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Abstract. Let R be a commutative ring with identity. If a ring R is contained in an
arbitrary union of rings, then R is contained in one of them under various conditions.
Similarly, if an arbitrary intersection of rings is contained in R, then R contains one of
them under various conditions.
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1. Introduction

All rings considered below are commutative with nonzero identity. Let S denote

the saturation of the multiplicative closed subset S of a ring R, let Nil(R) denote the

set of all nilpotent elements in R, let Z(R) denote the set of all zero divisors in R,

and let T (R) denote the total quotient ring of R. In this note, we extend the work

of Gottlieb, see [1] from finite unions to infinite unions of overrings of an integral

domain. The main theme of Gottlieb’s paper was the following: If A,A1, A2, . . . , An

are overrings of an integral domain R, where A = R⋃
m
i=1

pi
for some prime ideals

p1, p2, . . . , pm of R and where each Ai = S−1
i R for some multiplicatively closed

subset Si of R such that A ⊆
n
⋃

i=1

Ai, then A ⊆ Ai for some i. In our first result, we

show that there is no need for the following assumptions:

(1) Ai’s are overrings of R.

(2) Ai = S−1
i R for some multiplicatively closed subset Si of R for all i.
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(3) A = S−1R, where S is the complement of finite union of prime ideals.

Interestingly, our proof is much simpler, slicker and direct. In particular, we prove

that [1], Corollary 8 holds for arbitrary domain, that is, the assumption of Bézout

domain can be dropped.

Our next motive is to discuss the question raised by Gottlieb in [1], Example 7.

In [1], Proposition 5, Gottlieb proved that if A is a local overring of an integral

domain R such that A ⊇ Rp1
∩ Rp2

∩ . . . ∩ Rpn
, then A ⊇ Rpi

for some i. This

motivated him to raise the question whether we can replace Rp’s by S−1R in [1],

Proposition 5. In [1], Example 7, he showed that the answer is no. Thus, the natural

question arises when this S−1R form will work. Motivated by the work of Smith

in [2], we give a condition under which the replacement is possible.

2. Results

We begin this section with the following avoidance theorem for integral domains.

Theorem 2.1. Let R be an integral domain and A1, A2, . . . , As be integral do-

mains containing R such that each Ai is a subring of a ring T . If A is any subring of T

of the form S−1R for some multiplicative closed subset S of R such that A ⊆
s
⋃

i=1

Ai,

then A ⊆ Ai for some i.

P r o o f. If possible, suppose that A is not contained in any Ai. Then for all i

there exists a maximal ideal mi of Ai such that A is not contained in (Ai)mi
. Set

ni = mi ∩R for all i. Then S ⊆ R \
s
⋂

i=1

ni as A ⊆
s
⋃

i=1

Ai. Note that S = R \
⋃

α∈Λ

pα,

where {pα}α∈Λ is the family of all prime ideals of R which do not meet S. It follows

that
s
⋂

i=1

ni ⊆
⋃

α∈Λ

pα because if x ∈
s
⋂

i=1

ni \
⋃

α∈Λ

pα, then x ∈ S, that is, xt ∈ S for

some t ∈ R, a contradiction. Now, it is easy to see that there exists a prime ideal p

of R such that
s
⋂

i=1

ni ⊆ p ⊆
⋃

α∈Λ

pα. Consequently, nj ⊆ p ⊆
⋃

α∈Λ

pα for some j.

Therefore S ⊆ S ⊆ R \ nj and thus A = S−1R ⊆ Rnj
⊆ (Aj)mj

, a contradiction. �

LetR be a ring such that Nil(R) = Z(R). Then it is easy to see that R has a unique

minimal prime ideal and S−1R ⊆ T (R) for all multiplicative closed subsets S of R.

On the other hand, if there exists a ring T such that S−1R ⊆ T for all multiplicative

closed subsets S of R, then Nil(R) = Z(R). To see this, if possible, suppose there

exists x ∈ Z(R) \ Nil(R). Then there exists a prime ideal p of R such that x /∈ p.

It follows that x/1 is a unit in Rp. Since Rp is a subring of T , x/1 is a unit in T ,

a contradiction as T (R) ⊆ T and so x/1 is a zero divisor in T . Thus, we conclude that

for a ring R there exists a ring containing S−1R for all multiplicative closed subsets S
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of R if and only if Nil(R) = Z(R). In particular, if Nil(R) = Z(R), then T (R) is the

smallest ring containing S−1R for all multiplicative closed subsets S of R. Motivated

by this, we define the following:

Definition 2.1. Let R be a ring such that Nil(R) = Z(R). Then we say that

(i) R satisfies the intersection property of localizations if the following holds: Let

{Aα}α∈Λ be a family of rings of the form S−1
α R, where Sα’s are multiplicative

closed subsets of R, and let A be a local ring of the form S−1R for some

multiplicative closed subset S of R such that
⋂

α∈Λ

Aα ⊆ A. Then Aα ⊆ A for

some α ∈ Λ.

(ii) R satisfies the avoidance principle for localizations if the following holds: Let

{Aα}α∈Λ be a family of local rings of the form S−1
α R, where Sα’s are multi-

plicative closed subsets of R, and let A be any ring of the form S−1R for some

multiplicative closed subset S of R such that A ⊆
⋃

α∈Λ

Aα. Then A ⊆ Aα for

some α ∈ Λ.

The next theorem provides a necessary and sufficient condition for a ring R to

satisfy the intersection property of localizations provided Nil(R) = Z(R).

Theorem 2.2. Let R be a ring such that Nil(R) = Z(R). Then R satisfies the

intersection property of localizations if and only if each prime ideal of R is the radical

of some principal ideal of R.

P r o o f. First suppose that each prime ideal of R is the radical of some principal

ideal of R. Consider a local ring A and a family of rings {Aα}α∈Λ as defined in

Definition 2.1 (i) such that
⋂

α∈Λ

Aα ⊆ A. Let m be the maximal ideal of A and

{mαβ : mαβ is a prime ideal of Aα} be the family of all prime ideals of Aα for all α.

Let p be the contraction of m in R and pαβ be the contraction of mαβ in R for all β

and for all α. Now, we assert that p ⊆
⋃

α,β

pαβ. If possible, suppose that x ∈ p

but not in any pαβ. Then x ∈ Sα for all α. It follows that x/1 is a unit in Aα for

all α. Since each Aα is a subring of RNil(R), 1/x ∈ Aα for all α and hence 1/x ∈ A,

a contradiction as x/1 ∈ m. Thus, our assertion holds. Since p = Rad(r) for some

r ∈ R, p ⊆ pαβ for some α, β. Consequently, Aα ⊆ A.

Conversely, suppose that R satisfies the intersection property of localizations. If

possible, suppose that there is a prime ideal p of R such that p 6= Rad(r) for all r ∈ R.

Then for each r ∈ p there exists a prime ideal pr of R containing r such that p is not

contained in pr. Clearly, we have p ⊆
⋃

r∈p

pr. Set A = Rp and Ar = Rpr
for all r ∈ p.

Then
⋂

r∈p

Ar ⊆ A but Ar is not contained in A for any r ∈ p, a contradiction. �
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Note that if R is an integral domain, then the intersection property of localizations

has the following compact form:

LetR be an integral domain. Then we say that R satisfies the intersection property

of localizations if the following holds: Let {Aα}α∈Λ be a family of rings of the

form S−1
α R, where Sα’s are multiplicative closed subsets of R and let A be a local

overring of R such that
⋂

α∈Λ

Aα ⊆ A. Then Aα ⊆ A for some α ∈ Λ.

Now, as an immediate consequence of Theorem 2.2, we have the following corollary.

Corollary 2.1. Let R be an integral domain. Then R satisfies intersection prop-

erty of localizations if and only if each prime ideal of R is the radical of some principal

ideal of R.

Let R be a ring. Then R is said to satisfy condition (∗) if the following holds: Let

{pα}α∈Λ be any family of prime ideals of R. If
⋂

α∈Λ

pα ⊆ p for some prime ideal p

of R, then pα ⊆ p for some α ∈ Λ. In the next theorem, we prove the equivalence of

condition (∗) and the avoidance principle for localizations.

Theorem 2.3. Let R be a ring such that Nil(R) = Z(R). Then R satisfies the

avoidance principle for localizations if and only if R satisfies condition (∗).

P r o o f. First suppose that R satisfies condition (∗). Consider a ring A and

a family of local rings Aα as defined in Definition 2.1 (ii) such that A ⊆
⋃

α∈Λ

Aα.

Let mα be the maximal ideal of Aα and pα be the contraction of mα in R for

all α. Further, suppose that {qβ}β∈∆ is the family of all prime ideals of R which

do not meet S. Then
⋂

α∈Λ

pα ⊆
⋃

β∈∆

qβ , because as if x ∈
⋂

α∈Λ

pα \
⋃

β∈∆

qβ , then

x ∈ S = R \
⋃

β∈∆

qβ. Consequently, there exists t ∈ R such that xt ∈ S, that is,

1/xt ∈ A. It follows that 1/xt ∈ Aα for some α, a contradiction as xt/1 ∈ mα. Note

that there is a prime ideal p of R such that
⋂

α∈Λ

pα ⊆ p ⊆
⋃

β∈∆

qβ. By hypothesis, it

follows that pα ⊆
⋃

β∈∆

qβ for some α ∈ Λ. Thus, A ⊆ Aα.

Conversely, assume that R satisfies the avoidance principle for localizations. Let

{pα}α∈Λ be any family of prime ideals of R such that
⋂

α∈Λ

pα ⊆ p for some prime

ideal p of R. Then A ⊆
⋃

α∈Λ

Aα, where A = Rp and Aα = Rpα
for all α ∈ Λ. Thus,

A ⊆ Aα for some α ∈ Λ and so pα ⊆ p. �

Let R be a ring. Then we say that R satisfies the intersection property of subrings

if each subring V of R has the following property:

If {Vα}α∈Λ is any family of subrings of R such that
⋂

α∈Λ

Vα ⊆ V , then Vα ⊆ V for

some α.
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Theorem 2.4. A ring R satisfies the intersection property of subrings if and only

if for each subring V of R there exists x ∈ R \ V such that all the subrings not

containing x are contained in V .

P r o o f. Let R satisfy the intersection property of subrings. If possible, suppose

there exists a subring V of R such that for each x ∈ R \ V there exists a subring Vx

of R not containing x such that Vx is not contained in V . Now, we assert that
⋂

x∈R\V

Vx ⊆ V . If possible, take y ∈
(

⋂

x∈R\V

Vx

)

\ V . Then y ∈ Vy , a contradic-

tion. Thus, our assertion holds, which again contradicts the intersection property of

subrings.

Conversely, assume that for each subring V of R there exists x ∈ R\V such that all

subrings not containing x are contained in V . Let V be a subring of R and {Vα}α∈Λ

be any family of subrings of R such that
⋂

α∈Λ

Vα ⊆ V . Then x /∈
⋂

α

Vα and so x /∈ Vα

for some α. Thus, by assumption Vα ⊆ V . �

Let R be a ring and V be a subring of R. Then we say that V satisfies the

intersection property of subrings in R if the following holds:

If {Vα}α∈Λ is any family of subrings of R such that
⋂

α∈Λ

Vα ⊆ V , then Vα ⊆ V for

some α.

Next, we offer the following companion for Theorem 2.4.

Corollary 2.2. A subring V of a ring R satisfies the intersection property of

subrings in R if and only if there exists x ∈ R \ V such that all the subrings not

containing x are contained in V .

Example 2.1. Let R = Q and V = ZpZ for some prime p. Then it is easy

to see that all the subrings of R not containing 1/p are contained in V . Thus, by

Corollary 2.2, V satisfies the intersection property of subrings in R.

Let V be a subring of a ring R. Then we say that V is compact in R if the following

holds: If {Vα}α∈Λ is any family of subrings in R such that V ⊆
⋃

α∈Λ

Vα, then V ⊆ Vα

for some α.

Theorem 2.5. Let V be a subring of a ring R. Then V is compact in R if and only

if there exists x ∈ V such that the subrings of R which contains x must contain V .

P r o o f. Let V be compact in R. Assume for each x ∈ V there exists a sub-

ring Vx of R which contains x such that V is not contained in Vx. Clearly, we have

V ⊆
⋃

x∈V

Vx, which contradicts the compactness of V .

Conversely, assume that there exists x ∈ V such that the subrings of R which

contain x must contain V . Let {Vα}α∈Λ be any family of subrings of R such that
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V ⊆
⋃

α∈Λ

Vα. Then x ∈ Vα for some α. Thus, by assumption, V ⊆ Vα and hence V

is compact. �
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