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Abstract. Let G be a finite group with a normal subgroup N such that CG(N) 6 N . It is
shown that under some conditions, Coleman automorphisms of G are inner. Interest in such
automorphisms arose from the study of the normalizer problem for integral group rings.
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1. Introduction

Let G be a finite group and ZG be its integral group ring over Z. Denote by U(ZG)

the group of units of ZG. The normalizer problem (see [18], problem 43) of integral

group rings asks whether NU(ZG)(G) = G · Z(U(ZG)) for any finite group G, where

NU(ZG)(G) and Z(U(ZG)) denote the normalizer of G in U(ZG) and the center

of U(ZG), respectively. If the equality is valid for G, then we say that the normalizer

property holds for G.

For any u ∈ NU(ZG)(G), we write ϕu to denote the automorphism ofG induced by u

via conjugation, i.e., gϕu = u−1gu for all g ∈ G. All such automorphisms of G form

a subgroup of Aut(G), denoted by AutZ(G). Obviously we have Inn(G) 6 AutZ(G).

Question 3.7 in [10] asks whether AutZ(G) = Inn(G) for any finite group G. It is

easy to see that this question is equivalent to the normalizer problem.

Coleman automorphisms of finite groups have an intimate connection with the

normalizer problem. Recall that an automorphism σ of a finite group G is called

a Coleman automorphism if the restriction of σ to each Sylow subgroup of G equals
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the restriction of some inner automorphism of G. All such automorphisms of G form

a subgroup of Aut(G), denoted by AutCol(G). Set OutCol(G) = AutCol(G)/Inn(G),

OutZ(G) = AutZ(G)/Inn(G). It is known by Coleman’s lemma (see [1]) that

OutZ(G) 6 OutCol(G). Thus, if we can show that OutCol(G) = 1 under some

conditions, then OutZ(G) = 1. Recently, a large number of positive results on the

normalizer problem have been obtained by several authors. For instance, Hertweck

and Kimmerle in [8] proved that OutCol(G) = 1 for a quasinilpotent group G. It

follows that the normalizer property holds for finite quasinilpotent groups. Van

Antwerpen in [19] proved that all Coleman automorphisms of a finite group with

a self-central normal p-subgroup are inner. Petit Lobão and Sehgal in [16] showed

that the normalizer property holds for the wreath product G = NwrSm of a finite

nilpotent groupN by symmetric group Sm. In addition, other affirmative results con-

cerning this problem can also be found in [1], [2], [3], [4], [7], [11], [12], [13], [14], [15].

Recall that the wreath product of N by H is the regular wreath product and de-

noted by NwrH , where N and H are two finite groups. The aim of the present paper

is to investigate Coleman automorphisms of extensions of some finite groups. The

motivation for our study arises from the metabelian group constructed by Hertweck

in [5] for which the normalizer property fails to hold. However, it is known that

the normalizer property holds for any abelian group. In addition, Hertweck in [6]

constructed a group G = (C3 × C5) ⋊ C2 for which OutCol(G) ∼= C2. This example

also illustrates that if G is an extension of a finite nilpotent group by an abelian

group, then in general it is not the case that OutCol(G) = 1. However, in this paper

we shall prove the following results.

Theorem 1.1. Let G be a finite group with a normal subgroup N such that

CG(N) 6 N . Assume that H1(G/N,Z(N)) = 1 and regard H/Inn(N) as the image

of G/N in Out(N). If H/Inn(N) is self-normalizing in Out(N), then every Coleman

automorphism of G is inner. In particular, the normalizer property holds for G.

Theorem 1.2. Let G be a finite group with a nontrivial nilpotent normal sub-

group N . Assume that the center of G/N is trivial and G/N acts faithfully on the

center of each Sylow subgroup of N . Then every Coleman automorphism of G is

inner. In particular, the normalizer property holds for G.

As a direct consequence of Theorem 1.2, we have:

Corollary 1.1. Let G = NwrH be the wreath product of a nontrivial finite

nilpotent groupN by a centerless finite groupH . Then every Coleman automorphism

of G is inner. In particular, the normalizer property holds for G.
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Finally, we fix some notation used in this paper. Let σ be an automorphism of

a finite group G and H be a subgroup of G. Denote by σ|H the restriction of σ

to H . Let N be a normal subgroup of G. If σ fixes N , i.e., Nσ = N , then σ

induces an automorphism of G/N , which is denoted by σ|G/N . Let x ∈ G be a fixed

element. Denote by conj(x) the automorphism of G induced by x via conjugation,

i.e., gconj(x) = gx for any g ∈ G. Denote by π(G) the set of all primes dividing the

order of G. For any p ∈ π(G), we use Op(G) to denote the largest normal p-subgroup

of G and Op′(G) to denote the largest normal p′-subgroup of G, respectively. Other

notation used will be mostly standard, refer to [8], [17], [18].

2. Preliminaries

In this section, some lemmas needed in the sequel are presented.

Lemma 2.1 ([8], Proposition 1). Let G be a finite group. Then the prime divisors

of |AutCol(G)| lie in π(G), the set of prime divisors of |G|.

Lemma 2.2. Let σ ∈ AutCol(G) and N be a normal subgroup of G. Then

(1) σ|N ∈ Aut(N),

(2) σ|G/N ∈ AutCol(G/N).

P r o o f. These results are derived from the proof of Corollary 3 (i) in [8]. �

Lemma 2.3 ([9], Satz I.17.1). Let G be a group and let N be a nontrivial normal

subgroup with CG(N) 6 N and H1(G/N,Z(N)) = 1. Then any automorphism of G

which fixes N element-wise is inner.

Lemma 2.4. Let G be a finite group with a nilpotent normal subgroup N . As-

sume that P is an arbitrary Sylow subgroup of N and G/N acts faithfully on Z(P ).

Then CG(P ) 6 N . In particular, CG(N) 6 N .

P r o o f. Let g ∈ CG(P ). We may set g = xh with x ∈ N and h ∈ G. Since N

is a finite nilpotent group, thus N = ×p∈π(N)P and Z(P ) 6= 1, where P ∈ Sylp(N).

For any y ∈ Z(P ), on the one hand, we have yg = y. On the other hand, we have

yg = yxh = yh. Consequently, we obtain yh = y. By assumption G/N acts faithfully

on Z(P ). This implies that h ∈ N and thus g ∈ N , i.e., CG(P ) 6 N . In particular,

CG(N) 6 CG(P ) 6 N , and we are done. �

Lemma 2.5 ([6], Lemma 2). Let p be a prime, and σ an automorphism of G

of p-power order. Assume further that there is N E G such that σ fixes all ele-

ments of N , and that σ induces the identity on G/N . Then σ induces the identity
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on G/Op(Z(N)). If σ fixes in addition a Sylow p-subgroup of G element-wise, then σ

is an inner automorphism.

Lemma 2.6. Let σ ∈ Aut(G) be of p-power order and letN be a normal subgroup

of G. Assume that Nσ = N and σ induces an inner automorphism of G/N . Then

there is γ ∈ Inn(G) such that σγ|G/N = id|G/N and σγ is still an automorphism of

p-power order.

P r o o f. Let o(σ) = pm with m ∈ N. Since σ induces an inner automorphism

of G/N , there is x ∈ G such that σ|G/N = conj(x)|G/N . Let β := conj(x). Then

we have σβ−1|G/N = id|G/N . Let (σβ
−1)n be the p-part of σβ−1 with n ∈ N and

(n, p) = 1. Then there are a, b ∈ Z such that an + bpm = 1. It is easy to see that

(σβ−1)
an
is of p-power order and (σβ−1)

an
|G/N = id|G/N . Since Inn(G) E Aut(G),

there is γ ∈ Inn(G) such that (σβ−1)
an

= σanγ = σ1−bpm

γ = σγ. The assertions

follow immediately. �

Lemma 2.7 ([8], Lemma 6). Let σ ∈ Aut(G) and N E G with Nσ = N , and

suppose that for some Sylow subgroup Q of N , there is h ∈ G such that σ|Q =

conj(h)|Q. Then σ stabilizes M = NCG(Q) E G, and σ|G/M = conj(h)|G/M .

3. Proof of the theorems

P r o o f of Theorem 1.1. Let γ ∈ NAut(N)(H), then Hγ = H , which implies that

(H/Inn(N))γ = Hγ/Inn(N) = H/Inn(N).

Since H/Inn(N) is self-normalizing in Out(N), we have that

γInn(N) ∈ NOut(N)(H/Inn(N)) = H/Inn(N).

Consequently, we obtain that

(3.1) H = NAut(N)(H).

Let σ be an arbitrary Coleman automorphism ofG. By Lemma 2.2, σ|N ∈ Aut(N).

However, for every g ∈ G we have

(3.2) (conj(g)|N )σ|N = conj(gσ)|N .

Additionally, G acts on N , by conjugation with kernel CG(N) = Z(N). Hence

there is a homomorphism from G/Z(N) into Aut(N), mapping g ∈ G to conj(g)|N .
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Note that H is the image of G/Z(N) in Aut(N). Thus H = {conj(g)|N : g ∈ G},

and (3.2) implies that σ|N ∈ NAut(N)(H). By (3.1), there exists some element y ∈ G

such that σ|N = conj(y)|N , that is

σconj(y−1)|N = id|N .

By Lemma 2.3, σ conj(y−1) ∈ Inn(G), i.e., σ ∈ Inn(G). This completes the proof of

Theorem 1.1. �

As immediate consequences of Theorem 1.1, we have:

Corollary 3.1. Let G be a finite group with a normal subgroup N such that

CG(N) 6 N . Assume that Z(N) = 1 and regard H/Inn(N) as the image of G/N

in Out(N). If H/Inn(N) is self-normalizing in Out(N), then every Coleman auto-

morphism of G is inner. In particular, the normalizer property holds for G.

Corollary 3.2. Let G be a finite group with a normal subgroup N such that

CG(N) 6 N . Assume that (|G/N |, |N |) = 1 and regard H/Inn(N) as the image

of G/N in Out(N). If H/Inn(N) is self-normalizing in Out(N), then every Coleman

automorphism of G is inner. In particular, the normalizer property holds for G.

P r o o f of Theorem 1.2. By Lemma 2.1, we may assume that σ ∈ AutCol(G) is

an arbitrary Coleman automorphism of p-power order. We have to show that σ is

an inner automorphism of G. The proof of Theorem 1.2 splits into two cases:

Case 1 : |π(N)| = 1. In this case, the group N is a normal q-subgroup of G for

some prime q ∈ π(G). By Lemma 2.4, CG(N) 6 N , thus the assertion follows from

Theorem 2.2 in [19].

Case 2 : |π(N)| > 1. If p ∈ π(N), then G/Op′(N) satisfies the conditions of

Theorem 1.2. By Case 1, we have OutCol(G/Op′(N)) = 1. Note further that

σ ∈ AutCol(G) implies σ|G/Op′ (N) ∈ AutCol(G/Op′(N)). Consequently, we have

σ|G/Op′ (N) ∈ Inn(G/Op′(N)). Thus there exists some x ∈ G such that σ|G/Op′ (N) =

conj(x)|G/Op′ (N). Without loss of generality, by Lemma 2.6, we may assume that

(3.3) σ|G/Op′ (N) = id|G/Op′(N).

Next we shall show that σ|Op′ (N) ∈ AutCol(Op′(N)). For this purpose, let Q be an

arbitrary Sylow subgroup of Op′(N). By the definition of Coleman automorphisms,

there exists y ∈ G such that

(3.4) σ|Q = conj(y)|Q.
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Write M := Op′(N)CG(Q). Then, on the one hand, by Lemma 2.7, we have

(3.5) σ|G/M = conj(y)|G/M .

On the other hand, note that M > Op′(N). Then, by (3.3), we have

(3.6) σ|G/M = id|G/M .

Consequently, (3.5) and (3.6) yield that conj(y)|G/M = id|G/M , which implies that

yM ∈ Z(G/M). By Lemma 2.4, CG(Q) 6 N . Note further that N is nilpotent.

Consequently, we must have M = Op′(N)CG(Q) = N . Thus G/M = G/N . Since

the center of G/N is trivial, Z(G/M) = 1. Consequently, yM ∈ Z(G/M) implies

y ∈ M . Recall thatM = Op′(N)CG(Q) = CG(Q)Op′(N), so we may set y = ch with

c ∈ CG(Q) and h ∈ Op′(N). Then, by (3.4), we have

(3.7) σ|Q = conj(y)|Q = conj(ch)|Q = conj(h)|Q.

As Q is an arbitrary Sylow subgroup of Op′(N), (3.7) tells us that

σ|Op′ (N) ∈ AutCol(Op′(N)).

Note that Op′(N) is a p′-group. Then, by Lemma 2.1, AutCol(Op′(N)) is also

a p′-group. But σ is of p-power order, so is σ|Op′ (N), which forces

(3.8) σ|Op′ (N) = id|Op′ (N).

Now, by Lemma 2.5, (3.3) and (3.8) yield that

(3.9) σ|G/Op(Z(Op′ (N))) = id|G/Op(Z(Op′ (N))).

Note again that Op′(N) is a p′-group, so Op(Z(Op′(N))) = 1 and thus (3.9) implies

that σ = id.

If p /∈ π(N), let q ∈ π(N). Note that G/Oq′(N) satisfies the conditions

of Theorem 1.2, so, by Case 1, OutCol(G/Oq′(N)) = 1. Note further that

σ ∈ AutCol(G) implies σ|G/Oq′ (N) ∈ AutCol(G/Oq′ (N)). Consequently, we have

σ|G/Oq′ (N) ∈ Inn(G/Oq′ (N)). Using an identical argument as in p ∈ π(N), we can

show that σ ∈ Inn(G), so we omit it. In all cases, we have OutCol(G) = 1. This

completes the proof of Theorem 1.2. �

1202



P r o o f of Corollary 1.1. Let |H | = m. Then G = NwrH = Nm
⋊H , where Nm

is the direct product of m copies of N . Let p ∈ π(N) and let P ∈ Sylp(N
m). We will

show that H acts faithfully on Z(P ). Since N is a nilpotent group, thus Nm is also

a nilpotent group. Obviously, H acts on Z(P ) for any y ∈ Z(P ), if yh = y, where

h ∈ H . Since the intersection of Z(P ) with each component of Nm is nontrivial,

i.e., Z(P ) is extensive in Nm, we deduce that h = 1, and this shows that H acts

faithfully on Z(P ). Thus the assertion follows from Theorem 1.2. �

As an immediate consequence of Corollary 1.1, we have:

Corollary 3.3. Let G = NwrSm (m > 3) be the wreath product of N by Sm,

where N is a finite nilpotent group and Sm is a symmetric group of degree m. Then

every Coleman automorphism of G is inner, i.e., OutCol(G) = 1.

Remark 3.1. The restriction that H is a centerless finite group in Corollary 1.1

cannot be removed. This fact is illustrated by the following example.

Example 3.1. Let G = C6wrS2 be the natural wreath product of a cyclic

group C6 of order 6 by S2. Then OutCol(G) ∼= C2 6= 1.

P r o o f. This is a direct consequence of Theorem 3.2 in [19]. �

Example 3.1 shows that in general it is not the case that OutCol(G) = 1 for

G = NwrS2 with N being a finite nilpotent group. As a special case of Theorem 1

in [16], we have the following result:

Theorem 3.1. Let G = NwrS2 be the wreath product of a finite nilpotent

group N by a symmetric group S2 of degree 2. Then OutZ(G) = 1.
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