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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 4 , P A G E S 7 6 7 – 7 9 3

FAULT-TOLERANT PITCH-RATE CONTROL
AUGMENTATION SYSTEM DESIGN FOR ASYMMETRIC
ELEVATOR FAILURES IN A COMBAT PLANE

İlkay Gümüşboğa and Altuğ İftar

Combat planes are designed in a structured relaxed static stability to meet maneuver require-
ments. These planes are unstable in the longitudinal axis and require continuous active control
systems with elevator control. Therefore, failures in the elevator can have vital consequences
for flight safety. In this work, the performance of classical control approach against asymmetric
elevator failures is investigated and it is shown that this approach is insufficient in the case of
such a failure. Then, a fault-tolerant control system is proposed to cope with these failures
and it is shown that this controller can successfully deal with such failures. The F-16 aircraft
is taken as an example case. A detailed nonlinear dynamic model of this aircraft is presented
first. In the F-16 aircraft, the elevator surfaces are in two parts, right and left, and can move
independently. Therefore, to obtain a more realistic and difficult failure scenario, it is assumed
that the elevator is asymmetrically defective. Two types of failures commonly observed on the
elevator surfaces (freezing and floating) are aerodynamically modeled and it is shown that the
pitch-rate control augmentation systems in the conventional structure cannot cope with these
elevator failures. In order to overcome this problem, a fault-tolerant control system is proposed.
It is shown that this controller can successfully cope with the aforementioned failures without
any degradation in flight safety.

Keywords: fault-tolerant control, robust control, flight control, control augmentation sys-
tem, asymmetric elevator failures

Classification: 93B51, 93B36, 93C35, 93D15, 93C95

1. INTRODUCTION

Control surface failures can cause performance degradation in flight control systems,
and even system instability leading to serious accidents. Designing a control system
for unanticipated failure conditions has been an important and challenging research
problem. Control augmentation systems (CASs) are crucial in the aerospace industry
because they provide dynamic stability on statically unstable aircraft and undertake
specific control functions to reduce the workload of the pilot. These functions include
tasks such as precision target tracking, especially on high-performance military aircraft.
Control of pitch-rate is the preferred system for a situation that requires precise tracking
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of a target and for critical flight phases such as approach and landing. A pitch-rate CAS
design for a healthy F-16 aircraft, in the presence of time-delays in the measurements,
has been done by the authors [10]. Furthermore, a detailed aerodynamic model of the
F-16 aircraft in the case of asymmetric elevator failures has been obtained in [11]. This
modeling study is important because, without such a model, it is not possible to verify
the usefulness of the designed controllers. This model was obtained by modifying the
full dynamic nonlinear model of the F-16 aircraft, which was obtained in [12].

The longitudinal control system is especially important for combat planes since these
planes are unstable in the longitudinal axis. There have been a number of studies
of fault-tolerant control (FTC) system design to guarantee longitudinal control system
stability and acceptable performance degradation under elevator failures [6,13,17–19]. In
some of these studies, a pitch-only thrust vectoring nozzle is used as a redundant control
effector such as for the National Aeronautics and Space Administration (NASA) High-
Angle-of-Attack Research Vehicle (HARV) [13] and for the F-16 aircraft [18]. [1, 30, 31]
introduce the civil aircraft with a redundant actuation system and focuses on modeling of
damaged aircraft in a vertical tail loss situation and developing a FTC strategy. On the
other hand, [4] uses the control reconfiguration procedure when stuck or floating failures
occur on the control surfaces of an unmanned aerial vehicle. In the case of a rudder or
aileron jamming failure, [16] proposes an autopilot system that provides flight safety,
using the remaining healthy control surfaces. [27] proposes a direct adaptive approach
for control of a class of multi-input multi-output nonlinear systems in the presence of
uncertain failures of redundant actuators. [24] proposes a novel robust optimal control
approach for the attitude stabilization of a flexible spacecraft in the presence of external
disturbances.

In the aforementioned literature, failure scenarios are dealt with in a simple way and
the assumptions made reduce the realism of the design. In addition, elevator failures
are handled symmetrically. The symmetric elevator failures ensure that the effect of the
failure is limited to the longitudinal motion of the aircraft. However asymmetric elevator
failures, in addition to the negative effect in the longitudinal motion, lead to distortion
in the lateral axis. With this distortion, the decoupling between the longitudinal and
lateral/directional motion of the aircraft is disrupted. Hence, this condition makes
the problem more difficult to solve. Furthermore, most of the literature solves the
FTC design problem by including redundant control surfaces and/or actuators. Having
redundant control surfaces and/or actuators, which is called as hardware redundancy,
however, increase the weight of the aircraft, which is undesirable, especially for combat
planes. An alternative approach to hardware redundancy is the so-called aerodynamic
redundancy, in which the function of a failed control surface (e. g., elevator) is undertaken
by other existing control surfaces (e. g., ailerons and the rudder). This approach provides
a weight advantage compared to the hardware redundancy approach.

In the present study, following the aerodynamic redundancy approach, a FTC system
is designed which uses the other existing control surfaces to compensate for a failed
control surface. Specifically, the case of an asymmetric elevator failure is considered. It
is first shown that a controller designed by a classical control approach can not cope
with such a failure. Then, a fault-tolerant pitch-rate CAS is designed to cope with
asymmetric elevator failures. It is shown that this controller, despite the negative effect
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of an asymmetric elevator failure, can continue to execute the desired maneuver without
any degradation in flight safety.

In Section 2, the full dynamic nonlinear model of the F-16 aircraft, obtained in [12],
is presented and a linear design model is obtained. Then, in Section 3, the modified
aerodynamic model, as obtained in [11] for the case of asymmetric elevator failures, is
presented and the control surface failures to be considered are detailed. In Section 4,
a classical pitch-rate CAS is designed that will work in case of no failure. As it was
shown in [11], asymmetric elevator failures cause disturbing effects on both pitch and
roll moments. Therefore, in order to make a fair comparison between the conventional
pitch-rate CAS and the fault-tolerant CAS, a stability augmentation system (SAS) is also
designed for the roll channel in Section 4. In Section 5, a robust FTC system to operate
under the asymmetric elevator failures is proposed. By nonlinear flight simulations, it
is shown that, although the conventional control systems can not maintain the stability
of the aircraft in the case of asymmetric elevator failures, this FTC system continues
to maintain the stability and performs the required pitch-rate tracking without any
degradation in flight safety. Some concluding remarks are finally given in Section 6. A
nomenclature is included in the Appendix.

2. MODELING OF THE F-16 AIRCRAFT

In this section, the complete nonlinear dynamic model of the F-16 aircraft will be pre-
sented briefly. The linear design model will then be obtained by a linearization procedure
on this nonlinear model. The nonlinear model will also be used to verify the designed
controllers in the following sections.

2.1. Nonlinear dynamic model of the F-16 aircraft

A detailed nonlinear dynamic model of the F-16 aircraft has recently been obtained
in [12]. The parameters related to the mass and dimensional characteristics of the F-16
aircraft and the details of that model can be found in that reference. In the present
subsection, all sub-models that constitute this complete model are summarized briefly.

2.1.1. Control surface actuation model

The control surface (elevator, ailerons, rudder) actuators of the aircraft are modeled as
first-order linear lag systems followed by some rate and deflection limits [2, 15,21]. The
inputs to these actuators are the elevator, aileron, and the rudder commands (produced
by the pilot or the autopilot), represented by δec , δac , and δrc , respectively. The output
of each actuator, on the other hand, are the respective control surface deflections, repre-
sented by δe, δa, and δr, respectively. The transfer function for the linear lag dynamics
is

Gactuator(s) =
1

τs+ 1
(1)

where the time constant is τ = 49.5 × 10−3 seconds. The lag dynamics are the same
for all control surfaces, the rate and deflection limits, however, differ for each control
surface. These limits, together with the sign convention and the effect produced by each
surface, are shown in Table 1 [15].
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Control
surface

Symbol
Deflection
limit (rad)

Rate limit
(rad/s)

Positive sign
convention

Effect

Elevator δe ±0.4363 ±1.0472
Trailing edge

down
Negative pitching

moment

Ailerons δa ±0.3752 ±1.3963
Right-wing

trailing edge
down

Negative rolling
moment

Rudder δr ±0.5236 ±2.0944
Trailing edge

left

Negative yawing
moment, positive
rolling moment

Tab. 1. Parameters for the F-16 control surfaces.

2.1.2. Aerodynamic model

The basis of the aerodynamic model is the dataset obtained as a result of wind tunnel
tests of the aircraft. In this model, the aerodynamic forces (X, Y , Z) and moments (L,
M , N) acting on the aircraft are obtained as:

X = Cxq̄S ; Y = Cy q̄S ; Z = Cz q̄S ; L = Clq̄Sb ; M = Cmq̄Sc̄ ; N = Cnq̄Sb (2)

where q̄, S, b, c̄ and denote the dynamic pressure, wing area, wing span, and wing
reference chord (all in SI units), respectively. The dimensionless aerodynamic force (Cx,
Cy, Cz) and moment (Cl, Cm, Cn) coefficients are expressed as:

Cx = cx(α, δe) + cxq (α)q̃

Cy = cy(β, δa, δr) + cyp(α)p̃+ cyr (α)r̃

Cz = cz(α, β, δe) + czq (α)q̃

Cl = cl(α, β) + clp(α)p̃+ clr (α)r̃ + clδa (α, β)δa + clδr (α, β)δr

Cm = cm(α, δe) + cmq (α)q̃ + (xcgref − xcg)Cz

Cn = cn(α, β) + cnp(α)p̃+ cnr (α)r̃ + cnδa (α, β)δa + cnδr (α, β)δr − (xcgref − xcg)
c̄

b
Cy

(3)

where p̃ = pb
2V , q̃ = qc̄

2V , r̃ = rb
2V , and the functions cx(.), cxq (.), etc. are (multi-)

polynomials whose coefficients are determined by a look-up table based on wind tunnel
data (see [7,21] for details). Additionally, in these equations, V , α, β, p, and r denote the
velocity, the angle of attack (AoA), the sideslip angle, the roll rate and the yaw rate of
the aircraft, respectively. Furthermore, xcg is the center-of-gravity location and xcgref is
the reference center-of-gravity location for aerodynamic data, which are both represented
as a fraction of c̄. In the present study, it is assumed that xcg = xcgref = 0.35. We
note that, this corresponds to the relaxed static stability condition, in which the aircraft
becomes open-loop unstable in the longitudinal axis.

2.1.3. Propulsion model

The propulsion model calculates the thrust value (T ) based on the throttle setting (δT )
determined by the pilot or the automatic flight control system, the altitude (h), and
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the Mach number. This model is constructed using experimental data. In [21, 26], the
engine thrust value dataset has been published for the F-16 aircraft.

2.1.4. Gravity model

The gravity model produces different gravitational acceleration values according to the
latitude of the geodetic location (λ) on the earth and the altitude of the aircraft (h).
This model takes the information of the latitude and the altitude of the aircraft as inputs
and calculates the gravitational acceleration, g(λ, h), for that location [9, 14]. Since the
simulations involve relatively small displacements, in the present study, the latitude, λ,
is assumed to be fixed at 30 degrees (chosen arbitrarily, the effect is minimal since, for
any given h, the maximum and the minimum of g(λ, h) over λ differs only about half a
percent; North or South does not make a difference due to symmetry) and the gravity is
calculated for the changing altitude, h, which is obtained from the Equations of Motion
(EoM) model.

2.1.5. Atmosphere model

The International Standard Atmosphere (ISA) model is taken as the atmospheric model
[5]. This model is based on a dataset that describes how the parameters of the at-
mosphere, such as temperature, pressure, density, and viscosity changes depending on
different altitude values.

2.1.6. Equations of motion

The equations of motion consist of kinematic and dynamic equations related to the mo-
tion of the aircraft which is caused by the forces (X,Y, Z, T ) and the moments (L,M,N)
acting on the aircraft. These forces and moments, calculated by the aerodynamic and
propulsion models, constitute the inputs of the EoM model. This model consists of
twelve nonlinear, coupled, first-order differential equations [8, 15]. The model produces
the twelve motion state variables: V, α, β, p, q, r, φ, θ, ψ,Nd, Ed, and h. In here, p, q, r
denote the roll, pitch, and yaw rates and φ, θ, ψ denote the roll, pitch, and yaw an-
gles, respectively, and Nd and Ed denote the north and east position of the aircraft,
respectively.

2.2. Linear Design Model

In this subsection, the linear design model is obtained by linearizing the nonlinear F-16
model presented in the previous subsection. For obtaining the linear time-invariant
(LTI) model, a basic numerical linearization procedure is applied [26]. For the LTI
model, eight state variables related to longitudinal (V, α, θ, q) and lateral/directional
(β, φ, p, r) motion are used. The north, east, and yaw state derivatives are a function of
other states, but these states themselves are not coupled back into the state equations.
Also, the altitude state only enters the aircraft equations through the gravity and the
atmosphere models, and in this case, it has negligible coupling to other states. For this
reason, these state variables are not represented in the LTI model. As a result, the state
and the input vectors to be used in the linearization procedure are taken as follows:
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x̄ =
[
V α θ q β φ p r

]T
ū =

[
δe δa δr

]T
.

(4)

Assuming that all the dynamics, from ū to ˙̄x, can be expressed in closed-form as follows:

˙̄x(t) = f [x̄(t), ū(t)] (5)

where x̄(t) is the eight-dimensional state vector (t being time), ū(t) is the three-dimen-
sional control input vector, and f is an eight-dimensional nonlinear function. All the
dynamics that affect the system, from the control surface deflections, ū(t), to the aircraft
motion states, x̄(t), are represented by the f function. These dynamics are discussed in
detail in Section 2.1. Since the aerodynamic and thrust models are dataset-based mod-
els, it is not possible to find analytical expressions for the f function. Therefore, the
models created in the MATLAB environment in Section 2.1 are used in the linearization
process and the calculations are made numerically. As a general form, the f function is
represented as f = [f1 f2 ... f8]T .

A multivariate Taylor-series expansion of the explicit state equations, around an
equilibrium point, gives (when higher-order terms are neglected)

∆ ˙̄x =
∂f

∂x̄

∣∣∣∣ x̄=xtrim
ū=utrim

∆x̄+
∂f

∂ū

∣∣∣∣ x̄=xtrim
ū=utrim

∆ū. (6)

Where partial derivative terms denote Jacobian matrices calculated around trim values
and also ∆ indicates the deviation from the equilibrium point.

The states and the inputs in the linear model are defined as the deviations of x̄
and ū, respectively, around their equilibrium points. In aviation literature, these equi-
librium values are called as trim values. The linearized model is obtained using the
trim values which are calculated for a specific flight condition: steady wings-level flight,
V = 100 m/s, h = 1000 m. The details of the calculation of the trim values can be
found in [12]. The trim values for the above-mentioned flight condition are (in SI units):

xtrim =
[
100 0.123 0.123 0 0 0 0 0

]T
utrim =

[
−0.024 5 × 10−7 7 × 10−7

]T
.

(7)

Furthermore, the trim value for the throttle setting is calculated as δT = 11.134 (throttle
setting value is taken as constant at this trim value in all simulations). Thereby, the
state and the input vectors for the LTI model are as follows:

x = x̄− xtrim =
[
∆V ∆α ∆θ ∆q ∆β ∆φ ∆p ∆r

]T
u = ū− utrim =

[
∆δe ∆δa ∆δr

]T
.

(8)

Resulting state-space representation of the LTI model is:

ẋ = Ax+Bu (9)

where, A and B are the system dynamics and the input matrices, respectively. In order
to calculate these matrices, the Jacobian matrices represented in (6) are calculated. The
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designed numerical linearization procedure calculates the derivative of the function f
to form the corresponding column of the matrix A, perturbing one state variable at a
time. After that, in the same way, the linearization procedure calculates the derivative
of the function f to form the corresponding column of the matrix B, perturbing one
input variable at a time. As a result, the A and B matrices are obtained (in SI units)
as follows:

A =



−0.022 −1.395 −9.828 −0.672 0 0 0 0
−0.002 −0.582 0 0.908 0 0 0 0

0 0 0 1 0 0 0 0
3 × 10−7 0.324 0 −0.708 0 0 0 0
3 × 10−9 0 0 0 0.182 0.097 0.143 −0.996

0 0 0 0 0 0 1 0.145
5 × 10−7 −4 × 10−6 0 0 −19.291 0 −2.047 0.716
3 × 10−7 −8 × 10−6 0 0 5.364 0 −0.041 −0.337

 (10)

B =



−1.139 0 0
−0.072 0 0

0 0 0
−4.301 0 0

0 −0.010 −0.028
0 0 0
0 −15.980 2.470
0 −0.667 −1.304


. (11)

3. ASYMMETRIC ELEVATOR FAILURES

The asymmetric elevator failures considered in this study disrupt the symmetrical move-
ment of the aircraft. Therefore, it causes a loss of control in the pitch axis and a serious
disturbance in the roll axis. Note that, the expression for the yaw moment coefficient,
Cn, in (3) does not include δe. Therefore, the elevator deflection does not have a di-
rect effect on the yaw moment. However, the disturbing roll moment caused by the
asymmetric elevator failure also effects the yaw motion due to coupling between the roll
and yaw motions through the EoM. Thus, a less significant yaw moment disturbance is
also caused, which will be seen in the simulations in the upcoming sections (this effect
has also been shown clearly in [11]). The asymmetric elevator failures and the effects
of these failures on the aircraft motion have been demonstrated in [11] for the right
elevator failures. In that study, the aerodynamic effects of the left and right elevator
surfaces were separated and the asymmetric deviation of the elevator was modeled. In
this section, this revised model will be presented briefly and the specific failures to be
considered will be explained.

3.1. Modeling Aerodynamics of Elevator Failures

The general form of the aerodynamic model, as summarized in Section 2.1.2, is based
on three basic control surface deflections (δe, δa, δr). However, to determine the aero-
dynamic effects of asymmetric failures that may occur on the right and left surfaces of
the elevator, the effects of these two elevator surfaces must be decoupled. In order to
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separate the contributions of the right and left elevator surface deflections in the aero-
dynamic model, the technique proposed in [22, 28] is used. In this model, the elevator
deflection angle, δe, is separated into two deflection angles, δer and δel, for the right and
left elevators, respectively. The aerodynamic coefficients, Cx, Cz, Cl, and Cm, given in
(3), are then modified as follows:

Cx =
1

2
cx (α, δer) +

1

2
cx (α, δel) + cxq(α)q̃

Cz =
1

2
cz (α, β, δer) +

1

2
cz (α, β, δel) + czq(α)q̃

Cl = cl (α, β) + clp (α) p̃+ clr (α) r̃ + clδa (α, β) δa + clδr (α, β) δr +
1

2
Le(cz (α, β, δel)− cz (α, β, δer))

Cm =
1

2
cm (α, δer) +

1

2
cm (α, δel) + cmq (α) q̃ + (xcgref − xcg)Cz.

(12)

Here, the dimensionless term Le is given as Le = le
b , where le is the distance from the

x-axis to the aerodynamic center of any one of the elevator surfaces, which is taken as
1.69 m, based on the data presented in [28]. The coefficients Cx, Cz, and Cm determine
the forces and moments acting on the x-z plane. The contribution of the elevator surfaces
to these forces and moments is expressed through the functions cx, cz, and cm. These
functions are expressed as multi-polynomials of their arguments, whose coefficients are
determined by look-up tables based on wind tunnel data [7, 21]. Although the wind
tunnel data is taken for a healthy aircraft, where the right and left elevator surfaces
move identically, clearly the effect of each of the two elevator surfaces in the x-z plane is
equal [22,28]. Therefore, in (12), the effect of each elevator surface is simply expressed as
half of the effect of the two elevator surfaces when they move together. The asymmetric
movement of the elevator surfaces also cause a roll moment. This moment is due to the
different force contribution of each surface in the z-direction, which is expressed by the
cz function. Therefore, to represent this effect, the term 1

2Le(cz (α, β, δel)−cz (α, β, δer))
is added to the Cl equation as shown in (12). Since the elevator surfaces does not have
a direct effect on the lateral force or the yaw moment, Cy and Cn coefficients in (3)
are not changed. More details of this model are presented and its effects are analyzed
in [11].

3.2. Control Surface Failures

In this study, freezing (or lock-in-place) and floating failures commonly encountered in
aircraft control surfaces are examined [3]. In many aircraft, the elevator surface is one
piece. However, F-16 aircraft has two independent elevator surfaces, controlled by two
different actuators. Thus, there is a possibility of a failure in one of these independent
surfaces. As mentioned earlier, the asymmetric failure of the elevator, besides causing a
loss of control in the pitch moment, also causes a roll moment disturbance and, hence,
is a more difficult scenario to control compared to an identical failure in both elevator
surfaces. If both of the elevator surfaces fail in the same way, the disturbing effect of
the failure would only affect the longitudinal states of the aircraft. Therefore, in the
present study, an asymmetric elevator failure scenario is considered. It is assumed that
the failure occurs only in the right elevator. When one of these two failures (freezing or
floating) occurs, rather than the actual elevator command, δec , a modified signal, δerf ,



Fault-tolerant pitch-rate cas design for asymmetric elevator failures in a combat plane 775

is assumed to enter to the elevator model, presented in Section 2.1.1.
In the freezing failure, the control surface command becomes locked in its last position

before the failure occurs. Therefore,

δerf (t) = δec(tf ), ∀t ≥ tf (13)

where tf is the time of failure.
In the floating failure, the control link that drives the control surface breaks. This

corresponds to the zero hinge moment state and the control surface deflects in accordance
with the air flow passing over it. Therefore, when a floating failure occurs, it is assumed
that the right elevator deflects according to the AoA of the aircraft. Therefore, in this
case:

δerf (t) = −0.5α(t), ∀t ≥ tf . (14)

The models obtained herein and the detailed examination of the effects of these
failures on the motion of the aircraft have been previously demonstrated in [11].

4. CONVENTIONAL PITCH-RATE CAS AND ROLL-AXIS SAS

In this section, the conventional pitch-rate CAS and roll-axis SAS structures commonly
found in the literature will be examined.

4.1. Conventional Pitch-Rate CAS

The general structure of a conventional pitch-rate CAS system is represented in Figure 1

[20,26]. In this figure, q and α, which denote the pitch-rate and the AoA of the aircraft,
respectively, constitute the measurements form the aircraft and the elevator command,
δec , constitutes the control input. Since the design of the control system is based on the
linear model, the deviations of q, α, and δec (∆q, ∆α, and ∆δec) around the trim values
(qtrim, αtrim, and δectrim) are also shown in this figure. Furthermore, ∆qr = qr − qtrim,
where qr denotes the pitch-rate reference signal.

Since this control system is effective on the longitudinal dynamics of the aircraft, as
the aircraft model, the longitudinal sub-model from the complete LTI model obtained
in (9) – (11) is selected as follows (in SI units):∆̇V

∆̇α

∆̇θ

∆̇q

 =

 −0.022 −1.395 −9.828 −0.672
−0.002 −0.582 0 0.908

0 0 0 1
3 × 10−7 0.324 0 −0.708

 ∆V
∆α
∆θ
∆q

+

 −1.139
−0.072

0
−4.301

 [∆δe] (15)

ylon =
[

∆q
∆α

]
=
[
0 0 0 1
0 1 0 0

] ∆V
∆α
∆θ
∆q

 (16)

where ylon denotes the measurement for the longitudinal model. The eigenvalues of the
dynamics matrix are {−0.1256 ± 0.1507j, −1.1950, 0.1351}. The complex-conjugate
eigenvalues shown here are associated with the short period modes. The last two real
eigenvalues are associated with the phugoid mode and there is instability in this mode.
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Fig. 1. Conventional pitch-rate CAS.

The control input to this model is the elevator surface deflection angle, δe, which is
the output of the elevator actuator. The transfer function for the actuator dynamics
(the transfer function from δec to δe) is obtained as the negative of the linear part of
the actuator model:

P (s) =
−20.2

s+ 20.2
. (17)

The negative sign is due to the fact that the positive elevator deflection causes a negative
pitching moment.

The control system shown in Figure 1 obviously consists of two nested feedback loops.
In the inner loop, the ∆α signal is fed back, with a static controller, kα, in the feedback
path. In the outer loop, the ∆q is fed back through a proportional-integral (PI) controller
in the forward path, which has the transfer function:

CPI(s) = kprop +
ki
s
. (18)

In this control system, the internal loop provides the dynamic stability of the F-16
longitudinal motion model of the statically unstable aircraft, while the outer loop per-
forms the reference pitch-rate tracking.

The design procedure will be to close the inner loop, then design the proportional-
integral (PI) controller in Simulink by using the PID Tuner tool (here the D coefficient
is set to zero initially, since the conventional control is PI only, which is because having
overshoots is acceptable and the speed of response is the important parameter) to yield
a satisfactory transient response. First of all, in the inner loop, ∆α feedback is used to
stabilize the system. Considering the inner loop, the kα gain is determined by the root-
locus method as kα = 0.08. When the inner loop is closed with this feedback gain, the
eigenvalues of the system (before the outer loop is closed) are obtained as {−20.2105,
−0.6434 ± 0.1628j, −0.0069 ± 0.0290j}. It is obvious that all eigenvalues have been
moved into the left half complex plane and thus the stability of the system has been
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ensured. After the inner loop is closed with the ∆α feedback, proportional and integral
coefficients are determined using the PID Tuner tool in Simulink software as follows:

kprop = 1 and ki = 0.75. (19)

This controller is used in the feedback system shown in Figure 1 and the step response
is obtained as shown in Figure 2. It is evident that the controller stabilizes the system
and has a good transient response.

Fig. 2. The step response of the conventional pitch-rate CAS (linear

simulation). Dashed line: ∆qr, rad/s. Solid line:∆q, rad/s.

4.2. Roll-Axis SAS

The most basic augmentation system for the lateral dynamics is shown in Figure 3.
To improve the roll out characteristics of an aircraft, roll-rate feedback is used. The
augmentation system is also known as roll damper and it helps to increase the roll mode
stability of an aircraft [25].

Fig. 3. Roll-axis SAS.

Since this control system is effective on the lateral/directional dynamics of the air-
craft, as the aircraft model, the lateral/directional sub-model from the complete LTI
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model obtained in (9) – (11) is selected as follows (in SI units):∆̇β

∆̇φ

∆̇p

∆̇r

 =

 0.182 0.097 0.143 −0.996
0 0 1 0.145

−19.291 0 −2.047 0.716
5.364 0 −0.041 −0.337

 ∆β
∆φ
∆p
∆r

+

 −0.010
0

−15.980
−0.667

 [∆δa] (20)

ylat = ∆p = [0 0 1 0]

 ∆β
∆φ
∆p
∆r

 (21)

where ylat denotes the measurement for the lateral/directional model. The eigenvalues
of the dynamics matrix are {−0.2013 ± 2.7585j, −1.7926, −0.0067}. The complex-
conjugate eigenvalues correspond to the dutch-roll mode, the real eigenvalue near the
origin corresponds to the spiral mode, and the real eigenvalue that is away from the
origin corresponds to the roll mode.

The control input to this model is the aileron surface deflection angle, δa, which is
the output of the aileron actuator. The linear model used for the aileron actuator is the
same as for the elevator actuator and is given by (17).

The roll rate feedback gain, kp, is determined by the root-locus method. Here, in-
creasing of kp improves roll stability. However, a large gain may reduce robustness and
may cause a violation of control surface actuator’s deflection and rate limits. For this
reason, a feedback gain of kp = 0.1 is chosen, which puts the roll mode at s = −3.68.

4.3. Verification of Pitch-Rate CAS and Roll-Axis SAS by Nonlinear Flight
Simulations

In this subsection, in order to test the performance of the controllers designed using
the linear models, flight simulations are made using the complete nonlinear F-16 model
described in Section 2.1. In these simulations, the aircraft is required to follow a cer-
tain pitch-rate reference signal, which is shown in Figure 4. This pitch-rate reference
signal is chosen to perform an agile altitude reduction maneuver within the limits of the
maneuvering capability of the aircraft.

In the remaining of this paper, the control system structure including pitch-rate
CAS and roll-axis SAS is called as the classical controller. The performance of this
classical controller under various conditions is investigated separately in the following
subsubsections. Firstly, the healthy condition is examined. After that, the performance
of the classical controller is examined in the case of two different asymmetric elevator
failures.

4.3.1. Healthy aircraft

In this subsubsection, the healthy aircraft is examined. This simulation shows how the
aircraft, which is required to follow the pitch-rate reference signal shown in Figure 4,
moves with the designed controllers in the absence of any failure or disturbance. When
the nonlinear flight simulation is run in this way, the states of the aircraft are obtained
as in Figure 5 (solid lines). Additionally, the control surface commands, deflections,
and deflection rates produced within this simulation are shown in Figure 6 (solid lines).
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Fig. 4. Pitch-rate reference signal.

Since the control structure designed in this simulation does not control the rudder, the
rudder deflection is kept constant at the trim value during the entire simulation.

After the simulation starts, the aircraft moves to the dive and after the eighth second,
it starts to nose upwards according to the pitch-rate reference given in Figure 4. The
pitch-rate state of the aircraft indicates that the pitch-rate CAS works well and performs
the tracking function very quickly. On the other hand, the aircraft continued its sym-
metrical flight because there is no disturbance in the lateral/directional axis. Therefore,
the lateral/directional states remained almost zero. The control surface deflections and
rates shown in Figure 6 (solid lines) show that the designed control system operates
within the deflection and rate limits shown in Table 1.

4.3.2. Freezing failure

In this subsubsection, the condition of freezing failure is examined. Right after the eighth
second of the twenty-seconds nonlinear simulation, when the control system moves the
elevator to apply the reverse pitch-rate command, to follow the pitch-rate reference given
in Figure 4, the right elevator is stuck in its extreme position. In this example, the right
elevator is jammed at −0.1981 radians after the 8.17th second.

When the nonlinear flight simulation is run for the above conditions, the states of
the aircraft are obtained as in Figure 5 (dashed lines). Additionally, the control surface
commands, deflections, and deflection rates produced within this simulation are shown
in Figure 6 (dashed lines).

It is clear that the conventional control system cannot handle the failure. The roll
rate has consistently increased and has reached a high magnitude that will challenge
the structural boundaries of the aircraft. The aircraft speedily turned around the body
x-axis and dived to the ground before the end of the simulation period. Additionally,
pitch-rate tracking has also failed. Figure 6c (dashed line) shows that the right eleva-
tor is jammed after the 8th second. The control surface deflections and rates shown
in Figure 6 (dashed lines) show that the designed control system operates within the
deflection and rate limits shown in Table 1.
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4.3.3. Floating failure

In this subsubsection, the condition of floating failure is examined. In the eighth second
of the twenty-seconds nonlinear simulation, when the control system moves the elevator
to apply the reverse pitch-rate command, to follow the pitch-rate reference given in
Figure 4, the right elevator starts to float.

When the nonlinear flight simulation is run for the above conditions, the states of
the aircraft are obtained as in Figure 5 (dotted lines). Additionally, the control surface
commands, deflections, and deflection rates produced within this simulation are shown
in Figure 6 (dotted lines).

Fig. 5. The states of the F-16 aircraft (classical controller nonlinear

simulation solid line: healthy condition; dashed line: freezing failure;

dotted line: floating failure).
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Fig. 6. The control surface commands, deflections, and deflection

rates (classical controller nonlinear simulation solid line: healthy

condition; dashed line: freezing failure; dotted line: floating failure).

(a) Elevator command, rad. (b) Aileron command, rad. (c-d) Right

and left elevator deflections respectively, rad. (e) Aileron deflection,

rad. (f-g): Right and left elevator deflection rates respectively, rad/s.

(h) Aileron deflection rate, rad/s.

It is clear that the conventional control system cannot handle this failure either. The
roll rate has consistently increased and has reached a high magnitude that will challenge
the structural boundaries of the aircraft. The aircraft speedily turned around the body
x-axis and dived to the ground before the end of the simulation period. Additionally,
pitch-rate tracking has also failed. As shown in Figure 6c (dotted line), the right elevator
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floats after the 8th second. The control surface deflections and rates shown in Figure 6

(dotted lines) show that the designed control system operates within the deflection and
rate limits shown in Table 1.

As a result, all these simulations have shown that the designed classical controller
works well in healthy conditions. However, it cannot cope with asymmetric failures on
the elevator. In the following section, a fault-tolerant control system will be designed to
deal with these failures. Furthermore, the performance of these designed control system
structures will be compared.

5. FAULT-TOLERANT PITCH-RATE CAS

In this section, the design of the robust controller that will work in the faulty condition
is undertaken. The proposed control system structure is designed as a nested loop struc-
ture based on the conventional pitch-rate CAS described in Figure 1. The conventional
structure is revised to have an H∞ controller in the inner loop [23]. The H∞ controller
structure is chosen since it is one of the most effective design strategies when robustness
against both unknown disturbances and modeling uncertainties is required [29]. In this
way, it is aimed to design a robust controller that can maintain the dynamic stability of
the aircraft in the case of control surface failures. This control structure has two objec-
tives. The first is that the controller eliminates the disturbing effect of the failures and
continues the flight of the aircraft in a safe way. The second is that the aircraft follows
a certain reference pitch-rate command despite the disturbing effect of the failures. The
proposed control structure is shown in Figure 7.

Fig. 7. The control structure of fault-tolerant pitch-rate CAS.
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5.1. Design Procedures of the Fault-Tolerant Pitch-Rate CAS

In this subsection, the design of the control system shown in Figure 7 is presented.
Firstly, the design of the inner loop is explained. Then, the design of the outer loop is
explained.

5.1.1. Design of the inner loop

TheH∞ control approach is used in the design of the inner loop robust controller. Details
of the design procedure for this method are described in [29]. This section describes the
problem representation used in the design of this controller. Firstly, an extended F-16
model is derived so that it can be used to solve the elevator failure scenario. The
state-space representation of the extended F-16 model is as follows:

ẋext = Aextxext +B1w +B2uc

z = C1xext +D11w +D12uc

y = C2xext +D21w +D22uc

(22)

In this model, the vector xext consists of control surface deviations in addition to the
current states, xext = [∆V ∆α ∆θ ∆q ∆β ∆φ ∆p ∆r ∆δe ∆δa ∆δr]

T and uc consists of
control commands, uc = [∆δec ∆δac ∆δrc ]

T . For this control problem, it is assumed that
the roll and pitch rates, as well as the AoA and the roll angle, are available for measure-
ment. Therefore, the measurement output vector is chosen as y = [∆p ∆q ∆α ∆φ]T .

The most important vectors in this problem representation are the disturbance in-
put, w, and the performance output, z, vectors. The H∞ control method minimizes the
effects of w disturbance on the z outputs. Therefore, these vectors should be selected
in accordance with the elevator failure problem. It is known that asymmetric elevator
failure leads to disturbances in pitch and roll moment. In addition, since the symmetry
of the aircraft is disturbed, different forces and moments can also occur with coupling
effects. Therefore, the vector w has been chosen as moment and force disturbances,
w = [δL δM δN δX δY δZ]T . Since it is aimed to minimize the effect of these distur-
bances on the roll and pitch rates, as well as on the roll angle, the deviations of these
variables from their trim values must be chosen as a part of the z vector. Furthermore,
since the control surface deflections and their rates must satisfy certain limits, the de-
viations of these variables from their trim values must also be chosen as a part of the
z vector. Therefore, we choose z = Q[∆p ∆q ∆φ ∆δe ∆δa ∆δr ˙∆δe ˙∆δa ˙∆δr]

T , where
Q is a constant diagonal weight matrix with positive diagonal elements, which are all
taken as unity in the present application. The matrices for this extended system are
obtained as follows:

Aext =

[
A B

03×8 −20.2I3

]
, B1 =

[
B̃1

03×6

]
, B2 =

[
08×3

−20.2I3

]
, C1 = Q

 C̃1 03×3

03×8 I3
03×8 −20.2I3


D11 = 09×6, D12 = Q

 03×3

I3
−20.2I3

 , C2 =
[
C̃2 04×3

]
, D21 = 04×6, D22 = 04×3

(23)

where, subindexed 0 and I denotes zero and identity matrices of indicated dimen-
sions, respectively. Furthermore, A and B are given in (10) and (11), respectively,
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and (in SI units):

B̃1 =



0 0 0 1 × 10−4 0 1 × 10−5

0 0 0 −1 × 10−6 0 8 × 10−6

0 0 0 0 0 0
0 1 × 10−5 0 0 0 0
0 0 0 0 −1 × 10−6 0
0 0 0 0 0 0

8 × 10−5 0 1 × 10−6 0 0 0
1 × 10−6 0 1 × 10−5 0 0 0


,

C̃1 =

0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

 , and C̃2 =


0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0



(24)

Using this problem representation, a robust controller is designed in MATLAB en-
vironment using the H∞ control design tool. The state-space realization of the robust
controller designed is as follows:

˙̂x = Âx̂+ B̂y

uc = Ĉx̂+ D̂y
(25)

where x̂ is the state vector for the controller and (in SI units):

Â =



−0.022 52.987 −9.828 6.984 0 0.003 −0.005 0 −1.140 −3× 10−15 0
−0.002 −1.092 0 0.736 0 6× 10−6 1× 10−5 0 −0.072 7× 10−17 0

0 −0.834 6× 10−11 0.690 0 2× 10−5 4× 10−5 0 −1× 10−20 1× 10−16 0
2× 10−7 0.095 0 −0.939 0 1× 10−6 2× 10−6 0 −4.301 1× 10−16 0
3× 10−9 −3× 10−6 0 −5× 10−7 0.182 0.081 0.254 −0.996 −5× 10−17 −0.010 −0.028

0 9× 10−6 0 1× 10−6 0 −0.872 0.514 0.145 2× 10−16 −5× 10−22 0
5× 10−7 1× 10−5 0 2× 10−6 −19.291 −0.486 −5.292 0.716 1× 10−15 −15.980 2.469
3× 10−7 −3× 10−6 0 9× 10−7 5.364 0.085 −0.024 −0.337 −8× 10−18 −0.667 −1.304
−1× 10−4 0.1462 4× 10−4 0.710 4× 10−5 −2× 10−5 −8× 10−6 −4× 10−6 −2.481 3× 10−5 −4× 10−6

7× 10−7 −8× 10−6 −4× 10−8 −1× 10−5 −33.445 12.954 6.508 5.509 3× 10−5 −26.499 4.394
−3× 10−9 −2× 10−6 −7× 10−7 1× 10−6 8.259 −2.265 −1.168 −0.887 −4× 10−6 4.394 −1.3527



B̂ =



1.534 −2× 103 −1× 104 0.896
−0.004 57.778 129.159 −0.002
−0.013 104.164 211.074 −0.007
−8× 10−4 77.677 57.778 −3× 10−4

−37.403 1× 10−4 7× 10−4 5.387
162.994 −3× 10−4 −0.002 292.588
1× 103 −8× 10−4 −0.004 162.994
−5.838 −3× 10−4 −0.001 28.411

0 0 0 0
0 0 0 0
0 0 0 0



Ĉ =

 3× 10−8 −3× 10−5 −8× 10−8 −1× 10−4 −8× 10−9 3× 10−9 2× 10−9 9× 10−10 −0.004 −6× 10−9 9× 10−10

−2× 10−10 2× 10−9 9× 10−12 3× 10−9 0.007 −0.003 −0.002 −0.001 −6× 10−9 0.001 −9× 10−4

7× 10−13 4× 10−10 1× 10−10 −2× 10−10 −0.002 4× 10−4 2× 10−4 2× 10−4 9× 10−10 −8× 10−4 −0.004


D̂ = 03×4.

5.1.2. Design of the outer loop

After the robust controller for the inner loop is designed, the structure in Figure 7 is
implemented in the Simulink software. The coefficients for the PI controller are then
determined by using the PID Tuner tool in Simulink as follows:

kprop = 1.5 and ki = 1.1. (26)
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5.2. Verification of the Designed Control Structure by Nonlinear Flight
Simulations

In this subsection, in order to test the performance of the controllers designed using
the linear models, flight simulations are made using the complete nonlinear F-16 model
described in Section 2.1. In these simulations, the aircraft is required to follow a certain
pitch-rate reference signal, which is shown in Figure 4, while the asymmetric failures
occur in the right elevator surface.

5.2.1. Healthy condition

In this subsubsection, the healthy aircraft is examined. This simulation shows how the
aircraft, which is required to follow the pitch-rate reference signal shown in Figure 4,
moves with the designed controller in the absence of any failure or disturbance. When
the nonlinear flight simulation is run in this way, the states of the aircraft are obtained
as in Figure 8 (solid lines). Additionally, the control surface commands, deflections, and
deflection rates produced within this simulation are shown in Figure 9 (solid lines).

After the simulation starts, the aircraft moves to the dive and after the eighth second,
it starts to nose upwards according to the pitch-rate reference given in Figure 4. The
pitch-rate state of the aircraft indicates that the fault-tolerant pitch-rate CAS works
well and performs the tracking function very quickly. On the other hand, the aircraft
continued its symmetrical flight because there is no disturbance in the lateral/directional
axis. Therefore, the lateral/directional states remained almost zero. Additionally, the
control surface deflections and rates shown in Figure 9 (solid lines) show that the designed
control system operates within the deflection and rate limits shown in Table 1.

5.2.2. Freezing failure

In this subsubsection, the condition of freezing failure is examined. Right after the eighth
second of the twenty-seconds nonlinear simulation, when the control system moves the
elevator to apply the reverse pitch-rate command, to follow the pitch-rate reference given
in Figure 4, the right elevator is stuck in its extreme position. In this example, the right
elevator is jammed at −0.1981 radians after the 8.17th second.

When the nonlinear flight simulation is run for the above conditions, the states of
the aircraft are obtained as in Figure 8 (dashed lines). Additionally, the control surface
commands, deflections, and deflection rates produced within this simulation are shown
in Figure 9 (dashed lines).

A significant roll moment is produced on the aircraft, due to the asymmetric failure of
the elevator right after the 8th second. However, with the fault-tolerant control system,
the disturbing effect of this roll moment is rejected very quickly. Besides, the other states
of the longitudinal motion vary in accordance with the executed pitch-rate maneuver,
while the states for the lateral/directional motion change at very small magnitudes.

Figure 9d (dashed line) shows that the right elevator is jammed after the 8th second.
The control surface deflections and rates shown in Figure 9 (dashed lines) show that the
designed control system operates within the deflection and rate limits shown in Table 1.
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Fig. 8. The states of the F-16 aircraft (fault-tolerant controller

nonlinear simulation solid line: healthy condition; dashed line:

freezing failure; dotted line: floating failure).

5.2.3. Floating failure

In this subsubsection, the condition of floating failure is examined. In the eighth second
of the twenty-seconds nonlinear simulation, when the control system moves the elevator
to apply the reverse pitch-rate command, to follow the pitch-rate reference given in
Figure 4, the right elevator starts to float. When the nonlinear flight simulation is run
for the above conditions, the states of the aircraft are obtained as in Figure 8 (dotted
lines). Additionally, the control surface commands, deflections, and deflection rates
produced within this simulation are shown in Figure 9 (dotted lines). In this case too,
a significant roll moment is produced on the aircraft, due to the asymmetric failure



Fault-tolerant pitch-rate cas design for asymmetric elevator failures in a combat plane 787

Fig. 9. The control surface commands, deflections, and deflection

rates (fault-tolerant controller nonlinear simulation solid line:

healthy condition; dashed line: freezing failure; dotted line: floating

failure). (a-b-c) Elevator, aileron, and rudder commands respectively,

rad. (d-e-f-g) Right and left elevator, aileron, and rudder deflections

respectively, rad. (h-i-j-k) Right-and left elevator, aileron, and rudder

deflection rates, respectively, rad/s.

of the elevator at the 8th second. However, the fault-tolerant control system rejects
the disturbing effect of this roll moment very quickly. Besides, the other states of the
longitudinal motion vary in accordance with the executed pitch-rate maneuver, while
the states for the lateral/directional motion change at very small magnitudes. Figure 9d
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(dotted line) shows that the right elevator floats after the 8th second. The control
surface deflections and rates shown in Figure 9 (dotted lines) show that the designed
control system operates within the deflection and rate limits shown in Table 1.

5.3. Comparison of Classical and Fault-Tolerant Controllers

In Section 4, the classical controller (the pitch-rate CAS and roll-axis SAS) was designed
that will work in case of no failure. It has been shown in Section 4.3.1 that this classical

Fig. 10. The states of the F-16 aircraft in the case of freezing failure

(comparison of the fault-tolerant controller and the classical controller

nonlinear simulation solid line: fault-tolerant controller; dashed line:

classical controller).
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Fig. 11. The states of the F-16 aircraft in the case of floating failure

(comparison of the fault-tolerant controller and the classical controller

nonlinear simulation solid line: fault-tolerant controller; dashed line:

classical controller).

controller produces a very good response (in terms of stability and pitch-rate tracking)
in case of no failures. It has, however, also been shown in Sections 4.3.2 and 4.3.3 that
this controller cannot cope with the asymmetric elevator failures.

In the present section, as the main purpose of the current work, the design of a
fault-tolerant pitch-rate CAS has been undertaken. The nested loop structure shown
in Figure 7 has been proposed for this purpose. In this structure, the H∞ method is
used to design the inner loop. This inner loop acts like a stability augmentation system
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to robustly stabilize the system despite disturbances caused by the asymmetric elevator
failures. The outer loop, on the other hand, includes the PI controller to achieve pitch-
rate tracking. It has been shown in Section 5.2 that, this controller produces a good
response in both non-faulty and faulty conditions.

In this subsection, in order to compare the performance of the two controllers, states
of the aircraft under classical and proposed controllers are reproduced in Figure 10, in the
case of freezing failure, and in Figure 11, in the case of floating failure. Under the classical
controller, following the occurrence of the failure, the aircraft rolls around its body x-
axis and crashes to the ground. Under the proposed fault-tolerant controller, however,
the roll motion is stabilized quickly and the required pitch maneuver is executed as
required, despite the failure. In particular, the altitude changes according to the desired
dive motion and the aircraft can continue to fly safely. In both responses, due to the
roll disturbance, the yaw state is also disturbed. As a result of this, the airplane sways
to east. This disturbance, however, can easily be corrected by the pilot or the autopilot
when the fault-tolerant controller is active (under the classical controller, due to violent
roll motion and loss of AoA, it would not be possible to control the plane). Since the
yaw state is related to the route to which the aircraft should go, it is not controlled by
the classical or the fault-tolerant CAS.

6. CONCLUSIONS

The asymmetric elevator failures are fatal malfunctions that disrupt flight safety. In
this study, it has been shown that the classical control systems in the literature cannot
cope with these failures. Therewith, the primary purpose of the present study has been
to develop a fault-tolerant controller design approach such that the aircraft continues
to fly safely and can complete its mission in the case of such a failure. As discussed in
Section 5.3, this proposed fault-tolerant control system has been shown to cope with the
asymmetric elevator failures while the conventional approach has failed.

This study has provided a general approach to the fault-tolerant control design against
control surface failures on an aircraft. Asymmetric elevator failure is selected as a case
study. The method proposed in this study can also be applied to aileron and rudder
failures. This, however, may require separate control of each elevator and each aileron
surface, since aileron failures may be compensated by separate control of left and right
elevator surfaces and rudder failures can be compensated to some degree by using each
elevator and each aileron surface separately.
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APPENDIX: NOMENCLATURE

α, β Angle of attack and sideslip angle, respectively (rad)

δe, δa, δr Elevator, aileron and rudder deflections, respectively (rad)

δec, δac, δrc Elevator, aileron and rudder deflection commands, respectively (rad)

δer, δel Right and left elevator surface deflections, respectively (rad)

δerf Failed right elevator deflection command (rad)

δT Throttle setting, [0-100]

λ Latitude of the geodetic location (rad)

τ Time constant (s)

φ, θ, ψ Euler angles: roll, pitch, and yaw, respectively (rad)

atrim Trim value of a vector (or variable) a

ȧ Derivative of a vector (or variable) a with respect to time

AT Transpose of a matrix A

b Wing span (m)

c̄ Wing reference chord (m)

Cx, Cy, Cz x-, y-, and z-axis force coefficients, respectively

Cl, Cm, Cn Rolling, pitching, and yawing moment coefficients, respectively

h Altitude (m)

le Distance from the x-axis to the aerodynamic center of the elevator (m)

L, M, N Rolling, pitching, and yawing moments, respectively (N.m)

Nd, Ed North and east geographic positions of the aircraft, respectively (m)

p, q, r Roll, pitch, and yaw rates, respectively (rad/s)

qr Pitch-rate reference signal (rad/s)

q̄ Dynamic pressure (N/m2)

S Wing area (m2)

tf Time of failure (s)

T Thrust (N)

V True velocity (m/s)

xcg Center-of-gravity location

xcgref Reference center-of-gravity location for aerodynamic data

X, Y, Z Total X-, Y-, and Z-axis forces, respectively (N)

0m×n m× n-dimensional zero matrix

In n× n-dimensional identity matrix

(Received August 8, 2019)
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R E F E R E N C E S

[1] H. Alwi and C. Edwards: Fault detection and fault-tolerant control of a civil aircraft
using a sliding-mode-based scheme. IEEE Trans. Control Systems Technol. 16 (2008),
499–510. DOI:10.1109/tcst.2007.906311

[2] J. H. Blakelock: Automatic Control of Aircraft and Missiles. John Wiley and Sons, 1991.

[3] J. D. Boskovic and K. M. Raman: A decentralized fault-tolerant control system for ac-
commodation of failures in higher-order flight control actuators. IEEE Trans. Control
Systems Technol. 18 (2009), 5, 1103–1115. DOI:10.1109/tcst.2009.2033805

[4] F. Caliskan and C. Hajiyev: Active fault-tolerant control of UAV dynamics against sensor-
actuator failures. J. Aerospace Engrg. 29 (2016), 4, 04016012. DOI:10.1061/(asce)as.1943-
5525.0000579

[5] M. Cavcar: The International Standard Atmosphere (ISA). Technical Report, Anadolu
University, 2000.

[6] B. C. Chang, H. Kwatny, C. Belcastro, and C. Belcastro: Aircraft loss-of-control acci-
dent prevention: Switching control of the GTM aircraft with elevator jam failures. In:
Proc. AIAA Guidance, Navigation and Control Conference, Honolulu 2008, pp. 1–15.
DOI:10.2514/6.2008-6507

[7] A. Eugene: Global nonlinear parametric modeling with application to F-16 aerodynamics.
In: Proc. American Control Conference, Philadelphia 1998, pp. 997–1001.

[8] B. Etkin and L. D. Reid: Dynamics of Flight: Stability and Control. Wiley, New York
1996.

[9] P. D. Groves: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Sys-
tems. Artech House, 2013.
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