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Abstract. For a finite group G and a fixed Sylow p-subgroup P of G, Ballester-Bolinches
and Guo proved in 2000 that G is p-nilpotent if every element of P ∩G′ with order p lies
in the center of NG(P ) and when p = 2, either every element of P ∩G′ with order 4 lies in
the center of NG(P ) or P is quaternion-free and NG(P ) is 2-nilpotent. Asaad introduced
weakly pronormal subgroup of G in 2014 and proved that G is p-nilpotent if every element
of P with order p is weakly pronormal in G and when p = 2, every element of P with
order 4 is also weakly pronormal in G. These results generalized famous Itô’s Lemma. We
are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem.
It is proved that if p is the smallest prime dividing the order of a group G and P , a Sylow
p-subgroup of G, then G is p-nilpotent if G is S4-free and every subgroup of order p in
P ∩ Px ∩GNp is weakly pronormal in NG(P ) for all x ∈ G \NG(P ), and when p = 2, P is
quaternion-free, where GNp is the p-nilpotent residual of G.

Keywords: weakly pronormal subgroup; normalizer; minimal subgroup; formation; p-
nilpotency
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1. Introduction

All considered groups are finite groups. Recall that a formation F is a class of

groups which is closed under taking epimorphic images and such that every group G

has a smallest normal subgroup with quotient in F. This subgroup is called the

F-residual of G and it is denoted by GF. Throughout this paper, Np and N will
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denote the classes of p-nilpotent groups and nilpotent groups, respectively. A 2-group

is called quaternion-free if it has no section isomorphic to the quaternion group of

order 8. The exponent of a group G will be denoted by exp(G). If G is a p-group,

then Ωn(G) = 〈x ∈ G : xpn

= 1〉.

A subgroup H of a group G is called pronormal in G if for each g ∈ G, the

subgroups H and Hg are conjugate in 〈H,Hg〉. The pronormality is one of the most

significant properties pertaining to subgroups of groups and has been studied widely,

for example, see [1], [3], [5], [6], [9], [19], [20], [21]. Recently, Asaad introduced the

following concept:

Definition 1.1 ([1], Definition 1.1). A subgroup H of a group G is called weakly

pronormal in G if there exists a subgroup K of G such that G = HK and H ∩K is

pronormal in G.

He gave examples to show that the above definition is a generalization of pronor-

mality and proved the following theorem:

Theorem 1.2 ([1], Lemma 2.4). Let p be a prime dividing the order of a group G

and let P be a Sylow p-subgroup of G. If every element of P with order p is weakly

pronormal in G and when p = 2, every element of P with order 4 is also weakly

pronormal in G, then G is p-nilpotent.

The above result generalized the following famous lemma for p-nilpotence given

by Itô.

Itô’s Lemma ([17]). Let p be a prime dividing the order of a group G. If every

element of G of order p lies in Z(G) and when p = 2, every element of G of order 4

also lies in Z(G), then G is p-nilpotent.

In 2000, Ballester-Bolinches and Guo obtained the following nice result, which

extends Itô’s result in a different way:

Theorem 1.3 ([7], Theorems 1 and 2). Let p be a prime dividing the order of

a group G and let P be a Sylow p-subgroup of G. If every element of P ∩ G′ with

order p lies in the center ofNG(P ) and when p = 2, either every element of P∩G′ with

order 4 lies in the center of NG(P ) or P is quaternion-free and NG(P ) is 2-nilpotent,

then G is p-nilpotent, where G′ is the commutator subgroup of G.

These results have been generalized in several papers such as [8], [13], [14], [15],

[16], [18], [23]. In this paper we continue on this topic and prove the following main

theorem:
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Main Theorem. Let G be an S4-free group. Also let p be the smallest prime

dividing the order of G and let P be a Sylow p-subgroup of G. If every minimal

subgroup of P ∩P x ∩GNp is weakly pronormal in NG(P ) for all x ∈ G \NG(P ) and

when p = 2, P is quaternion-free, then G is p-nilpotent, where GNp is the p-nilpotent

residual of G.

Remark.

(1) Since P ∩P x∩GNp 6 P ∩G′, the conditions of Main Theorem are weaker than

those of Theorems 1.2 and 1.3.

(2) It can be easily seen that the hypothesis that G is S4-free and P is quaternion-

free in the Main Theorem cannot be removed. For example, let G = S4, the

symmetric group of degree 4, and P a Sylow 2-subgroup of G. Then P is a di-

hedral group of order 8 and NG(P ) = P . We have that every minimal subgroup

of P ∩P x ∩GNp is weakly pronormal in NG(P ), but G is not 2-nilpotent. If we

set G = SL(2, 3), then the Sylow 2-subgroup P of G is the quaternion group of

order 8 and GNp = P . Thus, every minimal subgroup of P ∩P x∩GNp is normal

in NG(P ) = G and therefore it is weakly pronormal in NG(P ). However, G is

not 2-nilpotent.

2. Preliminaries

In this section we show some lemmas, which are required in the proofs of our main

results.

Lemma 2.1 ([1], Lemma 2.2). Let H be a weakly pronormal subgroup of

a group G. Then the following statements are true:

(a) H is weakly pronormal subgroup in K for every subgroup K of G with H 6 K.

(b) Let N be a normal subgroup of G. Then HN/N is weakly pronormal in G/N

if N 6 H or (|H |, |N |) = 1.

Lemma 2.2. Let P be a p-subgroup of a group G and N a normal p′-subgroup

of G for a prime p. If every minimal subgroup of P is weakly pronormal in NG(P ),

then every minimal subgroup of PN/N is weakly pronormal in NG/N (PN/N).

P r o o f. Suppose that AN/N is a minimal subgroup of PN/N with A 6 P . By

hypotheses, there exists a subgroup K of NG(P ) such that NG(P ) = AK and A∩K

is pronormal in NG(P ). It is clear that NG(P )N/N = AKN/N = AN/N ·KN/N .

The minimality of AN/N implies that AN/N ∩KN/N is trivial or equal to AN/N .

We only need to consider the latter case. Clearly, A 6 KN and hence NG(P )N/N =
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KN/N . If A � K, then A ∩K = 1. It follows that |P | ∤ |KN/N | = |NG(P )N/N |,

this contradiction forces that A 6 K and so A is pronormal in NG(P ). Let g = hn ∈

NG(P )N with h ∈ NG(P ) and n ∈ N . Since A is pronormal in NG(P ), we have that

Ah = Ax with x ∈ J = 〈A,Ah〉. Thus, (AN)g = (AN)hn = (AN)xn and xn ∈ JN =

〈AN, (AN)h〉 = 〈AN, (AN)g〉. Consequently, AN is pronormal in NG(P )N and it

follows directly that AN/N is pronormal in NG/N (PN/N) = NG(P )N/N . Hence,

AN/N is weakly pronormal in NG/N (PN/N). �

Lemma 2.3 ([10], Lemma 6.3). If a subgroup H of a group G is both pronormal

and subnormal in G, then H is normal in G.

Lemma 2.4. Let P be a Sylow p-subgroup of a groupG andH a normal subgroup

of G. If N is a normal p′-subgroup of G, then for any x ∈ G \ NG(P ) there exists

some n ∈ N such that HN ∩ PN ∩ P xN = (H ∩ P ∩ P xn)N .

P r o o f. From Sylow’s Theorem and H E G we have HN∩PN = (HN∩P )N =

(H ∩ P )N . So HN ∩ PN ∩ P xN = (H ∩ P ∩ P xN)N . Take P0 = H ∩ P ∩ P xN .

Then P0 is contained in a Sylow p-subgroup of P xN . Thus, by Sylow’s Theorem

again there exists an element n in N such that P0 6 P xn. It follows that P0 =

H ∩ P ∩ P xN > H ∩P ∩P xn > P0 and hence P0 = H ∩ P ∩P xn. This implies that

HN ∩ PN ∩ P xN = (H ∩ P ∩ P xn)N . �

Lemma 2.5 ([11], Theorem 2.8). If a solvable group G has a Sylow 2-subgroup P

which is quaternion-free, then P ∩ Z(G) ∩GN = 1.

Lemma 2.6. Let H be a subgroup of a group G. Then HNp 6 GNp .

P r o o f. Since HGNp

/

GNp 6 G/GNp , we have that H
/

(H ∩GNp) is p-nilpotent

and so HNp 6 H ∩GNp , as desired. �

Lemma 2.7 ([2], Lemma 2). Let F be a saturated formation. Assume that G is

a non-F-group and there exists a maximal subgroup M of G such that M ∈ F and

G = F (G)M , where F (G) is the Fitting subgroup of G. Then

(i) GF/(GF)′ is a chief factor of G,

(ii) GF is a p-group for a prime p,

(iii) GF has exponent p if p > 2 and exponent at most 4 if p = 2,

(iv) GF is either an elementary abelian group or (GF)′ = Z(GF) = Φ(GF) is an

elementary abelian group.
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3. Main results

The proof of Main Theorem can be obtained from the following results.

Theorem 3.1. Let p be the smallest prime dividing the order of a group G and P

a Sylow p-subgroup of G. If every minimal subgroup of P ∩ P x ∩ GNp is weakly

pronormal in G and when p = 2, either every cyclic subgroup of P ∩P x ∩GNp with

order 4 is weakly pronormal in G or P is quaternion-free, then G is p-nilpotent.

P r o o f. Suppose that the theorem is false and let G be a counterexample of

minimal order. Then G is not p-nilpotent. Noticing that all its Sylow p-subgroups

are conjugate in G, we see that the hypotheses of our theorem are subgroup-closure

by Lemma 2.1. Consequently, G is a minimal non-p-nilpotent group (that is, every

proper subgroup of the group is p-nilpotent but itself is not p-nilpotent). Now, by the

result of Itô, see [22], Theorem 10.3.3, G must be a minimal non-nilpotent group. By

the result of Schmidt, see [22], Theorem 9.1.9 and Exercise 9.1.11, we know that G is

of order paqb, where q is a prime which is different from p, P is normal in G and any

Sylow q-subgroupQ of G is cyclic. Moreover, P = GNp and P is of exponent p when p

is odd and of exponent at most 4 when p = 2. Let A be a minimal subgroup of P .

Then by our hypotheses, there exists a subgroupK ofG such that G = AK and A∩K

is pronormal in G. If A ∩K = 1, then K is a maximal subgroup of G with index p.

Since p is the smallest prime dividing the order of G, we see that K is a normal

subgroup of G and therefore the Sylow q-subgroup of K is normal in G since K is

p-nilpotent. This leads to the nilpotence of G, a contradiction. Hence A 6 K, which

means that A is pronormal in G and so is normal in G by Lemma 2.3. Therefore

every minimal subgroup of P is in the center of G. If p is odd, then G is p-nilpotent

by Itô’s result, which is a contradiction. If p = 2 and every cyclic subgroup B = 〈b〉

of P ∩ P x ∩GNp with order 4 is weakly pronormal in G, then from our hypotheses

there exists a subgroup K of G such that G = BK and B ∩K is pronormal in G.

If [G : K] = 4, then K〈b2〉 is a subgroup of G with index 2 and therefore K〈b2〉 is

normal in G. This implies that the Sylow q-subgroup of K〈b2〉 is normal in G and

therefore G is nilpotent, which is a contradiction. If [G : K] = 2, then K itself is

a normal subgroup of G with index 2. We still get a contradiction. It follows that

G = K and so B is normal in G by the pronormality of B in G and Lemma 2.3. If

P = B, then it is clear that G is p-nilpotent, a contradiction. Thus B 6= P . Since

the exponent of P is at most 4, we have P 6 CG(Q) and therefore G = P × Q,

another contradiction. If p = 2 and P is quaternion-free, then from Lemma 2.5 we

have Ω1(P ) 6 P ∩GNp ∩Z(G) = 1, a contradiction. By all these contradictions, we

show that the theorem is true. �
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If p is an arbitrary prime, the corresponding result is as follows:

Theorem 3.2. Let G be an S4-free group. Also let p be a prime dividing the order

ofG and let P be a Sylow p-subgroup ofG. If every minimal subgroup of P∩P x∩GNp

is weakly pronormal in P and NG(P ) is p-nilpotent for all x ∈ G \NG(P ) and when

p = 2, P is quaternion-free, then G is p-nilpotent.

P r o o f. Assume that the theorem is false and let G be a counterexample of

minimal order. We split the proof into the following steps:

(1) Suppose M is a subgroup of G such that P 6 M < G. Then M is p-nilpotent.

It is clear that NM (P ) is p-nilpotent. Let x ∈ M \NM (P ). Then from Lemma 2.6

P∩P x∩MNp 6 P∩P x∩GNp . It follows that every minimal subgroup of P∩P x∩MNp

is weakly pronormal in P by Lemma 2.1. Now we can see that M satisfies the

hypotheses of our theorem. By the choice of G, M is p-nilpotent.

(2) Op′(G) = 1.

If Op′(G) 6= 1, then we may choose a minimal normal subgroup N of G such

that N is contained in Op′(G). Set G = G/N . Clearly, NG(P ) = NG(P )N/N is

p-nilpotent. For any xN ∈ G \ NG(P ), by Lemma 2.4, we have P ∩ P xN ∩ GNp =

(P ∩ P xn ∩ GNp)N/N for some n ∈ N as GNp = GNpN/N . Furthermore, every

minimal subgroup of P∩P xN∩GNp is weakly pronormal in P by Lemma 2.1. If p = 2

and P is quaternion-free, then of course P is quaternion-free. Therefore G satisfies

the hypotheses of our theorem. The minimality of G means that G is p-nilpotent

and so is G, a contradiction.

(3) Op(G) 6= 1.

Because G is not p-nilpotent, by Frobenius’s theorem, see [22], Theorem 10.3.2,

there exists a subgroup H of P such that NG(H) is not p-nilpotent. Since NG(P ) is

p-nilpotent, we may choose a subgroupH of P such thatNG(H) is not p-nilpotent but

NG(K) is p-nilpotent for every subgroup K of P with H < K 6 P . If NG(H) < G,

then H < P1 6 P for some P1 ∈ Sylp(NG(H)). Set F = NG(H). By the choice

of H , we know that NG(P1) is p-nilpotent and therefore NF (P1) is p-nilpotent. Let

x ∈ F \ NF (P1). Since P1 = P ∩ F , we can see that x ∈ G \ NG(P ). Again,

P1 ∩ P x
1 ∩ FNp 6 P ∩ P x ∩ GNp , so every minimal subgroup of P1 ∩ P x

1 ∩ FNp is

weakly pronormal in P1 by Lemma 2.1. Moreover, P1 is quaternion-free. Now, by

the minimality of G, we have that F = NG(H) is p-nilpotent, this contradiction

forces that NG(H) = G, as desired.

(4) G/Op(G) is p-nilpotent and CG(Op(G)) 6 Op(G).

From the proof of Statement (3) we know that NG(K) is p-nilpotent for every

subgroup K of P with Op(G) < K 6 P . Hence, by Frobenius theorem again, we see

that G/Op(G) is p-nilpotent and so G is p-solvable. Consequently, we obtain that

CG(Op(G)) 6 Op(G) by Statement (2) and [22], Theorem 9.3.1.
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(5) G = PQ, where Q is an elementary abelian Sylow q-subgroup of G for a prime

q 6= p. Moreover, P is a maximal subgroup of G and QOp(G)/Op(G) is a minimal

normal subgroup of G/Op(G).

Since G is p-solvable, there exists a Sylow q-subgroup Q of G such that PQ = QP

for any prime q 6= p by [12], Theorem 6.3.5. If PQ < G, then PQ is p-nilpotent by

Statement (1). It follows that Q 6 CG(Op(G)), and Statement (4) provides a contra-

diction. Thus G = PQ and so G is solvable. Now let N/Op(G) be a minimal normal

subgroup of G/Op(G) contained in Opp′(G)/Op(G). Then N = Op(G)(N ∩Q). If

N∩Q < Q, then PN < G and hence PN is p-nilpotent by Statement (1) again. This

implies that 1 < N∩Q 6 CG(OP (G)) 6 Op(G), a contradiction. Hence N = Opp′(G)

and so QOp(G)/Op(G) is an elementary abelian q-group complementing P/Op(G).

This yields that P is a maximal subgroup of G.

(6) |P : Op(G)| = p.

It is clear that Op(G) < P . Let P1 be a maximal subgroup of P containing Op(G)

and let G1 = P1Opp′ (G). Then P1 is a Sylow p-subgroup of G1. The maximality of P

means that either NG(P1) = P or NG(P1) = G. If the former holds, then NG1
(P1) is

p-nilpotent. In view of Lemma 2.6, we have P1∩P x
1 ∩G

Np

1 6 P ∩P x∩GNp for every

x ∈ G1 \NG1
(P1). It follows from Lemma 2.1 that G1 satisfies the hypotheses of the

theorem. TherebyG1 is p-nilpotent by the choice ofG andQ 6 CG(Op(G)) 6 Op(G),

this contradiction means P1 = Op(G), as desired.

(7) G = GNpL, where L = 〈a〉⋉Q is a non-abelian split extension of Q by a cyclic

p-subgroup 〈a〉, ap ∈ Z(L) and the action of a (by conjugate) on Q is irreducible.

Since G/Op(G) is p-nilpotent, GNp 6 Op(G). We can see that K = GNpQ is

normal in G since G/GNp is p-nilpotent. Let P1 be a maximal subgroup of P

containing GNp and let G1 = P1K = P1Q. Then P1 is a Sylow p-subgroup of G1.

The maximality of P means that either NG(P1) = G or NG(P1) = P . If the latter

holds, then NG1
(P1) is p-nilpotent. By Lemma 2.6, we have P1 ∩ P x

1 ∩ G1
Np 6

P ∩ P x ∩ GNp for every x ∈ G1 \ NG1
(P1). It follows from Lemma 2.1 that G1

satisfies the hypotheses of the theorem. Hence G1 is p-nilpotent by the choice of G.

ThereforeK = GNp ×Q and so Q E G, a contradiction. Thus, P1 is normal in G and

so P1 = Op(G), this implies that P/GNp is cyclic. On the other hand, by the Frattini

argument we have G = GNpNG(Q). Thus, we may assume that G = GNpL, where

L = 〈a〉 ⋉ Q is a non-abelian split extension of Q by a cyclic p-subgroup 〈a〉. By

Statement (6) and Op(G)∩NG(Q) E NG(Q), we see that ap ∈ Z(L). Also since P is

a maximal subgroup of G, we know that GNpQ/GNp is minimal normal in G/GNp

and consequently the action of a (by conjugate) on Q is irreducible.

(8) exp(GNp) 6= p.

Otherwise, exp(GNp) = p. If every minimal subgroup of GNp is pronormal in P ,

then from Lemma 2.3 we have GNp 6 Z(P ). Then, by using the Frattini argu-
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ment, we obtain that G = CG(G
Np)NG(P ) and so G = CG(G

Np) as NG(P ) = P .

Hence GNp normalizes Q and therefore Q is normal in G, a contradiction. Let A1

be a minimal subgroup of GNp and not pronormal in P . Then, by our hypothe-

ses, there exists a subgroup K1 of P such that P = A1K1 and A1 ∩ K1 = 1. In

general, we may find minimal subgroups A1, A2, . . . , As of G
Np and also subgroups

K1,K2, . . . ,Ks of P such that P = AiKi, Ai ∩ Ki = 1 for i = 1, 2, . . . , s and ev-

ery minimal subgroup of GNp ∩K1 ∩ . . . ∩Ks is pronormal in P . Furthermore, we

may assume that Ai 6 K1 ∩ . . . ∩ Ki−1 (i = 2, 3, . . . , s) and therefore we can see

K1∩. . .∩Ki−1 = Ai(K1∩. . .∩Ki). It is easy to see that G
Np∩Ki is normal in P and

(GNp ∩Ki)〈a〉 is a complement of Ai in P , so we may replace Ki by (G
Np ∩Ki)〈a〉

and further assume that 〈a〉 6 Ki for each i. Since P = GNp〈a〉, we see that

K1 ∩ . . . ∩Ks = (GNp ∩K1 ∩ . . . ∩Ks)〈a〉. According to our choice, every minimal

subgroup B of GNp ∩K1∩ . . .∩Ks is pronormal in P , thus B E P by Lemma 2.3 and

therefore GNp ∩K1 ∩ . . . ∩Ks 6 Z(P ). It follows that K1 ∩ . . . ∩Ks is abelian. If p

is an odd prime, then from [12], Theorem 6.5.2 we get that K1 ∩ . . . ∩Ks 6 Op(G)

and so P = GNp(K1 ∩ . . . ∩Ks) 6 Op(G), a contradiction. Hence we may assume

that p = 2. We proceed now to consider the following two cases:

Case 1 : |〈a〉| = 2n, where n > 1.

Since K1 ∩ . . .∩Ks is an abelian normal subgroup of P and a ∈ K1 ∩ . . .∩Ks, we

have Φ(K1∩. . .∩Ks) = Φ(GNp∩K1∩. . .∩Ks)Φ(〈a〉) = 〈a2〉 and so Ω1(〈a
2〉) 6 Z(P ).

On the other hand, Ω1(〈a
2〉) 6 Z(L) by Statement (7) and Ω1(〈a

2〉) 6 Z(G). By

Lemma 2.5, we see that Ω1(〈a
2〉) ∩GNp = 1. Set G = G/N and N = Ω1(〈a

2〉). It is

clear that NG(P ) = NG(P )/N = P/N is p-nilpotent. Since every minimal subgroup

of GNp is weakly pronormal in P , we can obtain that every minimal subgroup of

GNp = GNpN/N is weakly pronormal in P by Lemma 2.1 and therefore G satisfies

our hypotheses. The choice of G implies that G/N is p-nilpotent and so G is also

p-nilpotent, a contradiction.

Case 2 : |〈a〉| = 2.

By Statement (7), we see that a is an automorphism of Q with order 2 and Q is

a cyclic group of q satisfying ba = b−1, where Q = 〈b〉. In this case, GNp is a minimal

normal subgroup of G. In fact, let N be a minimal normal subgroup of G contained

in GNp . Take H = NL. Since N〈a〉 is maximal but not normal in H , we see that

NH(N〈a〉) = N〈a〉. Noticing that N〈a〉 ∩ HNp 6 N , every minimal subgroup of

N〈a〉∩HNp is weakly pronormal in N〈a〉 by Lemma 2.1. If further H < G, then the

choice of G implies that H is 2-nilpotent. Consequently, NQ = N ×Q and therefore

1 6= N∩Z(P ) 6 Z(G). Lemma 2.5 provides a contradiction. Hence GNp is a minimal

normal subgroup ofG. SinceGNp∩NG(Q) E NG(Q), we know thatGNp∩NG(Q) = 1

and so b acts fixed-point-freely on GNp . We may assume that N1 = {1, c1, c2, . . . , cq}

is a subgroup of GNp with c1 ∈ Z(P ) and b = (c1, c2, . . . , cq) is a permutation of the
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set {c1, c2, . . . , cq}. Noticing that b
a = b−1 and (c1)

a−1ba = (c1)
b−1

, (c2)
a = cq. If

we use (bi)a = b−i and consider (c1)
a−1bia = (c1)

b−1

, we see that (ci+1)
a = cq−i+1

for i = 1, 2, . . . , (q + 1)/2. Hence, N1 is normalized by both GNp and L and so N1

is normal in G. The minimal normality of GNp implies that GNp = N1, thus we

have Z(P ) = {1, c1}. Since G
Np ∩K1 ∩ . . .∩Ks is centralized by both G

Np and 〈a〉,

we have 1 < GNp ∩K1 ∩ . . . ∩Ks 6 Z(P ). In view of P not being abelian, we get

Φ(P ) = P ′ = Z(P ). Thus, P is an extra-special 2-group. From [22], Theorem 5.3.8,

there exists some positive integer n such that |P | = 22n+1, therefore |GNp | = 22n.

However, 22n−1 = (2n+1)(2n−1) and q = 22n−1, hence n = 1, q = 3 and |P | = 23.

Now it is easy to see that G ∼= S4, which is a contradiction to our hypotheses on G.

(9) p = 2 and exp(GNp)=4.

In view of Lemma 2.7, it will suffice to show that there exists a p-nilpotent maximal

subgroup M of G such that G = GNpM . In fact, let M be a maximal subgroup

of G containing L. Then M = L(M ∩ GNp) and G = GNpM . We can see that

M ∩ GNp E G and therefore M = (〈a〉(M ∩ GNp))Q. Let P1 = 〈a〉(M ∩ GNp)

and M1 a maximal subgroup of M containing P1. Then M1 = P1(M1 ∩ Q) and

GNpM1 < G. By Statement (1) we see that GNpM1 is p-nilpotent. Thus M1 ∩Q 6

CG(Op(G)) 6 Op(G). It follows from Statement (4) that M1 ∩ Q = 1 and so P1 is

maximal in M . In this case, if P1 E M , then 〈a〉 = P1 ∩L E L, which is contrary to

Statement (7). Hence, NM (P1) = P1 andM satisfies the hypotheses of our theorem.

The choice of G implies that M is p-nilpotent, as desired.

(10) The final contradiction.

By Statement (9) and Lemma 2.7, Z(GN2) = Φ(GN2) is an elementary abelian

2-group. For any minimal subgroup A1 of Φ(G
N2), since A1 is weakly pronormal

in P , we have that A1 E P by Lemma 2.3 and therefore Φ(GN2) 6 Z(P ). By the

Frattini argument we further obtain G = NG(Φ(G
N2)) = CG(Φ(G

N2))NG(P ). As

NG(P ) = P and P 6 CG(Φ(G
N2)), we get Φ(GN2) 6 Z(G). Hence we can take an

element x in Φ(GN2) such that x is of order 2 and x ∈ Z(G), which is a contradiction

to Lemma 2.5. This completes our proof. �

P r o o f of the Main Theorem. Combining Theorem 3.1 and Theorem 3.2, we

obtain that our theorem holds. �

In the following, we shall extend the Main Theorem to formations.

Theorem 3.3. Let F be a saturated formation containing the class of all super-

solvable groups and G a group such that G is S4-free. Also let N be a normal

subgroup of G such that G/N ∈ F. If for every prime p dividing the order of N and

for every Sylow p-subgroup P ofN , every minimal subgroup of P∩P x∩GNp is weakly
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pronormal in NG(P ) for all x ∈ G \ NG(P ) and when p = 2, P is quaternion-free,

then G ∈ F.

P r o o f. Suppose that the theorem is false and let G be a counterexample of

minimal order. By Lemma 2.1 and our main theorem, we know that N is a Sylow

tower group of supersolvable type. Thus, if p is the largest prime dividing the

order of N and P is a Sylow p-subgroup of N , then P must be normal in G and

G/P
/

N/P ∼= G/N ∈ F. It is clear that G/P satisfies the hypotheses of our theorem

for its normal subgroup N/P by Lemma 2.4 and Lemma 2.1. Then the minimality

of G implies that G/P ∈ F and therefore GF 6 P ∩GN. Furthermore, we claim that

GF 6 P ∩ GNp . Let P ∗ be a Sylow p-subgroup of G. As G/GNp is p-nilpotent, we

can see that P ∗GNp ∩ Op(G)GNp = GNp and so P ∗ ∩ Op(G) 6 GNp , which means

that P ∗ ∩Op(G) = P ∩GNp . A similar argument shows that P ∗ ∩Op(G) = P ∩GN

and this proves our claim. By [4], Theorem 3.5, there exists a maximal subgroup M

of G such that G = MF ′(G), where F ′(G) = Soc(GmodΦ(G)) and G/MG /∈ F.

Then G = MGF and so G = MF (G), where F (G) is the Fitting subgroup of G. It

is now clear that M satisfies the hypotheses of our theorem for its normal subgroup

M ∩ P . Hence, by the minimality of G, we have M ∈ F.

If GF is an elementary abelian group, then from Lemma 2.7 GF is a minimal

normal subgroup of G. Let A be a minimal subgroup of GF. Then A is weakly

pronormal in NG(P ) = G by our hypotheses. Thus, there exists a subgroup K of G

such that G = AK and A ∩K is pronormal in G. If A 6 K, then from Lemma 2.3

and the subnormality of A in G we have that A is normal in G and therefore GF = A,

which implies that G ∈ F, a contradiction. Hence, we may assume that A ∩K = 1.

It is clear that K ∩ GF is normal in G. The minimal normality of GF means that

K ∩ GF = 1 and A is normal in G. It follows that GF = A is cyclic of order p,

a contradiction.

We now suppose that GF is not an elementary abelian group. Then (GF)′ =

Z(GF) = Φ(GF) is an elementary abelian group by Lemma 2.7. Suppose that there

exists a minimal subgroup B of GF such that B is not pronormal in G. Then G has

a subgroup K satisfying G = BK and B ∩ K = 1. Clearly, Φ(GF) 6 K. We can

see that GF/Φ(GF) ∩K/Φ(GF) E G/Φ(GF) and so GF/Φ(GF) ∩K/Φ(GF) = 1 by

Lemma 2.7. It follows that GF/Φ(GF) = BΦ(GF)/Φ(GF) and therefore GF = B,

the choice of B provides a contradiction. Hence, every minimal subgroup of GF

is pronormal in G. Suppose that exp(GF) = p. Then from [10], Lemma 6.3 we

can obtain that every minimal subgroup AΦ(GF)
/

Φ(GF) of G/Φ(GF) is pronormal

in G/Φ(GF) and so is weakly pronormal in G/Φ(GF), where A 6 GF \ Φ(GF).

This implies that G/Φ(GF) satisfies the hypotheses of our theorem for its normal

subgroup GF/Φ(GF), and G/Φ(GF) ∈ F by the choice of G. Thus G ∈ F because F
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is a saturated formation, a contradiction. Hence p = 2 and GF has exponent 4 by

Lemma 2.7. Let Q be a Sylow q-subgroup of M with q 6= 2. By Theorem 3.1, GFQ

is 2-nilpotent and O2(M) is normalized by GF. This means O2(M) E G. Now, we

have GF 6 O2(M) 6 M since G/O2(M) is a 2-group, a contradiction. Thus, our

proof is completed. �

As an immediate consequence of Theorem 3.3, we have:

Corollary 3.4. Let G be a group such that G is S4-free. If for every prime p

dividing the order of G and for every Sylow p-subgroup P of G, every minimal

subgroup of P ∩P x ∩GNp is weakly pronormal in NG(P ) for all x ∈ G \NG(P ) and

when p = 2, P is quaternion-free, then G is supersolvable.
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