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Abstract. In this paper we study the asymptotic behavior of a system composed of an
integro-partial differential equation that models the longitudinal oscillation of a beam with
a memory effect to which a thermal effect has been given by the Green-Naghdi model type
III, being physically more accurate than the Fourier and Cattaneo models. To achieve
this goal, we will use arguments from spectral theory, considering a suitable hypothesis of
smoothness on the integro-partial differential equation.
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1. Introduction

The analysis of oscillations in flexible structures (beams, plates, and so on) has

received a central treatment in the scientific literature in recent years. This is due to

its multiple interesting applications in the field of science and technology. Namely,

one of the main problems both from the physical and mathematical point of view

corresponds to the question of the stabilization of the vibrations of a flexible struc-

ture. As is well known, there are several types of stability, where the most important

is the exponential stability. On the other hand, if a flexible structure is given a heat

effect, a model is created that is sufficiently precise and realistic from the physical

point of view. The effects of heat on a structure are mainly given by the classic

Fourier law of heat conduction, but this law has a number of shortcomings. One

of the first shortcomings is that the heat propagates infinitely on the body; another
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deficiency is that it is unable to take into account for the effects of memory on cer-

tain materials at low temperatures. One way to eliminate these paradoxes is to use

another model of heat conduction, such as the Cattaneo model, which predicts the

propagation of heat in a structure by means of finite waves [4]. This phenomenon is

commonly called second sound. However, but this model generates suspicions among

scientists, because it has a subtle deficiency of the analytical type; that is to say, the

problem of the non-objectivity of the character of the material derivative of the vec-

tor field associated with the heat flow [5]. The model of Green-Naghdi type III [14]

does not have the deficiencies presented by the Fourier and Cattaneo models and

provides a model of easy analytical manipulation that is free from the paradoxes and

controversies of the two previous laws. More details of the above statements can be

found in [12], [23].

When a flexible structure oscillates, the moment of the linear balance gives us the

relation [1], [17]:

mutt − σx = f(x),

where σ represents the stress defined by the expression

σ = σ(ux, uxt) = p(x)ux + 2δ(x)uxt,

where m(x) is the mass per unit length of the structure, δ(x) is the coefficient of

internal material damping, and p(x) is a positive function associated with stress

acting on the body. From the above, we obtain directly the equation of the longitu-

dinal movement of the beam oscillation when an exterior disturbing force acts on it,

namely:

(1.1) mutt − (p(x)ux + 2δ(x)uxt)x = f.

We observe that in the study of this type of problem, a desirable goal is that the

semigroup associated with these equations or systems, coupled with some dissipative

effect, decays exponentially when t tends to infinity. In this sense we note that

in general there are several contributions to the study of the asymptotic behavior

of systems associated with thermoviscoelastic problems with memory, namely [16],

[7], [9], [20], [3], [10], [22] and references therein. In this direction, the following

works can be mentioned where g(s) ≡ 0 whose results are closely related to the one

presented to this paper:

For example for (1.1), Gorain et al. [13] consider the system

m(x)utt − (p(x)ux + 2δ(x)uxt)x + κθx = f,

θt − θxx − κuxt = 0.
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and they prove the exponential decay of the semigroup associated with the sys-

tem, which in this case is composed of the equation (1.1); that is, a flexible non-

homogeneous structure which experiences a thermal effect given by the Fourier law.

Recently, Alves et al. [1] considered the system

m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx = 0,

θt + κqx + ηuxt = 0,(1.2)

τqt + βq + κθx = 0.

They prove the exponential stability of the associated solutions of a flexible homo-

geneous structure with a heat effect given by Cattaneo’s law.

In this paper, we will study a variation of the model (1.2) in which a memory effect

is considered in the material and a non-classical heat effect given by the model of

Green-Naghdi type III which allows us to make an improvement on the deficiencies

and controversies given by the models of heat flow named above. Our study system

is given by the following equations:

m(x)utt − g(0)uxx − σx(ux, uxt)(1.3)

−
∫ ∞

0

g′(s)uxx(t− s) ds− ξθxt = 0 in Γ,

θtt − κθxx − βθxxt − ξuxt = 0 in Γ,(1.4)

where u = u(x, t), θ = θ(x, t) are the longitudinal displacement of the beam and the

temperature difference between the current state and a referential state. The term

σx(ux, uxt) = (p(x)ux+2δ(x)uxt)x represents the derivative of the stress operator in

the structure, and the set Γ is given by Γ = Ω×R
+ = (0, l)× (0,∞). The constants

β, κ, ξ are assumed to be strictly positive and

(1.5) m(x), p(x), δ(x) ∈ W 1,∞(Ω), m(x), p(x), δ(x) > 0 ∀x ∈ [0, l].

We consider the following boundary conditions:

(1.6) u(0, t) = u(l, t) = 0, θ(0, t) = θ(l, t) = 0 ∀ t > 0,

and initial conditions

(1.7) u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = ϕ0(x) in Ω.
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The integral term in (1.3) represents a history term with kernel g satisfying the

following hypothesis:

H1 : g(s) ∈ C2(0,∞) ∩ C[0,∞), g′ ∈ L1(0,∞),

H2 : g(s) > 0, g′(s) < 0, g′′(s) > 0 on (0,∞),

H3 : g(∞) > 0,

H4 : g′′(s) + ̺g′(s) > 0 on (0,∞) for some constant ̺ > 0,

and there exist positive constants s1, K such that for s > s1, g
′′(s) 6 K|g′(s)|.

R em a r k. According to the hypothesis H3, we can assume in the rest of this

work that g(∞) = 1.

The main goal in this work is to prove the well-posedness and exponential stability

of the problem (1.3)–(1.7) under smoothness assumptions on the functions m, p, δ,

and g. To prove the well-posedness of the problem, we will use the Lumer-Phillips

theorem [21] and for the proof of exponential stability we will use the Gearhart

theorem [11], which considers spectral theory arguments, that is:

Theorem 1.1. Let eAt be a C0-semigroup of contractions on a Hilbert space.

Then T (t) = eAt is exponentially stable if and only if

(1.8) iR ⊂ ̺(A)

and

(1.9) lim
|λ|→∞

‖(iλI −A)−1‖ < ∞

hold.

This paper is organized as follows: Section 2 briefly outlines preliminary results

and notations. In Section 3, well-posedness of the system is established. In Sec-

tion 4, we show the exponential stability of the solutions corresponding to the semi-

group T (t).
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2. Semigroup setting

In this section, we provide the semigroup context and the main tools that will be

used to obtain the main result.

The usual spaces that we will use throughout this paper will be the standard

Lebesgue and Sobolev spaces; that is to say

Lp(Ω), 1 6 p 6 ∞ and H1
0 (Ω).

In the case p = 2, we write ‖u‖ instead of ‖u‖2, and according to the Poincaré
inequality, we get

‖u‖ 6 Cp‖ux‖ and ‖u‖H1

0
(Ω) = ‖ux‖ ∀u ∈ H1

0 (Ω).

In order to write the system (1.3)–(1.7) as a Cauchy problem in a Hilbert space, we

introduce a new variable in the form proposed by Dafermos [7]

(2.1) ηt(x, s) = η(s) = u(x, t)− u(x, t− s), (x, s) ∈ Ω× R
+, t > 0.

Substituting the variables (u, v, θ, ϕ, η) in the original system, where v = ut, ϕ = θt
have to satisfy the equivalent system:

m(x)vt − uxx − σx(ux, vx) +

∫ ∞

0

g′(s)ηxx(s) ds− ξϕx = 0 in Γ,(2.2)

ϕt − κθxx − βϕxx − ξvx = 0 in Γ,(2.3)

ηt − v + ηs = 0 in Γ × R
+,(2.4)

where σx(ux, vx) = (p(x)ux +2δ(x)vx)x and the equation (2.4) is obtained by differ-

entiating (2.1). Thus, the boundary conditions become

(2.5) u(0, t) = u(l, t) = θx(0, t) = θx(l, t) = η(0, s) = η(l, s) = 0

for t > 0, s > 0 and where the initial conditions are given by

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), ϕ(x, 0) = ϕ0(x)(2.6)

η0(x, s) = u(x, 0)− u(x,−s) = η0(s), x ∈ Ω, s > 0.

In view of the assumptions H1–H4, we define W = L2
g′(R+, H1

0 ) being the Hilbert

space of all H1
0 -valued, square integrable functions defined on the measure space

(R+, |g′| ds) equipped with norm

‖η‖2W =

∫

Ω

∫ ∞

0

|g′(s)| |ηx(s)|2 ds dx.
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Let us now introduce the phase space

H = H1
0 × L2 ×H1

0 × L2 ×W .

We define the inner product on H by

(2.7) 〈U,U1〉H =

∫

Ω

P(x)uxu1x dx+

∫

Ω

m(x)vv1 dx+

∫

Ω

ϕϕ1 dx

+ κ

∫

Ω

θxθ1x dx+

∫

Ω

∫ ∞

0

|g′(s)|ηxη1x ds dx,

where U(t) = U = (u, v, θ, ϕ, η)⊤, U1(t) = U1 = (u1, v1, θ1, ϕ1, η1)
⊤ and P(x) =

p(x) + 1.

The norm induced in H is given by

‖U‖2H = ‖
√

P(x)ux‖2 + ‖
√

m(x)v‖2 + ‖ϕ‖2 + κ‖θx‖2 + ‖η‖2W .

Note that ‖·‖2H is equivalent to the usual norm of H
On the other hand, using (2.1) and v = ut, ϕ = θt the initial value problem

(2.2)–(2.6) can be reduced to the following abstract Cauchy problem for a first-order

evolution equation

(2.8)
d

dt
U(t) = AU(t), U(0) = U0,

where

U0 = (u0, v0, θ0, ϕ0, η0)
⊤.

The linear operator A : D(A) ⊂ H → H is given by

(2.9) AU =



















v

1

m(x)

[

uxx + σx(ux, vx)−
∫ ∞

0

g′(s)ηxx(s) ds+ ξϕx

]

ϕ

κθxx + βϕxx + ξvx

v − ηs



















with the domain D(A) of the operator A defined by

D(A) =

{

(u, v, θ, ϕ, η) ∈ H : v ∈ H1
0 , κθ + βϕ ∈ H2, η ∈ W , ηs ∈ W

η(0) = 0, P(x)ux + 2δ(x)vx −
∫ ∞

0

g′(s)ηx(s) ds ∈ H1

}

.

412



3. Well-posedness

Theorem 3.1. The operator A generates a C0-semigroup T (t) = eAt of contrac-

tions on the space H.

P r o o f. We will show that A is a dissipative operator and 0 belongs to the

resolvent set ofA, denoted by ̺(A). We observe firstly that D(A) = H, by using (2.7)
and we have for any U ∈ D(A) that

(3.1) 〈AU,U〉H =

∫

Ω

P(x)vxux dx+

∫

Ω

[uxx + (p(x)ux + 2δ(x)vx)x]v dx

−
∫

Ω

[∫ ∞

0

g′(s)ηxx ds− ξϕx

]

v dx+ κ

∫

Ω

ϕxθx dx

+

∫

Ω

[κθxx + βϕxx + ξvx]ϕdx

+

∫

Ω

∫ ∞

0

|g′(s)|(v − ηs)xηx ds dx.

Integrating by parts in (3.1), we easily see that

(3.2) Re〈AU,U〉H = −2

∫

Ω

δ(x)|vx|2 dx− β

∫

Ω

|ϕx|2 dx− 1

2

∫ ∞

0

g′′(s)‖ηx‖2 ds 6 0,

thus A is a dissipative operator.
On the other hand, to prove that 0 ∈ ̺(A), we will use similar arguments to those

given in [18], [2], [8] and references therein. In fact, given F = (f1, f2, f3, f4, f5)
⊤ ∈H,

we must show that there exists a unique U = (u, v, θ, ϕ, η)⊤ in D(A) such that

AU = F. Indeed

v = f1 ∈ H1
0 ,(3.3)

uxx + σx(ux, vx)−
∫ ∞

0

g′(s)ηxx(s) ds+ ξϕx = m(x)f2 ∈ L2,(3.4)

ϕ = f3 ∈ H1
0 ,(3.5)

κθxx + βϕxx + ξvx = f4 ∈ L2,(3.6)

v − ηs = f5 ∈ W .(3.7)

We can get a unique v ∈ H1
0 from (3.3), and then from (3.7) we get

(3.8) η(s) =

∫ s

0

(v − f5(τ)) dτ = sf1 −
∫ s

0

f5(τ) dτ
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It is clear that η(0) = 0 and ηs ∈ W . We want to prove that η ∈ W . For any T > 0,

ε > 0, by H4 and the Cauchy-Schwarz inequality, we have

∫ T

ε

|g′(s)||ηx(s)|2 ds 6 −
∫ T

ε

g′(s)|ηx(s)|2 ds 6
1

̺

∫ T

ε

g′′(s)|ηx(s)|2 ds.

Integrating by parts and straightforward calculations, we have

(3.9)

∫ T

ε

|g′(s)||ηx(s)|2 ds 6 − 2

̺
g′(ε)|ηx(ε)|2 +

4

̺2

∫ T

ε

|g′(s)| |ηxs(s)|2 ds.

Let us notice that −2̺−1g′(ε)‖ηx(ε)‖2 → 0 as ε → 0. As a result from (3.9) by

letting T → ∞ and ε → 0 that η ∈ W and

‖η‖2W 6
4

̺2

∫ ∞

0

|g′(s)| ‖ηxs(s)‖2 ds.

On the other hand, from (3.6) and (3.3) we obtain

(κθ + βϕ)xx ∈ L2.

From the regularity theory for the linear elliptic equations we find that

κθ + βϕ ∈ H2.

Moreover, from (3.4) we get

(3.10)

(

P(x)ux + 2δ(x)vx −
∫ ∞

0

g′(s)ηx(s) ds

)

x

∈ L2.

Hence,

P(x)ux + 2δ(x)vx −
∫ ∞

0

g′(s)ηx(s) ds ∈ H1.

Moreover, it is obvious that there is a positive constant C, being independent of U ,

such that ‖U‖H 6 C‖F‖H. Therefore, we conclude that 0 ∈ ̺(A), and so A becomes
the infinitesimal generator for a contraction semigroup in H. �

From this theorem it follows the well-posedness for the abstract Cauchy prob-

lem (2.8) thanks to the semigroup theory, specifically to the Lumer-Phillips theorem.

In particular, the following theorem [21] is obtained immediately.

Theorem 3.2. For every initial condition U0 ∈ D(A), problem (2.2)–(2.6) has

a unique solution satisfying

U ∈ C1((0,∞);H) ∩ C((0,∞);D(A)).
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4. Exponential stability

In this section, we focus on proving the exponential stability for T (t) = eAt,

a semigroup associated with the operator A, given by (2.9). Firstly we need to
consider the resolvent equation, i.e., for any F ∈ H and U ∈ D(A) the following

holds

(iλI −A)U = F,

i.e.,

iλu − v = f1,(4.1)

iλv − 1

m(x)
(uxx + σx(ux, vx)−

∫ ∞

0

g′(s)ηxx(s) ds+ ξϕx) = f2,(4.2)

iλθ − ϕ = f3,(4.3)

iλϕ − κθxx − βϕxx − ξvx = f4,(4.4)

iλη − v + ηs = f5.(4.5)

Theorem 4.1. The semigroup T (t) = eAt, generated by the operator A given
in (2.9) is exponentially stable, i.e., there exist constants M, γ > 0 such that

‖T (t)‖ 6 Me−γt ∀ t > 0

To prove this proposition we will use Theorem 1.1. Firstly we will prove (1.8) i.e.,

iR ⊂ ̺(A). We will follow similar ideas to those given in [18], [2], [19], which consist

of the following steps:

(i) Since 0 ∈ ̺(A), for any real number λ with ‖λA−1‖ < 1, the linear bounded

operator iλA−1 − I is invertible, therefore iλI −A = A(iλA−1 − I) is invertible

and its inverse belongs to L(H); that is, iλ ∈ ̺(A). Moreover, ‖(iλI −A)−1‖ is
a continuous function of λ in the interval (−‖A−1‖−1, ‖A−1‖−1).

(ii) If sup{‖(iλI −A)−1‖ : |λ| < ‖A−1‖−1} = M < ∞, then for |λ0| < ‖A−1‖−1 and

λ ∈ R such that |λ−λ0| < M−1, we have ‖(λ−λ0)(iλ0I−A)−1‖ < 1. Therefore,

the operator

iλI −A = (iλ0I −A)(I + i(λ− λ0)(iλ0I −A)−1)

is invertible with inverse in L(H); that is, iλ ∈ ̺(A). Since λ0 is arbitrary,

we can conclude that {iλ : |λ| < ‖A−1‖−1 + M−1 ⊂ ̺(A)} and the function
‖(iλI−A)−1‖ is continuous in the interval (−‖A−1‖−1−M−1, ‖A−1‖−1+M−1).

(iii) Thus, it follows by item (ii) that if iR ⊂ ̺(A) is not true, then there ex-

ists ω ∈ R with ‖A−1‖−1 < |ω| such that {iλ : |λ| < |ω|} ⊂ ̺(A) and
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sup{‖(iλI − A)−1‖ : |λ| < |ω|} = ∞. Therefore, there exists a sequence of

real numbers (λn) with λn → ω, |λn| < |ω| and sequences of vector functions
Un = (un, vn, θn, ϕn, ηn)

⊤ ∈ D(A), Fn = (f1n, f2n, f3n, f4n, f5n)
⊤ ∈ H, such

that (iλI −A)Un = Fn and ‖Un‖H = 1 and Fn → 0 in H when n → ∞, that is:

iλnun − vn = f1n → 0 in H1
0 ,(4.6)

iλnvn − 1

m(x)
(unxx + σx(ux, vx))(4.7)

− 1

m(x)

(∫ ∞

0

g′(s)ηnxx(s) ds− ξϕnx

)

= f2n → 0 in L2,

iλnθn − ϕn = f3n → 0 in H1
0 ,(4.8)

iλnϕn − κθnxx − βϕnxx − ξvnx = f4n → 0 in L2,(4.9)

iλnηn − vn + ηns = f5n → 0 in W .(4.10)

We observe that

(4.11) Re〈iλnUn −AUn, Un〉H → 0 as n → ∞.

Thus from (3.2) we have

(4.12) 2

∫

Ω

δ(x)|vnx|2 dx+ β

∫

Ω

|ϕnx|2 dx+
1

2

∫ ∞

0

g′′(s)‖ηnx‖2 ds → 0.

From H4 we obtain

(4.13)
̺

2
‖η‖2W 6

1

2

∫ ∞

0

g′′(s)‖ηnx‖2 ds.

Using (4.12) and (4.13), it follows

(4.14) ηn → 0 in W and vnx → 0, ϕnx → 0 in L2 as n → ∞.

From the Poincaré inequality and (1.5) we get

(4.15) vn → 0 and
√

m(x)vn → 0 in L2 as n → ∞.

We note that vn → 0 in H1
0 . Thus from (4.6) we have un → 0 in H1

0 , and therefore

from (1.5) we see that

(4.16)
√

P(x)unx → 0 in L2 as n → ∞.
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On the other hand, taking the inner product in (4.9) with ϕn in L2 and integrating

by parts, it follows that

(4.17) iλn〈ϕn, ϕn〉+ κ〈θnx, ϕnx〉+ β〈ϕnx, ϕnx〉+ ξ〈vn, ϕnx〉 → 0 as n → ∞,

therefore by (4.14) and (4.17) it follows that

(4.18) ϕn → 0 in L2 as n → ∞.

Using (4.14) and (4.18) in (4.8), we have

(4.19) θn → 0 and θnx → 0 in L2 as n → ∞.

From (4.14), (4.15), (4.16), (4.18), and (4.19) we have that

(4.20) lim
n→∞

‖Un‖H = 0.

Hence, Un cannot be of unit H-norm.
For the proof of (1.9) we will use contradiction arguments. Suppose that (1.9)

is not true. Then there exists a sequence λn with |λn| → ∞ and a sequence Un =

(un, vn, θn, ϕn, ηn)
⊤ in D(A) with unit norm in H such that ‖(iλnI −A)Un‖ → 0 as

n → ∞, i.e.,

iλnun − vn → 0 in H1
0 ,(4.21)

iλnvn − 1

m(x)
(unxx + σx(ux, vx))(4.22)

− 1

m(x)

(∫ ∞

0

g′(s)ηnxx(s) ds− ξϕnx

)

→ 0 in L2,

iλnθn − ϕn → 0 in H1
0 ,(4.23)

iλnϕn − κθnxx − βϕnxx − ξvx → 0 in L2,(4.24)

iλnηn − vn + ηns → 0 in W .(4.25)

Again we have (4.11), i.e.,

Re〈iλnUn −AUn, Un〉H → 0 as n → ∞.

Thus

2

∫

Ω

δ(x)|vnx|2 dx+ β

∫

Ω

|ϕnx|2 dx+
1

2

∫ ∞

0

g′′(s)‖ηnx‖2 ds → 0.
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Using similar steps to those given in the above proof and straightforward calculations,

we have

ηn → 0 in W as n → ∞

and

√

m(x)vn → 0,
√

P(x)unx → 0 in L2 as n → ∞,

θnx → 0, ϕn → 0 in L2 as n → ∞.

Therefore, we conclude

(4.26) lim
n→∞

‖Un‖H = 0.

Hence, Un cannot be of unit H-norm. In this way our main theorem is proven.
Further remarks:

(i) Note that in this work we have considered g(∞) = 1. Otherwise, the functional

−g(∞)uxx can be changed in (2.2) for the functional −uxx and we can rede-

fine the integral kernel g(·) = g(·)/g(∞), thus obtaining a similar problem to

(2.2)–(2.6).

(ii) An example of a function g satisfying the hypothesis H1–H4, is given by the

called Maxwell type kernel, namely

g(s) = 1 +Me−ks, k,M > 0.

(iii) The proof of −2̺−1g′(ε)‖ηx(ε)‖2 → 0 as ε → 0 is proved with similar arguments

to those given in [18], [20] and references therein.

(iv) Exploiting (4.23), and with similar steps to those given in [18], [19], it follows

that iλnθn − ϕn → 0 in L2 and iλnθnx − ϕnx → 0 in L2. Then with the

assumptions about ϕn and ϕnx we obtain (4.19).

(v) The condition (1.5) guarantees the equivalence of the norms ‖v‖ and ‖√mv‖, as
well as the equivalence ‖ux‖ and ‖

√
Pux‖. In this way we can show (4.15) and

(4.16).
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5. Conclusions

As we know, Fourier’s law essentially tells us that any thermal disturbance at one

point has an instantaneous effect on any other part of the body and at the same time

does not consider the memory effects at low temperatures. On the other hand, the

Cattaneo model has the defect of the derivative of the vector field associated with

the heat flow. When we prove the well-posedness and the exponential decay and not

another weaker type of decay (for example, the polynomial decay) we have made

an improvement of the works named in the Section 1, offering with it a much more

realistic model from the physical point of view. Let us say that these results can be

improved furthermore by considering the Coleman-Gurtin [6] or Gurtin-Pipkin [15]

law instead of equation (1.4), obtaining an effective prediction for heating propa-

gation on the structure. All these statements constitute a promising set of new

questions to be addressed in further research.
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