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Abstract. We introduce the notions of h-conformal anti-invariant submersions and h-
conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto
Riemannian manifolds as a generalization of Riemannian submersions, horizontally confor-
mal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian
submersion, conformal anti-invariant submersions. We investigate their properties: the in-
tegrability of distributions, the geometry of foliations, the conditions for such maps to be
totally geodesic, etc. Finally, we give some examples of such maps.
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1. Introduction

To study geometric structures and geometric properties on Riemannian mani-

folds with some additional structures, we usually use C∞-maps. There are two

ways: We take these ones as either base manifolds or target manifolds. As we

know, isometric immersions are examples for studying target manifolds and Rie-

mannian submersions are examples for investigating base manifolds. As a gener-

alization of isometric immersions and Riemannian submersions, Riemannian maps

were used to study both cases. The author introduced several types of new notions

on this topic and by using them, the author obtained many interesting results on

them. We recall some historical events on this topic, which are related with this

paper.

In 1960s, Riemannian submersions between Riemannian manifolds were indepen-

dently introduced by O’Neill in [20] and Gray in [11].

In 1976, Watson in [31] introduced the notion of almost Hermitian submer-

sions between almost Hermitian manifolds. Given an almost Hermitian submer-
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sion F : (M, gM , JM ) 7→ (N, gN , JN ), we know that JM (kerF∗) = kerF∗ and

JM ((kerF∗)
⊥) = (kerF∗)

⊥, where (kerF∗)
⊥ denotes the orthogonal complement of

kerF∗ in TM . Using this notion, he obtained some differential geometric properties

among fibers, base manifolds, and total manifolds.

In 2010, by changing the invariance of kerF∗ under almost complex structure JM ,

Şahin in [26] defined an anti-invariant Riemannian submersion F from an almost

Hermitian manifold (M, gM , JM ) onto a Riemannian manifold (N, gN ). It satisfies

JM (kerF∗) ⊂ (kerF∗)
⊥. Using this notion, he also obtained lots of properties: the

integrability of distributions, the geometry of foliations, the condition for such a map

to be totally geodesic, some decomposition theorems, etc.

In 2017, as a generalization of an anti-invariant Riemannian submersion from an

almost Hermitian manifold, the author in [23] introduced the notions of an h-anti-

invariant submersion and an h-Lagrangian submersion from an almost quaternionic

Hermitian manifold.

In 1970s, as a generalization of Riemannian submersions, a horizontally conformal

submersion was introduced independently by Fuglede in [10] and Ishihara in [17].

In 1997, Gudmundsson and Wood in [13] studied conformal holomorphic submer-

sions between almost Hermitian manifolds. They found the condition for a conformal

holomorphic submersion to be a harmonic morphism.

In 2016, Akyol and Şahin in [1] defined a conformal anti-invariant submersion from

an almost Hermitian manifold onto a Riemannian manifold. And they obtained some

interesting propertis on it.

In 2016, Jin and Lee in [18] investigated a conformal anti-invariant submersion

from a hyperkähler manifold.

Given a C∞-submersion F from a Riemannian manifold (M, gM ) onto a Rie-

mannian manifold (N, gN ), with some additional structures, we get several types of

submersions, see [1], [3], [7], [9], [11], [12], [14], [20], [21], [22], [23], [24], [26], [27],

[28], [29], [31].

Riemannian submersions are related with physics and have their applications in

the Yang-Mills theory (see [6], [32]), Kaluza-Klein theory (see [5], [15]), supergravity

and superstring theories (see [16], [19]). We know that the quaternionic Kähler

manifolds have applications in physics as the target spaces for nonlinear σ-models

with supersymmetry, see [8].

The paper is organized as follows. In Section 2 we recall some notions, which are

needed in the following sections. In Section 3 we introduce the notions of h-conformal

anti-invariant submersions and h-conformal Lagrangian submersions and obtain some

properties on them: the characterization of such maps, the harmonicity of such maps,

the conditions for such maps to be totally geodesic, the integrability of distributions,

the geometry of foliations, etc. In Section 4 we obtain some decomposition theorems.
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In Section 5 we give some examples of h-conformal anti-invariant submersions and

h-conformal Lagrangian submersions.

2. Preliminaries

In this section we recall some notions, which will be used in the following sections.

Let (M, gM ) and (N, gN) be Riemannian manifolds, where gM and gN are Rie-

mannian metrics on C∞-manifolds M and N , respectively.

Let F : (M, gM ) 7→ (N, gN ) be a C∞-map.

We call the map F a C∞-submersion if F is surjective and the differential (F∗)p
has maximal rank for any p ∈ M .

Then the map F is said to be a Riemannian submersion (see [9], [20]) if F is

a C∞-submersion and

(F∗)p : ((ker(F∗)p)
⊥, (gM )p) 7→ (TF (p)N, (gN )F (p))

is a linear isometry for any p ∈ M , where (ker(F∗)p)
⊥ is the orthogonal complement

of the space ker(F∗)p in the tangent space TpM to M at p.

The map F is called horizontally weakly conformal at p ∈ M if it satisfies either

(i) (F∗)p = 0 or (ii) (F∗)p is surjective and there exists a number λ(p) > 0 such that

(2.1) gN ((F∗)pX, (F∗)pY ) = λ2gM (X,Y ) for X,Y ∈ (ker(F∗)p)
⊥.

We call the point p a critical point if it satisfies the type (i) and call the point p

a regular point if it satisfies the condition (ii). And the positive number λ(p) is said

to be dilation of F at p. The map F is called horizontally weakly conformal if it

is horizontally weakly conformal at any point of M . If the map F is horizontally

weakly conformal and it has no critical points, then we call the map F a horizontally

conformal submersion.

Let F : (M, gM ) 7→ (N, gN ) be a horizontally conformal submersion.

Given any vector field U ∈ Γ(TM), we have

(2.2) U = VU +HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)
⊥).

Define the (O’Neill) tensors T and A by

AEF = H∇HEVF + V∇HEHF,(2.3)

TEF = H∇VEVF + V∇VEHF(2.4)
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for E,F ∈ Γ(TM), where ∇ is the Levi-Civita connection of gM , see [9], [20]. Then

it is well-known that

gM (TUV,W ) = − gM (V, TUW ),(2.5)

gM (AUV,W ) = − gM (V,AUW )(2.6)

for U, V,W ∈ Γ(TM).

Define ∇̂XY := V∇XY for X,Y ∈ Γ(kerF∗).

Let F : (M, gM ) 7→ (N, gN ) be a C∞-map.

Then the second fundamental form of F is given by

(∇F∗)(X,Y ) := ∇F
XF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),

where ∇F is the pullback connection and we denote conveniently by ∇ the Levi-

Civita connections of the metrics gM and gN , see [3].

Remind that F is said to be harmonic if the tension field τ(F ) = trace(∇F∗) = 0

and F is called a totally geodesic map if (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM), see [3].

Lemma 2.1 ([30]). Let (M, gM ) and (N, gN ) be Riemannian manifolds and F :

(M, gM ) 7→ (N, gN ) a C∞-map. Then we have

(2.7) ∇F
XF∗Y −∇F

Y F∗X − F∗([X,Y ]) = 0

for X,Y ∈ Γ(TM).

Remark 2.2.

(1) By (2.7), we see that the second fundamental form ∇F∗ is symmetric.

(2) By (2.7), we obtain

(2.8) [V,X ] ∈ Γ(kerF∗)

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Proposition 2.3 ([12]). Let F : (M, gM ) 7→ (N, gN ) be a horizontally conformal

submersion with dilation λ. Then we obtain

(2.9) AXY =
1

2

{
V [X,Y ]− λ2gM (X,Y )∇V

( 1

λ2

)}

for X,Y ∈ Γ((kerF∗)
⊥).
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Here, ∇V denotes the gradient vector field in the distribution kerF∗ ⊂ TM

(i.e. ∇Vf =
m∑
i=1

Vi(f)Vi for f ∈ C∞(M) and a local orthonormal frame {V1, . . . , Vm}

of kerF∗).

Lemma 2.4 ([3]). Let F : (M, gM ) 7→ (N, gN ) be a horizontally conformal sub-

mersion with dilation λ. Then we have

(2.10) (∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − gM (X,Y )F∗(∇ lnλ)

for X,Y ∈ Γ((kerF∗)
⊥).

We remind some notions. Let (M, gM , J) be an almost Hermitian manifold, where

J is an almost complex structure on M (i.e. J2 = −id, gM (JX, JY ) = gM (X,Y )

for X,Y ∈ Γ(TM)).

We call a horizontally conformal submersion F : (M, gM , J) 7→ (N, gN ) a confor-

mal anti-invariant submersion (see [1]) if J(kerF∗) ⊂ (kerF∗)
⊥.

Let M be a 4m-dimensional C∞-manifold and let E be a rank 3 subbundle of

End(TM) such that for any point p ∈ M with a neighborhood U , there exists a local

basis {J1, J2, J3} of sections of E on U satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

where the indices are taken from {1, 2, 3} modulo 3.

Then we call E an almost quaternionic structure on M and (M,E) an almost

quaternionic manifold, see [2].

Moreover, let g be a Riemannian metric on M such that for any point p ∈ M

with a neighborhood U , there exists a local basis {J1, J2, J3} of sections of E on U

satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,(2.11)

g(JαX, JαY ) = g(X,Y )(2.12)

for all vector fieldsX,Y ∈Γ(TM), where the indices are taken from {1, 2, 3}modulo 3.

Then we call (M,E, g) an almost quaternionic Hermitian manifold, see [14].

Conveniently, the above basis {J1, J2, J3} satisfying (2.11) and (2.12) is said to be

a quaternionic Hermitian basis.

Let (M,E, g) be an almost quaternionic Hermitian manifold.

We call (M,E, g) a quaternionic Kähler manifold if there exist locally defined

1-forms ω1, ω2, ω3 such that for α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for X ∈ Γ(TM), where the indices are taken from {1, 2, 3} modulo 3, see [14].
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If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of sections

of E on M (i.e. ∇Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-Civita connection of

the metric g), then (M,E, g) is said to be a hyperkähler manifold. Furthermore, we

call (J1, J2, J3, g) a hyperkähler structure on M and g a hyperkähler metric, see [4].

Let (M,EM , gM ) and (N,EN , gN) be almost quaternionic Hermitian manifolds.

A map F : M 7→ N is called a (EM , EN )-holomorphic map if given a point x ∈ M

for any J ∈ (EM )x there exists J
′ ∈ (EN )F (x) such that

F∗ ◦ J = J ′ ◦ F∗.

A Riemannian submersion F : M 7→ N which is a (EM , EN )-holomorphic map is

called a quaternionic submersion, see [14].

Moreover, if (M,EM , gM ) is a quaternionic Kähler manifold (or a hyperkähler

manifold), then we say that F is a quaternionic Kähler submersion (or a hyperkähler

submersion), see [14]. It is well known that any quaternionic Kähler submersion is

a harmonic map, see [14].

Let (M,E, gM ) be an almost quaternionic Hermitian manifold and (N, gN ) a Rie-

mannian manifold.

A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called an h-anti-invariant

submersion if given a point p ∈ M with a neighborhood U , there exists a quaternionic

Hermitian basis {I, J,K} of sections of E on U such that R(kerF∗) ⊂ (kerF∗)
⊥ for

R ∈ {I, J,K}, see [23].

We call such a basis {I, J,K} an h-anti-invariant basis.

A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called an h-Lagrangian

submersion if given a point p ∈ M with a neighborhood U , there exists a quaternionic

Hermitian basis {I, J,K} of sections of E on U such that I(kerF∗) = (kerF∗)
⊥,

J(kerF∗) = kerF∗, and K(kerF∗) = (kerF∗)
⊥, see [23].

We call such a basis {I, J,K} an h-Lagrangian basis.

Throughout this paper, we will use the above notations.

3. Almost h-conformal anti-invariant submersions

In this section, we introduce the notions of h-conformal anti-invariant submersions

and h-conformal Lagrangian submersions from almost quaternionic Hermitian man-

ifolds onto Riemannian manifolds. We investigate their properties: the integrability

of distributions, the geometry of foliations, the conditions for such maps to be totally

geodesic, etc.

Definition 3.1. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) 7→ (N, gN ) be a horizontally
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conformal submersion. We call the map F an h-conformal anti-invariant submer-

sion if given a point p ∈ M with a neighborhood U , there exists a quaternionic

Hermitian basis {I, J,K} of sections of E on U such that R(kerF∗) ⊂ (kerF∗)
⊥ for

R ∈ {I, J,K}.

We call such a basis {I, J,K} an h-conformal anti-invariant basis.

Remark 3.2. Let F be an h-conformal anti-invariant submersion from an almost

quaternionic Hermitian manifold (M,E, gM ) onto a Riemannian manifold (N, gN ).

Then it is impossible to satisfy the condition dim(kerF∗) = dim((kerF∗)
⊥).

If not, then we choose a local quaternionic Hermitian basis {I, J,K} of E with

R(kerF∗) ⊂ (kerF∗)
⊥ for R ∈ {I, J,K}. This means

R(kerF∗) = (kerF∗)
⊥ for R ∈ {I, J,K},

so

K(kerF∗) = IJ(kerF∗) = I((kerF∗)
⊥) = (kerF∗),

contradiction!

Due to Remark 3.2, we have:

Definition 3.3. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) 7→ (N, gN ) be a horizontally

conformal submersion. We call the map F an h-conformal Lagrangian submersion if

given a point p ∈ M with a neighborhood U , there exists a quaternionic Hermitian

basis {I, J,K} of sections of E on U such that I(kerF∗) = (kerF∗)
⊥, J(kerF∗) =

kerF∗, and K(kerF∗) = (kerF∗)
⊥.

We call such a basis {I, J,K} an h-conformal Lagrangian basis.

Remark 3.4.

(1) We easily check that J(kerF∗) = kerF∗ implies J((kerF∗)
⊥) = (kerF∗)

⊥.

(2) In a similar way to Remark 3.2, there does not exist a horizontally conformal

submersion F from an almost quaternionic Hermitian manifold (M,E, gM ) onto

a Riemannian manifold (N, gN ) such that

I(kerF∗) = kerF∗, J(kerF∗) = kerF∗, K(kerF∗) = (kerF∗)
⊥

for a local quaternionic Hermitian basis {I, J,K} of E, i.e. K(kerF∗) =

IJ(kerF∗) = kerF∗, contradiction!
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Let F be an h-conformal anti-invariant submersion (or an h-conformal Lagrangian

submersion) from an almost quaternionic Hermitian manifold (M,E, gM ) onto a Rie-

mannian manifold (N, gN). Given a point p ∈ M with a neighborhood U , we have

an h-conformal anti-invariant basis (or an h-conformal Lagrangian basis) {I, J,K}

of sections of E on U .

Then given X ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}, we write

(3.1) RX = BRX + CRX,

where BRX ∈ Γ(kerF∗) and CRX ∈ Γ((kerF∗)
⊥).

If F : (M,E, gM ) 7→ (N, gN ) is an h-conformal anti-invariant submersion, then we

have the orthogonal decomposition

(kerF∗)
⊥ = R(kerF∗)⊕ µR

for R ∈ {I, J,K}. Then it is easy to check that µR is R-invariant for R ∈ {I, J,K}.

Given X ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}, we obtain

(3.2) X = PRX +QRX,

where PRX ∈ Γ(R(kerF∗)) and QRX ∈ Γ(µR).

Furthermore, given R ∈ {I, J,K}, we get

(3.3) CRX ∈ Γ(µR) for X ∈ Γ((kerF∗)
⊥)

and

(3.4) gM (CRX,RV ) = 0

for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

Then we easily obtain:

Lemma 3.5. Let F be an h-conformal anti-invariant submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal anti-invariant basis. Then we have:

(1) for V,W ∈ Γ(kerF∗) and R ∈ {I, J,K}

TV RW = BRTV W, H∇V RW = CRTV W +R∇̂V W,

(2) for X,Y ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}

AXCRY + V∇XBRY = BRH∇XY, H∇XCRY +AXBRY = RAXY +CRH∇XY,

(3) for V ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}

AXRV = BRAXV, H∇XRV = CRAXV +RV∇XV.
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Now, we will study the integrability of distributions and the geometry of foliations.

From [18], we obtain:

Theorem 3.6. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the distribution (kerF∗)
⊥ is integrable,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

1

λ2
gN (∇F

Y F∗CIX −∇F
XF∗CIY, F∗IV )

= gM (AY BIX −AXBIY − CIY (lnλ)X + CIX(lnλ)Y

+ 2gM (X,CIY )∇(ln λ), IV ),

(c) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

1

λ2
gN (∇F

Y F∗CJX −∇F
XF∗CJY, F∗JV )

= gM (AY BJX −AXBJY − CJY (lnλ)X + CJX(lnλ)Y

+ 2gM (X,CJY )∇(ln λ), JV ),

(d) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

1

λ2
gN (∇F

Y F∗CKX −∇F
XF∗CKY, F∗KV )

= gM (AY BKX −AXBKY − CKY (ln λ)X + CKX(lnλ)Y

+ 2gM (X,CKY )∇(ln λ),KV ).

We deal with the condition for an h-conformal anti-invariant submersion to be

horizontally homothetic.

Theorem 3.7. Let F be an h-conformal anti-invariant submersion from a hyper-

kähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Assume that the distribution

(kerF∗)
⊥ is integrable. Then the following conditions are equivalent:

(a) the map F is horizontally homothetic,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

λ2gM (AXBIY −AY BIX, IV ) = gN (∇F
Y F∗CIX −∇F

XF∗CIY, F∗IV ),
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(c) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

λ2gM (AXBJY −AY BJX, JV ) = gN (∇F
Y F∗CJX −∇F

XF∗CJY, F∗JV ),

(d) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

λ2gM (AXBKY −AY BKX,KV ) = gN (∇F
Y F∗CKX −∇F

XF∗CKY, F∗KV ).

P r o o f. Given X,Y ∈ Γ((kerF∗)
⊥), V ∈ Γ(kerF∗) and R ∈ {I, J,K} with some

computation we have

(3.5) 0 = gM ([X,Y ], V ) = gM (AXBRY −AY BRX + CRX(lnλ)Y

− CRY (lnλ)X + 2gM (X,CRY )∇(ln λ), RV )

−
1

λ2
gN (∇F

Y F∗CRX −∇F
XF∗CRY, F∗RV ).

Using (3.5), we easily get (a) ⇒ (b), (a) ⇒ (c), (a) ⇒ (d).

Conversely, from (3.5) we have

(3.6) gM (CRX(lnλ)Y − CRY (lnλ)X + 2gM(X,CRY )∇(ln λ), RV ) = 0.

Applying Y = RV to (3.6) and using (3.4) we obtain

gM (∇(ln λ), CRX)gM (RV,RV ) = 0,

so

(3.7) gM (∇(λ), X) = 0 for X ∈ Γ(µR).

Applying Y = CRX , X ∈ Γ(µR) to (3.6) we have

2gM (X,C2
RX)gM(∇(ln λ), RV ) = −2gM (X,X)gM (∇(lnλ), RV ) = 0,

so

(3.8) gM (∇(λ), RV ) = 0 for V ∈ Γ(DR
2 ).

By (3.7) and (3.8), we get (b) ⇒ (a), (c) ⇒ (a), (d) ⇒ (a). Therefore, the result

follows. �
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Lemma 3.8. Let F be an h-conformal Lagrangian submersion from a hyper-

kähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal Lagrangian basis. Then the following conditions are

equivalent:

(a) the distribution (kerF∗)
⊥ is integrable,

(b) AXIY = AY IX for X,Y ∈ Γ((kerF∗)
⊥),

(c) AXKY = AY KX for X,Y ∈ Γ((kerF∗)
⊥),

(d) AXJY = AY JX for X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. Since BR = R and CR = 0 on (kerF∗)
⊥ for R ∈ {I,K}, from Theo-

rem 3.6 we obtain (a) ⇔ (b) and (a) ⇔ (c).

Given V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥), since J(kerF∗) = kerF∗, we get

gM ([X,Y ], JV ) = −gM (∇XJY −∇Y JX, V ) = gM (AY JX −AXJY, V ),

which implies (a) ⇔ (d). Therefore, the result follows. �

From [18], we obtain:

Theorem 3.9. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the distribution (kerF∗)
⊥ defines a totally geodesic foliation on M ,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (∇F
XF∗IV, F∗CIY ) = λ2gM (AXBIY − CIY (ln λ)X + gM (X,CIY )∇(ln λ), IV ),

(c) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN(∇F
XF∗JV, F∗CJY ) = λ2gM (AXBJY − CJY (lnλ)X + gM (X,CJY )∇(ln λ), JV ),

(d) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (∇F
XF∗KV,F∗CKY )=λ2gM (AXBKY−CKY (ln λ)X+gM(X,CKY )∇(ln λ),KV ).

Theorem 3.10. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Assume that the distribution

(kerF∗)
⊥ defines a totally geodesic foliation on M . Then the following conditions

are equivalent:
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(a) the map F is horizontally homothetic,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN(F∗CIY,∇
F
XF∗IV ) = λ2gM (AXBIY, IV ),

(c) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (F∗CJY,∇
F
XF∗JV ) = λ2gM (AXBJY, JV ),

(d) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (F∗CKY,∇F
XF∗KV ) = λ2gM (AXBKY,KV ).

P r o o f. Given X,Y ∈ Γ((kerF∗)
⊥), V ∈ Γ(kerF∗), and R ∈ {I, J,K}, by Theo-

rem 3.9, we get

(3.9) gN (∇F
XF∗RV, F∗CRY ) = λ2gM (AXBRY − CRY (ln λ)X

+ gM (X,CRY )∇(ln λ), RV ).

Hence, it means (a) ⇒ (b), (a) ⇒ (c), (a) ⇒ (d).

Conversely, from (3.9) we obtain

(3.10) 0 = gM (−CRY (lnλ)X + gM (X,CRY )∇(lnλ), RV ).

Applying X = CRY to (3.10) and using (3.4), we have

0 = gM (CRY,CRY )gM (∇(lnλ), RV ),

so

(3.11) gM (∇(λ), RV ) = 0 for V ∈ Γ(kerF∗).

Applying X = RV to (3.10) and using (3.4), we get

0 = gM (∇(lnλ), CRY )gM (RV,RV ),

so

(3.12) gM (∇(λ), Y ) = 0 for Y ∈ Γ(µR).

By (3.11) and (3.12), we have (b) ⇒ (a), (c) ⇒ (a), (d) ⇒ (a).

Therefore, the result follows. �
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Lemma 3.11. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) the distribution (kerF∗)
⊥ defines a totally geodesic foliation on M ,

(b) AXIY = 0 for X,Y ∈ Γ((kerF∗)
⊥),

(c) AXKY = 0 for X,Y ∈ Γ((kerF∗)
⊥),

(d) AXJY = 0 for X,Y ∈ Γ((kerF∗)
⊥).

P r o o f. Since BR = R and CR = 0 on (kerF∗)
⊥ for R ∈ {I,K}, from Theo-

rem 3.9 we get (a) ⇔ (b) and (a) ⇔ (c).

Given V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥), since J(kerF∗) = kerF∗ we have

gM (∇XY, JV ) = −gM (∇XJY, V ) = −gM (AXJY, V ),

which implies (a) ⇔ (d). Therefore, we get the result. �

From [18], we obtain:

Theorem 3.12. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the distribution kerF∗ defines a totally geodesic foliation on M ,

(b) for X ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

−
1

λ2
gN (∇F

IWF∗IV, F∗ICIX) = gM (TV IW,BIX) + gM (W,V )gM (∇(ln λ), ICIX),

(c) for X ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

−
1

λ2
gN(∇F

JWF∗JV, F∗JCJX) = gM (TV JW,BJX) + gM (W,V )gM (∇(lnλ), JCJX),

(d) for X ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

−
1

λ2
gN (∇F

KWF∗KV,F∗KCKX) = gM (TV KW,BKX)

+ gM (W,V )gM (∇(ln λ),KCKX).

Lemma 3.13. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) the distribution kerF∗ defines a totally geodesic foliation on M ,

(b) TV IW = 0 for V,W ∈ Γ(kerF∗),

(c) TV KW = 0 for V,W ∈ Γ(kerF∗),

(d) TV JW = 0 for V,W ∈ Γ(kerF∗).
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P r o o f. Since BR = R and CR = 0 on (kerF∗)
⊥ for R ∈ {I,K}, from Theo-

rem 3.12 we have (a) ⇔ (b) and (a) ⇔ (c).

Given V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), since J(kerF∗) = kerF∗, we get

gM (∇V W,JX) = −gM (∇V JW,X) = −gM (TV JW,X),

which implies (a) ⇔ (d). Therefore, we obtain the result. �

Lemma 3.14 ([3]). Let F be a horizontally conformal submersion from a Rie-

mannian manifold (M, gM ) onto a Riemannian manifold (N, gN ) with dilation λ.

Then the tension field τ(F ) of F is given by

(3.13) τ(F ) = −mF∗H + (2− n)F∗(∇(ln λ)),

whereH is the mean curvature vector field of the distribution kerF∗, m = dimkerF∗,

n = dimN .

Using Lemma 3.14, we easily get:

Corollary 3.15. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Assume that F is harmonic with

dimkerF∗ > 0 and dimN > 2. Then the following conditions are equivalent:

(a) all the fibers of F are minimal,

(b) the map F is horizontally homothetic.

Corollary 3.16. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Assume that dimkerF∗ > 0 and

dimN = 2. Then the following conditions are equivalent:

(a) all the fibers of F are minimal,

(b) the map F is harmonic.

Lemma 3.17. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Then we have

(3.14) τ(F ) = (2− 2m)F∗(∇(ln λ)),

where 2m = dimkerF∗.
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P r o o f. Since J(kerF∗) = kerF∗, it means J((kerF∗)
⊥) = (kerF∗)

⊥. So, we can

choose a local orthonormal frame {e1, Je1, . . . , em, Jem} of kerF∗.

Given V,W ∈ Γ(kerF∗), we get

TV JW = H∇V JW = HJ∇V W = HJ(TV W + ∇̂V W ) = JTV W,

so

2mH =

m∑

i=1

(Teiei + TJeiJei) =

m∑

i=1

(Teiei + JTJeiei)

=

m∑

i=1

(Teiei + JTeiJei) =

m∑

i=1

(Teiei − Teiei) = 0.

By Lemma 3.14, we obtain the result. �

From Lemma 3.17, we easily have:

Lemma 3.18. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Assume that dimkerF∗ > 2.

Then the map F is harmonic if and only if F is horizontally homothetic.

Definition 3.19. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then given R ∈ {I, J,K}, we

call the map F (R kerF∗, µ
R)-totally geodesic if it satisfies (∇F∗)(RV,X) = 0 for

V ∈ Γ(kerF∗) and X ∈ Γ(µR).

Theorem 3.20. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the map F is horizontally homothetic,

(b) the map F is (I kerF∗, µ
I)-totally geodesic,

(c) the map F is (J kerF∗, µ
J)-totally geodesic,

(d) the map F is (K kerF∗, µ
K)-totally geodesic.

P r o o f. Given V ∈ Γ(kerF∗), X ∈ Γ(µR) and R ∈ {I, J,K}, by (2.10), we have

(∇F∗)(RV,X) = RV (lnλ)F∗X +X(lnλ)F∗RV − gM (RV,X)F∗(∇ ln λ)

= RV (lnλ)F∗X +X(lnλ)F∗RV.

Since gN (F∗X,F∗RV ) = λ2gM (X,RV ) = 0, {F∗X,F∗RV } is linearly independent

for nonzero X , V .

Hence, we get (a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d). Therefore, the result follows. �
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From [18], we obtain:

Theorem 3.21. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the map F is a totally geodesic map,

(b) (i) TV IW = 0 and H∇V IW ∈ Γ(I kerF∗),

(ii) F is horizontally homothetic,

(iii) ∇̂V BIX + TV CIX = 0, TV BIX + H∇V CIX ∈ Γ(I kerF∗) for V,W ∈

Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥),

(c) (i) TV JW = 0 and H∇V JW ∈ Γ(J kerF∗),

(ii) F is horizontally homothetic,

(iii) ∇̂V BJX + TV CJX = 0, TV BJX + H∇V CJX ∈ Γ(J kerF∗) for V,W ∈

Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥),

(d) (i) TV KW = 0 and H∇V KW ∈ Γ(K kerF∗),

(ii) F is horizontally homothetic,

(iii) ∇̂V BKX + TV CKX = 0, TV BKX +H∇V CKX ∈ Γ(K kerF∗) for V,W ∈

Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Remark 3.22. Using the proof of Theorem 3.21, we can show that F is hori-

zontally homothetic if and only if (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ((kerF∗)
⊥).

Lemma 3.23. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) the map F is a totally geodesic map,

(b) (i) TV IW = 0,

(ii) F is horizontally homothetic,

(iii) AXIV = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥),

(c) (i) TV KW = 0,

(ii) F is horizontally homothetic,

(iii) AXKV = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥),

(d) (i) TV JW = 0,

(ii) F is horizontally homothetic,

(iii) AXJV = 0 for V,W ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

P r o o f. We know BR = R and CR = 0 on (kerF∗)
⊥ for R ∈ {I,K} and we get

∇̂V RX = VR∇V X = VR∇XV = V∇XRV = AXRV

for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).
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By Theorem 3.21, we have (a) ⇔ (b) and (a) ⇔ (c).

Given V,W ∈ Γ(kerF∗), since J(kerF∗) = kerF∗, we get

(∇F∗)(V,W ) = F∗(J∇V JW ) = F∗(J(TV JW + ∇̂V JW )) = F∗JTV JW,

so

(∇F∗)(V,W ) = 0 ⇔ TV JW = 0.

We claim that F is horizontally homothetic if and only if (∇F∗)(X,Y ) = 0 for

X,Y ∈ Γ((kerF∗)
⊥).

By (2.10), we have

(3.15) (∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − gM (X,Y )F∗(∇ lnλ)

for X,Y ∈ Γ((kerF∗)
⊥), so the part from left to right is obtained.

Conversely, from (3.15) we obtain

(3.16) 0 = X(lnλ)F∗Y + Y (lnλ)F∗X − gM (X,Y )F∗(∇ lnλ).

Applying X = Y to (3.16), we have

(3.17) 0 = 2X(lnλ)F∗X − gM (X,X)F∗(∇ lnλ).

Taking the inner product with F∗X at (3.17), we get

0 = λ2gM (X,X)gM (X,∇ lnλ),

which implies our result.

Given V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥), we obtain

(∇F∗)(X,V ) = F∗(J∇XJV ) = F∗(J(AXJV + V∇XJV )) = F∗JAXJV,

so

(∇F∗)(X,V ) = 0 ⇔ AXJV = 0.

Hence, we have (a) ⇔ (d). Therefore, result follows. �

4. Decomposition theorems

We will consider some decomposition theorems and we need to remind some no-

tions.

Let (M, g) be a Riemannian manifold and L a foliation ofM . Let ξ be the tangent

bundle of L considered as a subbundle of the tangent bundle TM of M .
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We call L a totally umbilic foliation (see [25]) of M if

(4.1) h(X,Y ) = g(X,Y )H for X,Y ∈ Γ(ξ),

where h is the second fundamental form of L in M and H is the mean curvature

vector field of L in M .

The foliation L is said to be a spheric foliation (see [25]) if it is a totally umbilic

foliation and

(4.2) ∇XH ∈ Γ(ξ) for X ∈ Γ(ξ),

where ∇ is the Levi-Civita connection of g.

We call L a totally geodesic foliation (see [25]) of M if

(4.3) ∇XY ∈ Γ(ξ) for X,Y ∈ Γ(ξ).

Let (M1, g1) and (M2, g2) be Riemannian manifolds, fi : M1 × M2 7→ R a positive

C∞-function, and πi : M1 ×M2 7→ Mi the canonical projection for i = 1, 2.

We call M1 ×(f1,f2) M2 a double-twisted product manifold (see [25]) of (M1, g1)

and (M2, g2) if it is the product manifoldM = M1×M2 with a Riemannian metric g

such that

(4.4) g(X,Y ) = f2
1 · g1(π1∗X, π1∗Y ) + f2

2 · g2(π2∗X, π2∗Y ) for X,Y ∈ Γ(TM).

We call M1 ×(f1,f2) M2 nontrivial if all the functions f1 and f2 are nonconstant.

A Riemannian manifoldM1×fM2 is said to be a twisted product manifold (see [25])

of (M1, g1) and (M2, g2) if M1 ×f M2 = M1 ×(1,f) M2.

We call M1 ×f M2 nontrivial if f is nonconstant.

A twisted product manifold M1 ×f M2 is said to be a warped product manifold

(see [25]) of (M1, g1) and (M2, g2) if f depends only on the points of M1 (i.e. f ∈

C∞(M1,R)).

LetM1 andM2 be connected C
∞-manifolds andM the product manifoldM1×M2.

Let πi : M 7→ Mi be the canonical projection for i = 1, 2. Let ξi := kerπ3−i∗ and

Pi : TM 7→ ξi the vector bundle projection such that TM = ξ1 ⊕ ξ2. And let Li be

the canonical foliation of M by the integral manifolds of ξi for i = 1, 2.

Proposition 4.1 ([25]). Let g be a Riemannian metric on the product manifold

M1×M2 and assume that the canonical foliations L1 and L2 intersect perpendicularly

everywhere. Then g is the metric of
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(a) a double-twisted product manifold M1 ×(f1,f2) M2 if and only if L1 and L2 are

totally umbilic foliations,

(b) a twisted product manifold M1 ×f M2 if and only if L1 is a totally geodesic

foliation and L2 is a totally umbilic foliation,

(c) a warped product manifold M1 ×f M2 if and only if L1 is a totally geodesic

foliation and L2 is a spheric foliation,

(d) a (usual) Riemannian product manifold M1 ×M2 if and only if L1 and L2 are

totally geodesic foliations.

Let F be a horizontally conformal submersion from a Riemannian manifold

(M, gM ) onto a Riemannian manifold (N, gN ) such that the distributions kerF∗ and

(kerF∗)
⊥ are integrable. Then we denote byMkerF∗

andM(kerF∗)⊥ the integral man-

ifolds of kerF∗ and (kerF∗)
⊥, respectively. We also denote by H and H⊥ the mean

curvature vector fields of kerF∗ and (kerF∗)
⊥, respectively, i.e. H = m−1

m∑
i=1

Teiei

and H⊥ = n−1
n∑

i=1

Avivi for a local orthonormal frame {e1, . . . , em} of kerF∗ and

a local orthonormal frame {v1, . . . , vn} of (kerF∗)
⊥.

Using Proposition 4.1, Theorems 3.9 and 3.12 we have:

Theorem 4.2. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) (M, gM ) is locally a Riemannian product manifold of the form M(kerF∗)⊥ ×

MkerF∗
,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

gN (∇F
XF∗IV, F∗CIY ) = λ2gM (AXBIY − CIY (ln λ)X

+ gM (X,CIY )∇(ln λ), IV ),

−
1

λ2
gN (∇F

IWF∗IV, F∗ICIX) = gM (TV IW,BIX)

+ gM (W,V )gM (∇(ln λ), ICIX),

(c) for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗)

gN (∇F
XF∗JV, F∗CJY ) = λ2gM (AXBJY − CJY (ln λ)X

+ gM (X,CJY )∇(ln λ), JV ),

−
1

λ2
gN (∇F

JWF∗JV, F∗JCJX) = gM (TV JW,BJX)

+ gM (W,V )gM (∇(ln λ), JCJX),
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(d) for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗).

gN (∇F
XF∗KV,F∗CKY ) = λ2gM (AXBKY − CKY (lnλ)X

+ gM (X,CKY )∇(lnλ),KV ),

−
1

λ2
gN (∇F

KWF∗KV,F∗KCKX) = gM (TV KW,BKX)

+ gM (W,V )gM (∇(ln λ),KCKX).

Using Proposition 4.1, Lemmas 3.11 and 3.13 we get:

Lemma 4.3. Let F be an h-conformal Lagrangian submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a Riemannian product manifold of the form M(kerF∗)⊥ ×

MkerF∗
,

(b) AXIY = 0 and TV IW = 0 for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗),

(c) AXKY = 0 and TV KW = 0 for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗),

(d) AXJY = 0 and TV JW = 0 for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗).

Remark 4.4. The necessary and sufficient conditions for the manifold (M, gM )

to be locally a Riemannian product manifold of the form M(kerF∗)⊥ × MkerF∗
in

an h-anti-invariant submersion are quite different from the necessary and sufficient

conditions for the manifold (M, gM ) to be locally a Riemannian product manifold of

the form M(kerF∗)⊥ ×MkerF∗
in an h-conformal anti-invariant submersion.

On the other hand, the conditions for the manifold (M, gM ) to be locally a Rieman-

nian product manifold of the formM(kerF∗)⊥×MkerF∗
in an h-Lagrangian submersion

are the same as the necessary and sufficient conditions for the manifold (M, gM ) to

be locally a Riemannian product manifold of the form M(kerF∗)⊥ × MkerF∗
in an

h-conformal Lagrangian submersion, [23].

We deal with the geometry of distributions kerF∗ and (kerF∗)
⊥.

Theorem 4.5. Let F be a horizontally conformal submersion from a Riemannian

manifold (M, gM ) onto a Riemannian manifold (N, gN ) with dilation λ. Assume that

the distribution (kerF∗)
⊥ defines a totally umbilic foliation on M . Then we have

H⊥ = −
λ2

2
∇V

( 1

λ2

)
,

where ∇V denotes the gradient vector in the distribution kerF∗.
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P r o o f. Given X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗) we obtain

(4.5) gM (∇XY, V ) = gM (AXY, V ) = gM (X,Y )gM (H⊥, V )

and

(4.6) gM (∇XY, V ) = −gM (Y,∇XV ) = −gM (Y,AXV ).

Comparing (4.5) and (4.6), we have AXV = −gM (H⊥, V )X , so

(4.7) gM (AXV,X) = −gM (H⊥, V )gM (X,X).

On the other hand, by using (2.9), we get

(4.8) gM (AXV,X) = gM (∇XV,X) = −gM (V,∇XX)

= − gM (V,AXX) = gM

(
V,

λ2

2
gM (X,X)∇V

( 1

λ2

))

=
λ2

2
gM (X,X)gM(V,∇V

( 1

λ2

)
.

Comparing (4.7) and (4.8), we obtain the result. �

Remark 4.6. In Theorem 4.5, if F is a Riemannian submersion, then we get

H⊥ = 0, so the distribution (kerF∗)
⊥ also defines a totally geodesic foliation on M ,

see [23].

Theorem 4.7. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) the distribution kerF∗ defines a totally umbilic foliation on M ,

(b) for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥)

TV BIX +H∇V CIX = −gM(H,X)IV,

(c) for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥)

TV BJX +H∇V CJX = −gM (H,X)JV,

(d) for V ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥)

TV BKX +H∇V CKX = −gM (H,X)KV.
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P r o o f. Given V,W ∈ Γ(kerF∗), X ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}, we have

gM (TV W,X) = gM (∇V RW,RX) = −gM (RW,∇V BRX +∇V CRX)

= − gM (RW, TV BRX +H∇V CRX),

so we easily obtain

TV W = gM (V,W )H ⇔ TV BRX +H∇V CRX = −gM (H,X)RV.

Hence, we get (a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d). Therefore, the result follows. �

Lemma 4.8. Let F be an h-conformal Lagrangian submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN) such that (I, J,K) is

an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) the distribution kerF∗ defines a totally umbilic foliation on M ,

(b) TV IX = −gM(H,X)IV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗),

(c) TV KX = −gM (H,X)KV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗),

(d) TV JX = −gM(H,X)JV for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗).

P r o o f. Since BR = R and CR = 0 on (kerF∗)
⊥ for R ∈ {I,K}, from Theo-

rem 4.7 we have (a) ⇔ (b) and (a) ⇔ (c).

Given V,W ∈ Γ(kerF∗) andX ∈ Γ((kerF∗)
⊥), since J(kerF∗) = kerF∗, we obtain

gM (TV W,X) = gM (∇V JW, JX) = −gM (JW,∇V JX) = −gM(JW, TV JX),

so we get

TV W = gM (V,W )H ⇔ TV JX = −gM(H,X)JV,

which implies (a) ⇔ (d). Therefore, we have the result. �

Using Proposition 4.1, Theorems 3.9 and 4.7 we obtain:

Theorem 4.9. Let F be an h-conformal anti-invariant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that

(I, J,K) is an h-conformal anti-invariant basis. Then the following conditions are

equivalent:

(a) (M, gM ) is locally a twisted product manifold of the formM(kerF∗)⊥ ×f MkerF∗
,

(b) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (∇F
XF∗IV, F∗CIY ) = λ2gM (AXBIY − CIY (lnλ)X

+ gM (X,CIY )∇(ln λ), IV ),

TV BIX +H∇V CIX = − gM (H,X)IV,

652



(c) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN (∇F
XF∗JV, F∗CJY ) = λ2gM (AXBJY − CJY (ln λ)X

+ gM (X,CJY )∇(ln λ), JV ),

TV BJX +H∇V CJX = − gM (H,X)JV,

(d) for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ(kerF∗)

gN(∇F
XF∗KV,F∗CKY ) = λ2gM (AXBKY − CKY (lnλ)X

+ gM (X,CKY )∇(ln λ),KV ),

TV BKX +H∇V CKX = − gM (H,X)KV.

Using Proposition 4.1, Lemmas 3.11 and 4.8, we get:

Lemma 4.10. Let F be an h-conformal Lagrangian submersion from a hyperkäh-

ler manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)

is an h-conformal Lagrangian basis. Then the following conditions are equivalent:

(a) (M, gM ) is locally a twisted product manifold of the formM(kerF∗)⊥ ×f MkerF∗
,

(b) AXIY = 0 and TV IX = −gM (H,X)IV for X,Y ∈ Γ((kerF∗)
⊥) and V ∈

Γ(kerF∗),

(c) AXKY = 0 and TV KX = −gM (H,X)KV for X,Y ∈ Γ((kerF∗)
⊥) and V ∈

Γ(kerF∗),

(d) AXJY = 0 and TV JX = −gM (H,X)JV for X,Y ∈ Γ((kerF∗)
⊥) and V ∈

Γ(kerF∗).

5. Examples

Note that given an Euclidean space R4m with coordinates (x1, x2, . . . , x4m), we

can canonically choose complex structures I, J , K on R
4m as follows:

I
( ∂

∂x4k+1

)
=

∂

∂x4k+2
, I

( ∂

∂x4k+2

)
= −

∂

∂x4k+1
,

I
( ∂

∂x4k+3

)
=

∂

∂x4k+4
, I

( ∂

∂x4k+4

)
= −

∂

∂x4k+3
,

J
( ∂

∂x4k+1

)
=

∂

∂x4k+3
, J

( ∂

∂x4k+2

)
= −

∂

∂x4k+4
,

J
( ∂

∂x4k+3

)
= −

∂

∂x4k+1
, J

( ∂

∂x4k+4

)
=

∂

∂x4k+2
,
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K
( ∂

∂x4k+1

)
=

∂

∂x4k+4
, K

( ∂

∂x4k+2

)
=

∂

∂x4k+3
,

K
( ∂

∂x4k+3

)
= −

∂

∂x4k+2
, K

( ∂

∂x4k+4

)
= −

∂

∂x4k+1

for k ∈ {0, 1, . . . ,m− 1}.

Then we easily check that (I, J,K, 〈 , 〉) is a hyperkähler structure on R
4m,

where 〈 , 〉 denotes the Euclidean metric on R
4m. Throughout this section, we will

use these notations.

Example 5.1. Let (M,E, gM ) be an almost quaternionic Hermitian manifold

and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) 7→ (N, gN ) be an h-anti-

invariant submersion, see [23]. Then the map F is an h-conformal anti-invariant

submersion with dilation λ = 1.

Example 5.2. Let (M,E, gM ) be an almost quaternionic Hermitian mani-

fold and (N, gN ) a Riemannian manifold. Let F : (M,E, gM ) 7→ (N, gN ) be an

h-Lagrangian submersion, see [23]. Then the map F is an h-conformal Lagrangian

submersion with dilation λ = 1.

Example 5.3. Let (M,E, gM ) be a 4n-dimensional almost quaternionic Her-

mitian manifold and (N, gN ) a (4n − 1)-dimensional Riemannian manifold. Let

F : (M,E, gM ) 7→ (N, gN ) be a horizontally conformal submersion with dilation λ.

Then the map F is an h-conformal anti-invariant submersion with dilation λ.

Example 5.4. Let F : R
4 7→ R

3 be a horizontally conformal submersion with

dilation λ. Then the map F is an h-conformal anti-invariant submersion with dila-

tion λ.

Example 5.5. Define a map F : R
4 7→ R

2 by

F (x1, . . . , x4) = e34(x2, x1).

Then the map F is an h-conformal Lagrangian submersion such that I(kerF∗) =

kerF∗, J(kerF∗) = (kerF∗)
⊥, K(kerF∗) = (kerF∗)

⊥, and dilation λ = e34.

Here, (K, I, J) is an h-conformal Lagrangian basis.

Example 5.6. Define a map F : R
8 7→ R

6 by

F (x1, . . . , x8) = π68(x2, . . . , x7).

Then the map F is an h-conformal anti-invariant submersion with dilation λ = π68.
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Example 5.7. Define a map F : R
12 7→ R

9 by

F (x1, . . . , x12) = π(x5, x7, x4, x8, x10, x11, x1, x2, x12).

Then the map F is an h-conformal anti-invariant submersion with dilation λ = π.

References
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