisted product manifold (see [25]) of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if $M_{1} \times{ }_{f} M_{2}=M_{1} \times(1, f) M_{2}$.

We call $M_{1} \times{ }_{f} M_{2}$ nontrivial if f is nonconstant.
A twisted product manifold $M_{1} \times_{f} M_{2}$ is said to be a warped product manifold (see [25]) of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if f depends only on the points of M_{1} (i.e. $f \in$ $\left.C^{\infty}\left(M_{1}, \mathbb{R}\right)\right)$.

Let M_{1} and M_{2} be connected C^{∞}-manifolds and M the product manifold $M_{1} \times M_{2}$. Let $\pi_{i}: M \mapsto M_{i}$ be the canonical projection for $i=1,2$. Let $\xi_{i}:=\operatorname{ker} \pi_{3-i_{*}}$ and $P_{i}: T M \mapsto \xi_{i}$ the vector bundle projection such that $T M=\xi_{1} \oplus \xi_{2}$. And let L_{i} be the canonical foliation of M by the integral manifolds of ξ_{i} for $i=1,2$.

Proposition 4.1 ([25]). Let g be a Riemannian metric on the product manifold $M_{1} \times M_{2}$ and assume that the canonical foliations L_{1} and L_{2} intersect perpendicularly everywhere. Then g is the metric of
(a) a double-twisted product manifold $M_{1} \times_{\left(f_{1}, f_{2}\right)} M_{2}$ if and only if L_{1} and L_{2} are totally umbilic foliations,
(b) a twisted product manifold $M_{1} \times M_{2}$ if and only if L_{1} is a totally geodesic foliation and L_{2} is a totally umbilic foliation,
(c) a warped product manifold $M_{1} \times_{f} M_{2}$ if and only if L_{1} is a totally geodesic foliation and L_{2} is a spheric foliation,
(d) a (usual) Riemannian product manifold $M_{1} \times M_{2}$ if and only if L_{1} and L_{2} are totally geodesic foliations.

Let F be a horizontally conformal submersion from a Riemannian manifold $\left(M, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that the distributions ker F_{*} and $\left(\operatorname{ker} F_{*}\right)^{\perp}$ are integrable. Then we denote by $M_{\mathrm{ker} F_{*}}$ and $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}}$ the integral manifolds of $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$, respectively. We also denote by H and H^{\perp} the mean curvature vector fields of $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$, respectively, i.e. $H=m^{-1} \sum_{i=1}^{m} \mathcal{T}_{e_{i}} e_{i}$ and $H^{\perp}=n^{-1} \sum_{i=1}^{n} \mathcal{A}_{v_{i}} v_{i}$ for a local orthonormal frame $\left\{e_{1}, \ldots, e_{m}\right\}$ of $\operatorname{ker} F_{*}$ and a local orthonormal frame $\left\{v_{1}, \ldots, v_{n}\right\}$ of $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Using Proposition 4.1, Theorems 3.9 and 3.12 we have:
Theorem 4.2. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right) \perp} \times$ $M_{\text {ker } F_{*}}$,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right) \\
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{I W}^{F} F_{*} I V, F_{*} I C_{I} X\right)= & g_{M}\left(\mathcal{T}_{V} I W, B_{I} X\right) \\
& +g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), I C_{I} X\right),
\end{aligned}
$$

(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right) \\
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{J W}^{F} F_{*} J V, F_{*} J C_{J} X\right)= & g_{M}\left(\mathcal{T}_{V} J W, B_{J} X\right) \\
& +g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), J C_{J} X\right),
\end{aligned}
$$

(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right) \\
-\frac{1}{\lambda^{2}} g_{N}\left(\nabla_{K W}^{F} F_{*} K V, F_{*} K C_{K} X\right)= & g_{M}\left(\mathcal{T}_{V} K W, B_{K} X\right) \\
& +g_{M}(W, V) g_{M}\left(\nabla(\ln \lambda), K C_{K} X\right) .
\end{aligned}
$$

Using Proposition 4.1, Lemmas 3.11 and 3.13 we get:

Lemma 4.3. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a Riemannian product manifold of the form $M_{\left(\text {ker } F_{*}\right)^{\perp}} \times$ $M_{\text {ker } F_{*}}$,
(b) $\mathcal{A}_{X} I Y=0$ and $\mathcal{T}_{V} I W=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(c) $\mathcal{A}_{X} K Y=0$ and $\mathcal{T}_{V} K W=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(d) $\mathcal{A}_{X} J Y=0$ and $\mathcal{T}_{V} J W=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Remark 4.4. The necessary and sufficient conditions for the manifold (M, g_{M}) to be locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times M_{\text {ker } F_{*}}$ in an h-anti-invariant submersion are quite different from the necessary and sufficient conditions for the manifold $\left(M, g_{M}\right)$ to be locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right) \perp} \times M_{\text {ker } F_{*}}$ in an h-conformal anti-invariant submersion.

On the other hand, the conditions for the manifold $\left(M, g_{M}\right)$ to be locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)} \perp M_{\text {ker } F_{*}}$ in an h-Lagrangian submersion are the same as the necessary and sufficient conditions for the manifold (M, g_{M}) to be locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times M_{\text {ker } F_{*}}$ in an h-conformal Lagrangian submersion, [23].

We deal with the geometry of distributions $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Theorem 4.5. Let F be a horizontally conformal submersion from a Riemannian manifold (M, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ with dilation λ. Assume that the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally umbilic foliation on M. Then we have

$$
H^{\perp}=-\frac{\lambda^{2}}{2} \nabla_{\mathcal{V}}\left(\frac{1}{\lambda^{2}}\right)
$$

where $\nabla_{\mathcal{V}}$ denotes the gradient vector in the distribution $\operatorname{ker} F_{*}$.

Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ we obtain

$$
\begin{equation*}
g_{M}\left(\nabla_{X} Y, V\right)=g_{M}\left(\mathcal{A}_{X} Y, V\right)=g_{M}(X, Y) g_{M}\left(H^{\perp}, V\right) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}\left(\nabla_{X} Y, V\right)=-g_{M}\left(Y, \nabla_{X} V\right)=-g_{M}\left(Y, \mathcal{A}_{X} V\right) \tag{4.6}
\end{equation*}
$$

Comparing (4.5) and (4.6), we have $\mathcal{A}_{X} V=-g_{M}\left(H^{\perp}, V\right) X$, so

$$
\begin{equation*}
g_{M}\left(\mathcal{A}_{X} V, X\right)=-g_{M}\left(H^{\perp}, V\right) g_{M}(X, X) \tag{4.7}
\end{equation*}
$$

On the other hand, by using (2.9), we get

$$
\begin{align*}
g_{M}\left(\mathcal{A}_{X} V, X\right) & =g_{M}\left(\nabla_{X} V, X\right)=-g_{M}\left(V, \nabla_{X} X\right) \tag{4.8}\\
& =-g_{M}\left(V, \mathcal{A}_{X} X\right)=g_{M}\left(V, \frac{\lambda^{2}}{2} g_{M}(X, X) \nabla_{\mathcal{V}}\left(\frac{1}{\lambda^{2}}\right)\right) \\
& =\frac{\lambda^{2}}{2} g_{M}(X, X) g_{M}\left(V, \nabla_{\mathcal{V}}\left(\frac{1}{\lambda^{2}}\right)\right.
\end{align*}
$$

Comparing (4.7) and (4.8), we obtain the result.
Remark 4.6. In Theorem 4.5, if F is a Riemannian submersion, then we get $H^{\perp}=0$, so the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ also defines a totally geodesic foliation on M, see [23].

Theorem 4.7. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\operatorname{ker} F_{*}$ defines a totally umbilic foliation on M,
(b) for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$

$$
\mathcal{T}_{V} B_{I} X+\mathcal{H} \nabla_{V} C_{I} X=-g_{M}(H, X) I V,
$$

(c) for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$

$$
\mathcal{T}_{V} B_{J} X+\mathcal{H} \nabla_{V} C_{J} X=-g_{M}(H, X) J V
$$

(d) for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$

$$
\mathcal{T}_{V} B_{K} X+\mathcal{H} \nabla_{V} C_{K} X=-g_{M}(H, X) K V
$$

Proof. Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we have

$$
\begin{aligned}
g_{M}\left(\mathcal{T}_{V} W, X\right) & =g_{M}\left(\nabla_{V} R W, R X\right)=-g_{M}\left(R W, \nabla_{V} B_{R} X+\nabla_{V} C_{R} X\right) \\
& =-g_{M}\left(R W, \mathcal{T}_{V} B_{R} X+\mathcal{H} \nabla_{V} C_{R} X\right)
\end{aligned}
$$

so we easily obtain

$$
\mathcal{T}_{V} W=g_{M}(V, W) H \Leftrightarrow \mathcal{T}_{V} B_{R} X+\mathcal{H} \nabla_{V} C_{R} X=-g_{M}(H, X) R V
$$

Hence, we get $(\mathrm{a}) \Leftrightarrow(\mathrm{b}),(\mathrm{a}) \Leftrightarrow(\mathrm{c}),(\mathrm{a}) \Leftrightarrow(\mathrm{d})$. Therefore, the result follows.
Lemma 4.8. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) the distribution $\operatorname{ker} F_{*}$ defines a totally umbilic foliation on M,
(b) $\mathcal{T}_{V} I X=-g_{M}(H, X) I V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(c) $\mathcal{T}_{V} K X=-g_{M}(H, X) K V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$,
(d) $\mathcal{T}_{V} J X=-g_{M}(H, X) J V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proof. Since $B_{R}=R$ and $C_{R}=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, K\}$, from Theorem 4.7 we have (a) \Leftrightarrow (b) and (a) $\Leftrightarrow(\mathrm{c})$.

Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we obtain

$$
g_{M}\left(\mathcal{T}_{V} W, X\right)=g_{M}\left(\nabla_{V} J W, J X\right)=-g_{M}\left(J W, \nabla_{V} J X\right)=-g_{M}\left(J W, \mathcal{T}_{V} J X\right),
$$

so we get

$$
\mathcal{T}_{V} W=g_{M}(V, W) H \Leftrightarrow \mathcal{T}_{V} J X=-g_{M}(H, X) J V,
$$

which implies (a) \Leftrightarrow (d). Therefore, we have the result.
Using Proposition 4.1, Theorems 3.9 and 4.7 we obtain:
Theorem 4.9. Let F be an h-conformal anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal anti-invariant basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a twisted product manifold of the form $M_{\left(\text {ker } F_{*}\right)^{\perp}} \times_{f} M_{\text {ker } F_{*}}$,
(b) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} I V, F_{*} C_{I} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{I} Y-C_{I} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{I} Y\right) \nabla(\ln \lambda), I V\right) \\
\mathcal{T}_{V} B_{I} X+\mathcal{H} \nabla_{V} C_{I} X= & -g_{M}(H, X) I V
\end{aligned}
$$

(c) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} J V, F_{*} C_{J} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{J} Y-C_{J} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{J} Y\right) \nabla(\ln \lambda), J V\right) \\
\mathcal{T}_{V} B_{J} X+\mathcal{H} \nabla_{V} C_{J} X= & -g_{M}(H, X) J V
\end{aligned}
$$

(d) for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$

$$
\begin{aligned}
g_{N}\left(\nabla_{X}^{F} F_{*} K V, F_{*} C_{K} Y\right)= & \lambda^{2} g_{M}\left(\mathcal{A}_{X} B_{K} Y-C_{K} Y(\ln \lambda) X\right. \\
& \left.+g_{M}\left(X, C_{K} Y\right) \nabla(\ln \lambda), K V\right), \\
\mathcal{T}_{V} B_{K} X+\mathcal{H} \nabla_{V} C_{K} X= & -g_{M}(H, X) K V .
\end{aligned}
$$

Using Proposition 4.1, Lemmas 3.11 and 4.8, we get:
Lemma 4.10. Let F be an h-conformal Lagrangian submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-conformal Lagrangian basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a twisted product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times_{f} M_{\text {ker } F_{*}}$,
(b) $\mathcal{A}_{X} I Y=0$ and $\mathcal{T}_{V} I X=-g_{M}(H, X) I V$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$,
(c) $\mathcal{A}_{X} K Y=0$ and $\mathcal{T}_{V} K X=-g_{M}(H, X) K V$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$,
(d) $\mathcal{A}_{X} J Y=0$ and $\mathcal{T}_{V} J X=-g_{M}(H, X) J V$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in$ $\Gamma\left(\operatorname{ker} F_{*}\right)$.

5. Examples

Note that given an Euclidean space $\mathbb{R}^{4 m}$ with coordinates $\left(x_{1}, x_{2}, \ldots, x_{4 m}\right)$, we can canonically choose complex structures I, J, K on $\mathbb{R}^{4 m}$ as follows:

$$
\begin{array}{rlrl}
I\left(\frac{\partial}{\partial x_{4 k+1}}\right) & =\frac{\partial}{\partial x_{4 k+2}}, & I\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+1}} \\
I\left(\frac{\partial}{\partial x_{4 k+3}}\right)=\frac{\partial}{\partial x_{4 k+4}}, & I\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+3}} \\
J\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+3}}, & J\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+4}} \\
J\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, & J\left(\frac{\partial}{\partial x_{4 k+4}}\right)=\frac{\partial}{\partial x_{4 k+2}}
\end{array}
$$

$$
\begin{array}{ll}
K\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+4}}, & K\left(\frac{\partial}{\partial x_{4 k+2}}\right)=\frac{\partial}{\partial x_{4 k+3}}, \\
K\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+2}}, & K\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+1}}
\end{array}
$$

for $k \in\{0,1, \ldots, m-1\}$.
Then we easily check that $(I, J, K,\langle\rangle$,$) is a hyperkähler structure on \mathbb{R}^{4 m}$, where \langle,$\rangle denotes the Euclidean metric on \mathbb{R}^{4 m}$. Throughout this section, we will use these notations.

Example 5.1. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an h-antiinvariant submersion, see [23]. Then the map F is an h-conformal anti-invariant submersion with dilation $\lambda=1$.

Example 5.2. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be an h-Lagrangian submersion, see [23]. Then the map F is an h-conformal Lagrangian submersion with dilation $\lambda=1$.

Example 5.3. Let $\left(M, E, g_{M}\right)$ be a $4 n$-dimensional almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a $(4 n-1)$-dimensional Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a horizontally conformal submersion with dilation λ. Then the map F is an h-conformal anti-invariant submersion with dilation λ.

Example 5.4. Let $F: \mathbb{R}^{4} \mapsto \mathbb{R}^{3}$ be a horizontally conformal submersion with dilation λ. Then the map F is an h-conformal anti-invariant submersion with dilation λ.

Example 5.5. Define a map $F: \mathbb{R}^{4} \mapsto \mathbb{R}^{2}$ by

$$
F\left(x_{1}, \ldots, x_{4}\right)=e^{34}\left(x_{2}, x_{1}\right) .
$$

Then the map F is an h-conformal Lagrangian submersion such that $I\left(\operatorname{ker} F_{*}\right)=$ $\operatorname{ker} F_{*}, J\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}, K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$, and dilation $\lambda=e^{34}$.

Here, (K, I, J) is an h-conformal Lagrangian basis.
Example 5.6. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{6}$ by

$$
F\left(x_{1}, \ldots, x_{8}\right)=\pi^{68}\left(x_{2}, \ldots, x_{7}\right)
$$

Then the map F is an h-conformal anti-invariant submersion with dilation $\lambda=\pi^{68}$.

Example 5.7. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{9}$ by

$$
F\left(x_{1}, \ldots, x_{12}\right)=\pi\left(x_{5}, x_{7}, x_{4}, x_{8}, x_{10}, x_{11}, x_{1}, x_{2}, x_{12}\right) .
$$

Then the map F is an h-conformal anti-invariant submersion with dilation $\lambda=\pi$.

References

[1] M.A.Akyol, B. Şahin: Conformal anti-invariant submersions from almost Hermitian manifolds. Turk. J. Math. 40 (2016), 43-70.
zbl MR doi
[2] D. V. Alekseevsky, S. Marchiafava: Almost complex submanifolds of quaternionic manifolds. Steps in Differential Geometry. Institute of Mathematics and Informatics, University of Debrecen, Debrecen, 2001, pp. 23-38.

Zbl MR
[3] P. Baird, J. C. Wood: Harmonic Morphisms between Riemannian Manifolds. London Mathematical Society Monographs. New Series 29. Oxford University Press, Oxford, 2003.
[4] A. L. Besse: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 10. Springer, Berlin, 1987.
zbl MR doi
[5] J.-P. Bourguignon: A mathematician's visit to Kaluza-Klein theory. Rend. Semin. Mat., Torino Special Issue (1989), 143-163.

Zbl MR doi

6] J.-P. Bourguignon, H. B. Lawson, Jr.: Stability and isolation phenomena for Yang-Mills fields. Commum. Math. Phys. 79 (1981), 189-230.
[7] B.-Y. Chen: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Leuven, 1990.
zbl MR
[8] V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig: Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 2004 (2004), Article ID 028, 73 pages.
[9] M. Falcitelli, S.Ianus, A.M.Pastore: Riemannian Submersions and Related Topics. World Scientific, River Edge, 2004.
[10] B. Fuglede: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28 (1978), 107-144.
[11] A. Gray: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737.
[12] S. Gudmundsson: The Geometry of Harmonic Morphisms. Ph.D. Thesis. University of Leeds, Leeds, 1992. Available at http://www.matematik.lu.se/matematiklu/personal/sigma/Doctoral-thesis.pdf.
[13] S. Gudmundsson, J. C. Wood: Harmonic morphisms between almost Hermitian manifolds. Boll. Unione Mat. Ital., VII. Ser., B 11 (1997), 185-197.

Zbl MR
[14] S. Ianuş, R. Mazzocco, G.E. Vîlcu: Riemannian submersions from quaternionic manifolds. Acta. Appl. Math. 104 (2008), 83-89.
[15] S. Ianuş, M. Vişinescu: Kaluza-Klein theory with scalar fields and generalized Hopf manifolds. Classical Quantum Gravity 4 (1987), 1317-1325.
[16] S. Ianuş, M. Vişinescu: Space-time compactification and Riemannian submersions. The Mathematical Heritage of C. F. Gauss. World Scientific, River Edge, 1991, pp. 358-371.
[17] T. Ishihara: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), 215-229.
[18] D. H. Jin, J. W. Lee: Conformal anti-invariant submersions from hyper-Kähler manifolds. JP J. Geom. Topol. 19 (2016), 161-183.
[19] M. T. Mustafa: Applications of harmonic morphisms to gravity. J. Math. Phys. 41 (2000), 6918-6929.
zbl MR doi
[20] B. O'Neill: The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459-469.
[21] K.-S. Park: H-semi-invariant submersions. Taiwanese J. Math. 16 (2012), 1865-1878.
[22] K.-S. Park: Almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds. To appear in Hacet. J. Math. Stat.
zbl MR doi

23] K.-S. Park: H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czech. Math. J. 67 (2017), 557-578.
zbl MR doi
[24] K.-S. Park, R. Prasad: Semi-slant submersions. Bull. Korean Math. Soc. 50 (2013), 951-962.
zbl MR doi
[25] R. Ponge, H. Reckziegel: Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48 (1993), 15-25.
zbl MR doi
[26] B. Şahin: Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8 (2010), 437-447.
zbl MR doi
[27] B. Şahin: Slant submersions from almost Hermitian manifolds. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 93-105.
zbl MR
[28] B. Şahin: Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2013), 629-659.
zbl MR doi
[29] B. Şahin: Semi-invariant submersions from almost Hermitian manifolds. Can. Math. Bull. 56 (2013), 173-183.
[30] H. Urakawa: Calculus of Variations and Harmonic Maps. Translations of Mathematical Monographs 132. American Mathematical Society, Providence, 1993.
zbl MR doi
[31] B. Watson: Almost Hermitian submersions. J. Differ. Geom. 11 (1976), 147-165.
zbl MR doi
[32] B. Watson: G, G^{\prime}-Riemannian submersions and nonlinear gauge field equations of general relativity. Global Analysis - Analysis on Manifolds. Teubner Texts in Mathematics 57. Teubner, Leipzig, 1983, pp. 324-349.
zbl MR

Author's address: Kwang Soon Park, Division of General Mathematics, Room 4-107, Changgong Hall, University of Seoul, Seoul 02504, Republic of Korea, e-mail: parkksn @gmail. com.

