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Further properties of Stepanov–Orlicz

almost periodic functions

Yousra Djabri, Fazia Bedouhene, Fatiha Boulahia

Abstract. We revisit the concept of Stepanov–Orlicz almost periodic functions
introduced by Hillmann in terms of Bochner transform. Some structural prop-
erties of these functions are investigated. A particular attention is paid to the
Nemytskii operator between spaces of Stepanov–Orlicz almost periodic functions.
Finally, we establish an existence and uniqueness result of Bohr almost periodic
mild solution to a class of semilinear evolution equations with Stepanov–Orlicz
almost periodic forcing term.

Keywords: Bohr almost periodic; Bochner transform; Stepanov–Orlicz almost
periodic function; semilinear evolution equations; Nemytskii operator

Classification: 34C27, 35B15, 46E30

1. Introduction

The concept of Stepanov almost periodic functions introduced by Stepanov in

[30] in 1926 is a natural and important generalization of Bohr almost periodicity.

In recent decades, this concept has been well developed in connection with the

theory of differential equations, because of their significance and applications in

different areas such as physics, mathematical biology, control theory, and other

related fields, see [7], [17], [20]. Important progresses have been made on this

subject, we can cite several works which give a beautiful presentation of the

methods and results: S. Zaidman [32], A. S. Rao [29], S. Stoiński [31], J. Andres

and D. Pennequin [5], [4], T. Diagana [13], H. S. Ding et al. [15], Y. Hu and

A.B. Mingarelli [18], F. Bedouhene et al. [6], D. Bugajewski and A. Nawrocki [7],

P. Kasprzak et al. [20].

Although there is an abundant literature dedicated to the different extension

of the Stepanov almost periodicity for Lebesgue p-integrable functions, such as

Stepanov pseudo almost periodicity in both deterministic and stochastic cases,
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see [13], [6], there are very little works devoted to Stepanov almost periodic-

ity in Orlicz and Musielak–Orlicz spaces. To our knowledge, the only reference

that introduces and deals with such functions in Orlicz spaces is the paper [16]

by T.R. Hillmann, where some structural and topological properties have been

investigated. Moreover, their applications to the qualitative theory of differential

equations have not been examined so far. This constitues a first motivation of

the present study.

On the other hand, T. Diagana and M. Zitane in [14] introduced a new class

of Stepanov–Musielak–Orlicz-pseudo almost periodic functions, but with the re-

striction that only the ergodicity property holds in Lebesgue space with variable

exponents Lp(·). Indeed, as speculated in [14, Remark 5.9], there are some diffi-

culties to define Stepanov almost periodicity in Lp(·) spaces. This is due mainly to

the fact that theses spaces are not translation invariant. The question of consid-

ering Stepanov almost periodicity in Orlicz spaces where the translation invariant

property occurs becomes more naturally. This gives rise to a second motivation

for our study.

Another source of inspiration for our study comes from J. Andres and D. Pen-

nequin in [5], in which the authors studied the nonexistence of purely Stepanov

almost periodic solutions of ordinary differential equations in Banach spaces.

The main goal of this article is to continue and further explore the study

[16] of T.R. Hillmann. First, we show that unlike Stepanov almost periodic-

ity, Stepanov–Orlicz almost periodicity cannot be characterized in terms of its

Bochner transform, when the generating Orlicz function, ϕ, fails the ∆2-condition

(Theorem 3.3). Second, based on a superposition result for Stepanov–Olicz al-

most periodic functions (Theorem 3.13), we address the issue of existence and

uniqueness of Bohr almost periodic solution to the abstract differential equation

(1.1) u′(t) = Au(t) + f(t, u(t)), t ∈ R

with A : D(A) ⊂ X → X being a linear operator (unbounded) which generates

an exponentially stable C0-semigroup on X and f : R × X → X being Stepanov–

Orlicz almost periodic. We show that even with a Stepanov–Orlicz almost periodic

coefficient, the unique bounded mild solution to (1.1) is Bohr almost periodic.

The organization of this paper is as follows. In Section 2, we recall some

basic definitions and facts concerning Orlicz spaces and almost periodic functions.

Special attention is paid to Stepanov–Orlicz almost periodic functions. Section 3

is devoted to our main result. First, we characterize the class of Stepanov–Orlicz

almost periodic functions via the Bochner transform. Then, we give a link between

the Stepanov–Orlicz almost periodic functions and measurably almost periodic

functions, in order to establish a superposition theorem. Finally, an application of
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the above-mentioned results to the qualitative theory of almost periodic functions

is indicated. We study the problem of existence and uniqueness of Bohr almost

periodic mild solution to (1.1).

2. Preliminaries

At the beginning of this section we give some basic notations which are used

throughout this paper.

For a Banach space (X, ‖·‖), let M(R,X) be the space of all measurable func-

tions from R into X. We denote by C(R,X) the space of continuous functions

from R into X. The notation BC(R,X) stands for the space of all bounded continu-

ous functions from R to X. For f ∈ BC(R,X), let ‖f‖∞ = sup{‖f(t)‖ : t ∈ R} de-

note the norm of uniform convergence (sup-norm) on R, under this norm BC(R,X)

is a Banach space. Space L∞(R,X) is the Banach space of X-valued essentially

bounded functions on R. We denote by Σ := Σ(R) the σ-algebra of all Lebesgue-

measurable subsets of R, and by meas the Lebesgue measure on Σ. Finally, for

a function f ∈ M(R,X), we denote by fτ : R → X, τ ∈ R, its translation mapping

defined by fτ (·) = f(·+ τ).

Orlicz spaces. In all the sequel, the notation ϕ is used for a Young function,

i.e. a symmetric convex function ϕ : R → R
+, satisfying ϕ(u) = 0 if and only if

u = 0, moreover lim|u|→∞ ϕ(u) = ∞.

This function ϕ is said to satisfy the ∆2-condition for large values (we write

ϕ ∈ ∆2), when there exist constants k > 0 and u0 > 0 such that,

ϕ(2u) ≤ kϕ(u), ∀ |u| ≥ u0.

The function ψ(y) = sup{x|y| − ϕ(x) : x ≥ 0} is called conjugate to ϕ. It is

a Young function when ϕ is.

Let Eϕ
loc(R,X) (L

ϕ
loc(R,X), respectively) be the subspace of all Lebesgue-mea-

surable functions f defined on R such that for each bounded interval U and all

α > 0, (there exists α := αU,f > 0, respectively),

̺Lϕ(U)(αf) :=

∫

U

ϕ(α‖f(t)‖) dt <∞.

When U = [0, 1], we get the classical Morse–Transue space Eϕ([0, 1],X) (the

Orlicz space Lϕ([0, 1],X), respectively). Both spaces are modular spaces under

the modular ̺Lϕ([0,1]). Moreover, they are Banach spaces under the Luxemburg

norm,

‖f‖Lϕ([0,1]) = inf
{
k > 0: ̺Lϕ([0,1])

(f
k

)
≤ 1

}
.
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Clearly, Eϕ([0, 1],X) ⊂ Lϕ([0, 1],X). Equality holds if and only if ϕ satisfies the

∆2-condition.

Two important properties hold in Eϕ([0, 1],X). If f ∈ Eϕ([0, 1],X), then we

have [23]:

(i) Function f is ϕ-mean continuous, namely for every ε > 0 there exists

δ > 0 such that ‖fh − f‖Lϕ([0,1]) < ε for h ∈ R with |h| < δ, where

fh(t) =

{
f(t+ h), if t ∈ [0, 1] and t+ h ∈ [0, 1],

0, otherwise.

(ii) Function f is absolutely continuous in Lϕ-norm, that is for every ε > 0,

there exists δ > 0 such that for every A ∈ Σ with meas(A) < δ, we have

‖f1A‖Lϕ[0,1]) < ε, where 1A denotes the characteristic function of the

set A.

For more details about Orlicz and modular spaces, we refer the reader to [23],

[8], [22], [26].

Now, let us recall the definition of Stepanov–Orlicz space. The functional

(2.1)

̺Sϕ : Lϕ
loc(R,X) → R

+

f 7→ sup
t∈R

∫ t+1

t

ϕ(‖f(s)‖) ds

is the Stepanov–Orlicz modular. The corresponding modular space, namely the

Stepanov–Orlicz space, is given by:

BSϕ(R,X) = {f ∈ Lϕ
loc(R,X) : s.t. ̺Sϕ(αf) <∞ for some α > 0}.

We endow this space with its natural Luxemburg norm defined by

(2.2) ‖f‖Sϕ := inf
{
k > 0: ̺Sϕ

(f
k

)
≤ 1

}
.

T.R. Hillmann in [16] has shown that the Luxemburg norm (2.2) can be refor-

mulated as follows

(2.3) ‖f‖Sϕ = sup
t∈R

inf

{
k > 0:

∫ t+1

t

ϕ
(‖f(s)‖

k

)
ds ≤ 1

}
.

Using similar arguments as those of Orlicz space theory in [26], see also [16, Lem-

ma 1.2], the following property holds: for any f ∈ BSϕ(R,X), there exists βϕ,f > 0

such that

(2.4) ‖f‖S1 ≤ βϕ,f‖f‖Sϕ ,

where the notation ‖·‖S1 stands for the norm (2.2) when ϕ = |·|.
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Bohr and Stepanov–Orlicz almost periodicity. Let us start with the defi-

nition of relatively dense set. A set E ⊂ R is called relatively dense if there exists

a number l > 0 such that (a, a+ l) ∩ E 6= ∅ for all a ∈ R.

Definition 2.1 ([2], [10]). A continuous function f : R → X is said to be Bohr

almost periodic if for all ε > 0 the set

T(f, ε) := {τ ∈ R : ‖fτ − f‖∞ < ε},

is relatively dense in R. The number τ above is called ε-translation number of f .

We denote by AP(R,X) the space of all Bohr almost periodic functions.

Bohr almost periodic functions enjoy important properties, in particular they

can be defined as uniform limits of sequences belonging to Trig(R;X), the set of

generalized trigonometric polynomials Pn(t) =
∑n

k=1 ak exp(iλkt), t ∈ R, where

ak ∈ X and λ1, λ2, . . . , λn, are mutually different real numbers. Moreover, they

are bounded and uniformly continuous. Note that (AP(R,X), ‖·‖∞) is a Banach

space.

Now, we pass to the definition of Stepanov–Orlicz almost periodicity introduced

by T.R. Hillmann in [16]. Following J. Albrycht work [1], where the theory

of Marcinkiewicz–Orlicz spaces has been introduced, T.R. Hillmann in [16] has

proposed various natural generalizations of almost periodicity for complex-valued

functions by considering his study in Lϕ
loc(R,X).

Definition 2.2 ([16]). A function f ∈ Lϕ
loc(R, X) is said to be Stepanov–Orlicz al-

most periodic S
ϕ
a.p.(R,X) function if f belongs to the closure of the linear trigono-

metric polynomials set Trig(R;X) in Lϕ
loc(R,X), with respect to the norm ‖·‖Sϕ .

More exactly:

(2.5) S
ϕ
a.p.(R,X) = Trig(R;X)

‖·‖Sϕ

.

Another definition in Bohr sense is given by the following:

Definition 2.3 ([16]). A function f in Lϕ
loc(R,X) is said to satisfy the S

ϕ-

translation property and we write f ∈ S
ϕ
t.p.(R,X), if for every ε > 0, the set

(2.6) S
ϕT(f, ε) := {τ ∈ R : ‖fτ − f‖Sϕ < ε},

is relatively dense in R. Elements of S
ϕT(f, ε) are called ε-Sϕ-almost periods

of f .

The space (Sϕt.p.(R,X), ‖·‖Sϕ) is a Banach space, see [16].
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3. Main results

3.1 Characterization of S
ϕAP-functions via the Bochner transform. In

very important theorem [16, Theorem 1.1], T.R. Hillmann has shown the following

inclusion

S
ϕ
a.p.(R,X) ⊂ S

ϕ
t.p.(R,X).

Equality holds if and only if ϕ satisfies the ∆2-condition. This is the case in

particular when ϕ = |·|p, p ≥ 1. In this case, we obtain the usual space of

Stepanov almost periodic functions, that we denote by S
pAP(R,X). This space

is well investigated. The literature is abundant, see for instance [20], [18], [3], [27].

Let f ∈ Lp
loc(R,X). It is well-know, see e.g. [2], [10], [3], [27], that Stepanov

almost periodicity of f is equivalent to the Lp([0, 1],X)-almost periodicity of its

Bochner transform f b defined as

f b : R → X
[0, 1], t 7→ f b(t) = f(t+ ·).

A question arises then naturally:

(Q) Can the previous definitions be characterized via the Bochner transform?

Prior giving an answer, let us make the following remark:

Remark 3.1.

1. Thanks to (2.3), the Luxemburg norm of f ∈ BSϕ(R,X) can be seen as

the sup-norm of its Bochner transform f b : R → Lϕ([0, 1],X). That is,

(3.1) ‖f‖Sϕ = sup
t∈R

‖f(t+ ·)‖Lϕ([0,1]) = ‖f b‖∞.

Due to this identification, we conclude that boundedness of f b is equiva-

lent to boundedness of f with respect to the Luxemburg norm ‖·‖Sϕ .

2. Using again (2.3), we have S
ϕT(f, ε) = T(f b, ε).

3. A sequence (fn) converges to f in BSϕ(R,X) if and only if (f b
n) converges

to f b in L∞(R,Lϕ([0, 1],X)).

A partial answer to (Q) is provided by the following proposition:

Proposition 3.2. The question is affirmative for:

1. S
ϕ
t.p.(R,X), if ϕ satisfies the ∆2-condition;

2. S
ϕ
a.p.(R,X) for every Young function ϕ.

Proof: 1. Using Remark 3.1, both f and f b have the same ε-translation num-

bers. To get the almost periodicity of f b it reminds only to check its continuity.

Let t0 ∈ R. Since ϕ ∈ ∆2 then for every ε > 0, there exists δ = δ(t0, ε) > 0 such
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that for every h ∈ R with |h| ≤ δ we have

‖fh − f‖Lϕ([t0,t0+1]) ≤ ε.

The continuity of f b follows then from the equality

‖f b(t0 + h)− f b(t0)‖Lϕ([0,1]) = ‖fh − f‖Lϕ([t0,t0+1]) ≤ ε

combined with the ϕ-mean continuity of f in Lϕ([t0, t0 + 1]).

2. Let f ∈ S
ϕ
a.p.(R,X). Let (fn) be an approximating sequence of generalized

trigonometric polynomials. That is

(fn) ⊂ Trigf (R,X) = {Pn ∈ Trig(R;X) : such that lim
n→∞

‖f − Pn‖Sϕ = 0}.

As for every n, f b
n belongs to Trigfb(R,X) ⊂ Trig(R,Lϕ

loc(R,X)), see [27, Propo-

sition 4.3], and

lim
n→∞

‖f b − f b
n‖∞ = lim

n→∞
sup
t∈R

‖f b(t)− f b
n(t)‖Lϕ([0,1]) = lim

n→∞
‖f − fn‖Sϕ = 0,

we deduce that f b ∈ AP(R,Lϕ([0, 1],X)), and the claim follows. �

Hereafter, we see that when ϕ fails the ∆2-condition, the answer is negative

when dealing with S
ϕ
t.p.(R,X). It seems to us that this is due, mainly, to the fact

that functions in Lϕ([0, 1],X) are not absolutely continuous in Lϕ-norm.

Theorem 3.3. Without the ∆2 condition, there exists g̃ ∈ S
ϕ
t.p.(R,X) such that

g̃ b /∈ AP(R,Lϕ([0, 1],X)).

Proof: Since functions in Lϕ([0, 1],X)\Eϕ([0, 1],X) are not absolutely continu-

ous in Lϕ-norm, see e.g. A. Kufner et al. [23, Theorem 3.15.6], then we can find

a function g ∈ Lϕ([0, 1],X)\Eϕ([0, 1],X) and ε0 > 0 such that for every δ > 0,

a measurable set, Aδ, exists with meas(Aδ) ≤ δ and ‖g1Aδ‖Lϕ([0,1]) > ε0.

We can ask that Aδ be included in [1− δ, 1[ and g ≡ 0 on [0, 1− δ [ .

Let g̃ be the 1-periodic extension of g to the whole R. Then g̃ satisfies the

S
ϕ-translation property, that is, g̃ ∈ Sϕ

t.p.(R,X), see also [16]. Now, if we assume

that g̃ b : R → Lϕ([0, 1],X) is continuous, then we can choose δ′ (small enough)

such that ε0 ≥ ‖g̃ b(h) − g̃ b(0)‖Lϕ([0,1]) for every h ∈ ]0, δ′]. Let δ∗ = min(δ, δ′).

Since g̃(δ∗ + ·) ≡ 0 on [1− δ∗, 1[ , we get for h = δ∗,

‖g̃ b(δ∗)− g̃ b(0)‖Lϕ([0,1]) ≥ ‖(g̃(δ∗ + ·)− g̃(·))1[1−δ∗,1]‖Lϕ([0,1])

= ‖g(·)1[1−δ∗,1]‖Lϕ([0,1])

= ‖g(·)1Aδ∗‖Lϕ([0,1]) > ε0,

which contradicts the fact that g̃ b : R → Lϕ([0, 1],X) is continuous. �
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Our aim here is to characterize the Stepanov–Orlicz almost periodicity via the

Bochner transform without imposing any restriction on the Young function. We

propose an alternative idea, that is, restrict our study to space Eϕ
loc(R,X). This

allows us to benefit from the richness of the Morse–Transue space. In particular,

we take the advantage of the ϕ-mean continuity and the absolutely continuity in

Lϕ-norm properties of Eϕ
loc(R,X) space.

Define the space

(3.2) S
ϕAP(R,X) := S

ϕ
t.p.(R,X) ∩ Eϕ

loc(R,X).

Elements from S
ϕAP(R,X) will be called S

ϕ-almost periodic functions. Clearly,

S
ϕAP(R,X) is a closed subspace of Sϕt.p.(R,X). Thus, (S

ϕAP(R,X), ‖·‖Sϕ) is a Ba-

nach space.

Remark 3.4. Let us mention that, the space S
ϕ
a.p.(R,X) is invariant by inter-

section with Eϕ
loc(R,X), even if the closure in (2.5) is taken in Lϕ

loc(R, X). More

precisely,

S
ϕ
a.p.(R,X) = S

ϕ
a.p.(R,X) ∩ Eϕ

loc(R,X).

To see how the property S
ϕ
a.p.(R,X) ⊂ Eϕ

loc(R,X) occurs naturally, it is enough to

show that for every α > 0, ̺Sϕ(αf) < ∞. For, let f ∈ S
ϕ
a.p.(R,X). Fix ε > 0 and

choose Pε ∈ Trig(R;X) such that ‖f − Pε‖Sϕ ≤ ε. Then taking into account the

boundedness of Pε, we obtain for every α > 0,

̺Sϕ(αf) ≤
1

2
̺Sϕ(2α(f − Pε)) +

1

2
̺Sϕ(2αPε) <∞,

which achieves the claimed property.

As an immediate consequence, we obtain

Corollary 3.5. The following properties hold true for every Young function ϕ:

1. if f ∈ Eϕ
loc(R,X), then f

b ∈ C(R,Eϕ([0, 1];X));

2. S
ϕAP(R,X) = S

ϕ
a.p.(R,X);

3. f ∈ S
ϕAP(R,X) if and only if f b ∈ AP(R,Eϕ([0, 1];X)).

Remark 3.6. Item 3. of Corollary 3.5 allows us to deduce some properties of

a function f ∈ S
ϕAP(R,X) via the almost periodicity of f b : R → Eϕ([0, 1],X).

In particular, Bohr Bohl Amerio’s result [2, Theorem II, page 82] remains valid

in S
ϕAP(R,X). Indeed, we have:

Proposition 3.7. Let X be a uniformly convex Banach space. Let ϕ be a uni-

formly convex function satisfying the ∆2-condition, and let f ∈ S
ϕAP(R,X). Let

F (t) =
∫ t

0 f(s) ds. If F ∈ BSϕ(R,X), then F is Bohr almost periodic.
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The proof that F is Bohr almost periodic is provided by the fact that the

space Lϕ([0, 1];X) is uniformly convex under the uniform convexity and the ∆2-

condition on ϕ and the uniform convexity of the space X, see [19].

It should be noted that the case ϕ = |·| is considered in [5], [11].

Almost periodicity in Lebesgue measure (meas-AP(R,X)). W. Stepanov in

[30] has introduced the notion of almost periodicity for measurable function and

called them measurably almost periodic functions (meas-AP(R,X)). Since then,

there has been a significant attention devoted to these functions. One can mention

the works by S. Stoiński [31], L. I. Danilov [12], D. Bugajewski and A. Nawrocki [7]

and P. Kasprzak et al. [20].

Let µS be the set function defined on Σ by:

(3.3) µS(A) = sup
ξ∈R

meas(A ∩ [ξ, ξ + 1]).

For a set A ∈ Σ, the notation Ac means the complementary of A.

Definition 3.8 ([30], [7], [20], [31]). We say that a function f ∈ M(R,X) is

measurably almost periodic and we write f ∈ meas-AP(R,X), if for any ε, δ > 0,

there exists l(ε, δ) > 0 such that any interval of length l(ε, δ) contains at least

a real number τ for which

sup
ξ∈R

meas({t ∈ [ξ, ξ + 1]: ‖f(t+ τ)− f(t)‖ ≥ ε}) < δ.

As pointed out by [7], [31], this notion coincides with the classical Stepanov

almost periodicity when replacing the norm ‖·‖ by the truncated one ‖·‖′ =

min(‖·‖, 1). In other words, we have the following characterization

(3.4) meas -AP(R,X) = S
1AP(R, (X, ‖·‖′)).

Using (2.4) and (3.4), we deduce that

(3.5) AP(R,X) ⊂ S
ϕAP(R,X) ⊂ S

1AP(R,X) ⊂ meas -AP(R,X).

Notice that the class meas-AP(R,X) enjoys an important compactness property,

see [12], that we denote by (D):

(D) If f ∈ meas-AP(R,X), then for all ε > 0 there exist a measurable sub-

set Tε of R and a compact subset Kε of X such that µS(T
c
ε) < ε and

f(t) ∈ Kε for all t ∈ Tε.

This compactness property is very useful when establishing our superposition

result.
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3.2 Link between the spaces S
ϕAP(R,X) and meas-AP(R,X). Below, we are

concerned with establishing a necessary and sufficient condition for a measurably

almost periodic function to be in S
ϕAP(R,X). It should be noticed that a similar

result is obtained by W. Stepanov in [30] in the case when ϕ = |·|, see also [7]

for the proof. L. I. Danilov in [12] has considered such result for metric-valued

functions. An extension to the case of Besicovitch–Musielak–Orlicz spaces of

almost periodic functions is considered in [21].

First, we need to introduce the following definition, inspired from [21].

Definition 3.9. A function f ∈ Eϕ
loc(R,X) is said to be absolutely ϕ-integrable

in µS sense, if for every ε > 0, there exists δ = δ(ε) > 0, such that for every

measurable subset A ∈ Σ with µS(A) < δ we have

‖f1A‖Sϕ < ε.

The class of these functions will be denoted by M
ϕ(R,X).

For f ∈ Eϕ
loc(R,X), let us define the following quantity:

(3.6) κ(f) := lim
δ→0+

sup
A⊂R

µS(A)≤δ

‖f1A‖Sϕ .

Then, it is easy to see that f is absolutely ϕ-integrable in µS sense if and only if

κ(f) = 0. So, we can write

M
ϕ(R,X) = {f ∈ Eϕ

loc(R,X) : s.t. κ(f) = 0}.

The following lemma shows that the functions in S
ϕAP(R,X) enjoy the absolutely

ϕ-integrable in the µS sense.

Lemma 3.10. The inclusion

(3.7) S
ϕAP(R,X) ⊂ M

ϕ(R,X)

holds true.

Proof: First, let us show that bounded functions are absolutely ϕ-integrable in

µSϕ sense, that is L∞(R,X) ⊂ M
ϕ(R,X).

Let ε > 0 and A ∈ Σ. Let f : R → X be a bounded function. Put C =

supt∈R ‖f(t)‖. Here, we exclude for simplicity the trivial case, when µS(A) = 0.

Clearly, we have

‖1A‖Sϕ =
1

ϕ−1(1/µS(A))
and ‖f1A‖Sϕ ≤ C‖1A‖Sϕ .

Since the function t → (ϕ−1(1/t))−1 is continuous and increasing on ]0,∞[ , we

deduce by choosing δ := (ϕ(C/ε))−1 that ‖f1A‖Sϕ ≤ ε, whenever µS(A) < δ.
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Now, let us assume that f ∈ S
ϕAP(R,X). Using Corollary 3.5, there exists

a trigonometric polynomial Pε ∈ Trig(R;X) such that

(3.8) ‖f − Pε‖Sϕ ≤
ε

2
.

Since Pε ∈ L∞(R,X), there exists δ > 0 such that ‖Pε1A‖Sϕ ≤ ε/2 whenever

µS(A) < δ. For such δ, we have

‖f1A‖Sϕ ≤ ‖(f − Pε)1A‖Sϕ + ‖Pε1A‖Sϕ ≤ ‖f − Pε‖Sϕ + ‖Pε1A‖Sϕ ≤ ε.

This completes the proof of the lemma. �

As a consequence, we have the following theorem:

Theorem 3.11. The following characterization holds

S
ϕAP(R,X) = M

ϕ(R,X) ∩meas -AP(R,X).

Proof: Firstly, using (3.5) and Lemma 3.10, we obtain the following inclusion

S
ϕAP(R,X) ⊂ meas -AP(R,X) ∩M

ϕ(R,X).

Conversely, let us assume that f ∈ meas -AP(R,X) ∩M
ϕ(R,X). Let ε > 0. We

can find a trigonometric polynomial Pε ∈ Trig(R;X) such that µS(Aε) < ε, where

Aε = {t ∈ R : s.t. ‖f(t)− Pε(t)‖ > εϕ−1(1)}.

Now, let η > 0. From the absolute ϕ-integrability in µS sense of both f and Pε,

we can choose ε > 0 small enough such that max(‖f1Aε‖Sϕ , ‖Pε1Aε‖Sϕ) < η/2.

Hence, using triangular inequality, we get

‖f − Pε‖Sϕ ≤ ‖(f − Pε)1Aε‖Sϕ + ‖(f − Pε)1Acε
‖Sϕ

≤ ‖f1Aε‖Sϕ + ‖Pε1Aε‖Sϕ + ε

≤ ε+ η.

This means that f ∈ S
ϕAP(R,X), since η is arbitrary, which proves our claim. �

3.3 The Nemytskii operator in S
ϕAP(R,X). Let F : R × X → X be a mea-

surable function. Recall that the usual Nemytskii operator (or superposition

operator), NF , associated to F is the mapping defined by

NF (x) := [t 7→ F (t, x(t))].

This operator is well studied in the literature, in spaces of Stepanov almost pe-

riodic functions [5], [15] as well as in Orlicz spaces, see e.g. [9]. This section is
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devoted to the study of this operator in the space of Stepanov–Orlicz almost peri-

odic functions. Inspired from [6], we show that under some conditions on F , NF

maps SϕAP(R,X) into itself.

We begin by introducing the following definition:

Definition 3.12. Let F : R× X → X be a mapping.

a) We say that a function F is almost periodic in Stepanov–Orlicz sense if the

mapping t → F (t, x) belongs to S
ϕAP(R,X) uniformly on any compact

subset K of X, that is for each x ∈ X, F (·, x) ∈ Eϕ
loc(R,X), and for every

ε > 0 and any compact subset K of X, the set
{
τ ∈ R : sup

x∈K
‖F (·+ τ, x)− F (., x)‖Sϕ ≤ ε

}

is relatively dense in R. The collection of such functions is denoted by

S
ϕAPK(R× X,X).

b) Fuction F is said to be S
ϕ-bounded if |NF (0)|Sϕ ≤ C for some C > 0.

Note that item b) from Definition 3.12 coincides with the property thatNF (0) ∈

BSϕ(R,X), see [25, Definition 1, page 43].

From now on we make the following basic assumption on the mapping F :

R× X → X.

(Lip) There exists L > 0 such that for all u, v ∈ X

‖F (·, u)− F (·, v)‖∞ ≤ L‖u− v‖.

We are now in position of establishing a superposition theorem for S
ϕ-almost

periodic functions.

Theorem 3.13. Let F ∈ S
ϕAPK(R × X,X). Assume that F satisfies condition

(Lip). Then, for every x(·) ∈ S
ϕAP(R,X), we have NF (x(·)) ∈ S

ϕAP(R,X).

Proof: We first examine that F (·, x(·)) ∈ Eϕ
loc(R,X). We have x(·) ∈ Eϕ

loc(R,X)

and F (·, 0) ∈ Eϕ
loc(R,X), then for every bounded set U ⊂ R, and any α > 0, we

get

̺ϕ

(α
2

(
F (·, x(·))

))
=

∫

U

ϕ
(α
2
‖F (t, x(t))‖

)
dt

≤
1

2

∫

U

ϕ(α‖F (t, x(t)) − F (t, 0)‖) dt+
1

2

∫

U

ϕ(α‖F (t, 0)‖) dt

≤
1

2

∫

U

ϕ(αL‖x(t)‖) dt+
1

2

∫

U

ϕ(α‖F (t, 0)‖) dt

≤
1

2
̺ϕ(αLx(·)) +

1

2
̺ϕ(αF (·, 0)) <∞.



Further properties of Stepanov–Orlicz almost periodic functions 375

Now, let K be a compact subset of X. Let x(·) ∈ S
ϕAP(R,X). Fix ε > 0. In

view of Theorem 3.11 and Danilov’s property (D), we can find η := η(ε) > 0 and

a compact subset Kη(ε) ⊂ X such that

(3.9) µS{t ∈ R : x(t) /∈ Kη(ε)} < η and
∥∥x(·)1Tc

η(ε)

∥∥
Sϕ

≤
ε

12L
,

where Tη(ε) = {t ∈ R : x(t) ∈ Kη(ε)}.

The compactness of Kη(ε) ensures the existence of a finite sequence (xi)1≤i≤m

in Kη(ε) such that

(3.10) Kη(ε) ⊂
m⋃

i=1

B
(
xi,

ε

12L

)
.

Now, since for every i = 1, . . . ,m, F (·, xi) ∈ S
ϕAP(R,X) and x(·) ∈ S

ϕAP(R,X),

we can choose a common ε-Sϕ-almost period associated to x(·) and (F (·, xi))1≤i≤m,

see, for instance, [24, page 6, Property 7]. Namely, let τ be an ε-Sϕ-almost period

satisfying

(3.11) τ ∈
m⋂

i=1

S
ϕT

(
F (·, xi),

ε

4

)
∩ S

ϕT
(
x(·),

ε

4L

)
.

Using the Lipschitz condition (Lip) and the increasing of ϕ, we have for every

k > 0

̺Sϕ
(1
k
‖F (·+ τ, x(· + τ))− F (·+ τ, x(·))‖

)
≤ ̺Sϕ

(L
k
‖x(·+ τ)− x(·)‖

)
.

Hence

{
k > 0: ̺Sϕ

(L
k
‖x(·+ τ)− x(·)‖

)
≤ 1

}

⊂
{
k > 0: ̺Sϕ

(1
k
‖F (·+ τ, x(·+ τ)) − F (·+ τ, x(·))‖

)
≤ 1

}
,

passing to the infimum, we deduce that

(3.12) ‖F (·+ τ, xτ (·))− F (·+ τ, x(·))‖Sϕ ≤ L‖xτ (·)− x(·)‖Sϕ .
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Using again the condition (Lip), inequality (3.12) and the triangle inequality, we

obtain

(3.13)

‖Fτ (·, xτ (·))− F (·, x(·))‖Sϕ ≤ ‖F (·+ τ, x(· + τ))− F (·+ τ, x(·))‖Sϕ

+ ‖F (·+ τ, x(·))− F (·, x(·))‖Sϕ

≤ L‖x(·+ τ) − x(·)‖Sϕ + max
1≤i≤m

‖F (·+ τ, x(·))− F (·+ τ, xi)‖Sϕ

+ max
1≤i≤m

‖F (·+ τ, xi)− F (·, xi)‖Sϕ

+ max
1≤i≤m

‖F (·, xi)− F (·, x(·))‖Sϕ

≤ L‖xτ (·)− x(·)‖Sϕ + 2L max
1≤i≤m

‖x(·)− xi‖Sϕ

+ max
1≤i≤m

‖{F (·+ τ, xi)− F (·, xi)}‖Sϕ .

Let us estimate the term max1≤i≤m ‖x(·) − xi‖Sϕ . Using (3.9) and the fact that

the constant function t→ xi (for each i) is in M
ϕ(R,X), we can choose η(ε) small

enough such that

max
1≤i≤m

{‖xi1Tη(ε)‖Sϕ + ‖x(·)1Tη(ε)‖Sϕ} ≤
ε

6L
.

Hence, from the above inequality and (3.10), we deduce that for every i =

1, . . . ,m

(3.14)
‖x(·)− xi‖Sϕ ≤ ‖{x(·)− xi}1Tη(ε)‖Sϕ + ‖{x(·)− xi}1T c

η(ε)
‖Sϕ

≤
ε

12L
+ ‖x(·)1T c

η(ε)
‖Sϕ + ‖xi1T c

η(ε)
‖Sϕ ≤

ε

4L
.

Combining (3.11), (3.13), and (3.14) we obtain

‖Fτ (·, xτ (·))− F (·, x(·))‖Sϕ ≤ L
ε

4L
+ 2L

ε

4L
+
ε

4
= ε.

Finally, the S
ϕ-almost periodicity of NF (x(·)) is obtained using the inclusion

m⋂

i=1

S
ϕT

(
F (·, xi),

ε

4

)
∩ S

ϕT
(
x(·),

ε

4L

)
⊂ S

ϕT(NF (x(·)), ε).

�

3.4 Bohr almost periodic mild solutions to abstract evolution equations

with S
ϕAP-coefficients. This section is devoted to the existence and unique-

ness of Bohr almost periodic mild solution to the following abstract linear and

semilinear differential equations

(3.15) u′(t) = Au(t) + f(t),
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and

(3.16) u′(t) = Au(t) + F (t, u(t)),

respectively, where A : Dom(A) ⊂ X → X is a densely defined closed (possibly

unbounded) linear operator, and f : R → X, F : R × X → X are measurable

functions (their continuity is not required here). We first list the following basic

assumptions:

(H1) The operatorA generates an exponentially stable C0-semigroup (T (t))t≥0,

that is, there exist constants M > 0, ω > 0 such that

‖T (t)‖ ≤M exp (−ωt), ∀ t ≥ 0.

(H2) f ∈ S
ϕAP(R,X).

(H3) F ∈ S
ϕAPK(R× X,X).

Such problem is well investigated in the literature, see [32], [15], [28] when the

forcing term f is continuous and Stepanov almost periodic. Our objective here

is to extend these results to the Stepanov–Orlicz context, without imposing the

continuity assumption on f .

We need to recall the definition of mild solution.

Definition 3.14. A continuous function u : R 7→ X given by

(3.17) u(t) = T (t− s)u(s) +

∫ t

s

T (t− σ)f(σ, u(σ)) dσ, t ≥ s, s ∈ R.

is a mild solution to the semilinear differential equation (3.16).

The first result about existence and uniqueness of almost periodic solution to

(3.15) is reported in the following theorem:

Theorem 3.15. Under (H1) and (H2), equation (3.15) has a unique Bohr almost

periodic mild solution given by

(3.18) u(t) =

∫ t

−∞

T (t− s)f(s) ds, t ∈ R.

Proof: Consider for each n ≥ 1 the function un : R → X defined by the integral:

un(t) =

∫ t−n+1

t−n

T (t− s)f(s) ds =

∫ n

n−1

T (s)f(t− s) ds, t ∈ R.

Let us show that for each n ≥ 1, un belongs to C(R,X). For, fix t0 ∈ R. Let

(tm)m be a sequence converging to t0. Using (H1), Hölder inequality in Orlicz-

space, see e.g. [23], and the fact that ‖1R‖Lψ[t0−n,t0−n+1] = (ψ−1(1))−1, we get
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for each n ≥ 1 and every m ≥ 1

(3.19)

‖un(tm)− un(t0)‖ ≤

∫ n

n−1

‖T (s)‖ ‖f(tm − s)− f(t0 − s)‖ ds

≤M

∫ n

n−1

exp (−ωs)‖f(tm − s)− f(t0 − s)‖ ds

≤M‖1‖Lψ[t0−n,t0−n+1]‖f(tm−t0) − f‖Lϕ[t0−n,t0−n+1]

≤
M

ψ−1(1)
‖f(tm−t0) − f‖Lϕ[t0−n,t0−n+1].

In view of (3.2), functions in S
ϕAP(R,X) are ϕ-mean continuous. Combining

this fact with (3.19) we obtain that

lim
m→∞

‖un(tm)− un(t0)‖ = 0.

Since t0 ∈ R is arbitrary, we deduce that un ∈ C(R,X).

Next, let us verify that for each n, un(·) ∈ AP(R,X). Similarly as in (3.19),

we have for every τ ∈ R

‖un(·+ τ)− un(·)‖∞ ≤
M

ψ−1(1)
‖fτ − f‖Sϕ,

which means that for every ε > 0,

S
ϕT

(
f,
εψ−1(1)

M

)
⊂ T(un, ε).

The almost periodicity of un is then followed.

Finally, let us show that the series
∑

n≥1 un(t) is uniformly convergent on R.

Using (H1) and (2.4), it follows that for any t ∈ R,

(3.20) ‖un(t)‖ ≤Mβϕe
−ω(n−1)‖f‖Sϕ.

According to the Weierstrass test and the previous estimation, we get that the

series
∑

n≥1 un(t) is uniformly convergent on R. For each t ∈ R let u(t) be its

sum. Then, u is almost periodic. Moreover

‖u‖∞ ≤
Mβϕ

1− e−ω
‖f‖Sϕ .

The uniqueness is obtained using similar arguments as in Stepanov almost periodic

case, see [15]. �

Next, let us investigate the solution to the semilinear differential equa-

tion (3.16). Using Theorem 3.15 one easily proves the following theorem
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Theorem 3.16.Under (H1),(Lip), and S
ϕ-boundedness of F , (3.16) has a unique

bounded mild solution given by

u(t) =

∫ t

−∞

T (t− s)F (s, u(s)) ds for each t ∈ R,

provided that LM/(1− e−ω) < 1. If in addition (H3) is satisfied, then this

solution is almost periodic.

Proof: For each t ∈ R and n ≥ 1, we consider the nonlinear operators defined

by

Γ(u)(t) =

∫ t

−∞

T (t− s)F (s, u(s)) ds,

Γn(u)(t) =

∫ t−n+1

t−n

T (t− s)F (s, u(s)) ds =

∫ n−1

n

T (s)F (t− s, u(t− s)) ds.

Let us show that for each n ≥ 1, the operator Γn maps Eϕ
loc(R,X) into C(R,X).

Let u ∈ Eϕ
loc(R,X). To simplify notations, let g := NF (u).

In view of Theorem 3.13, g ∈ Eϕ
loc(R,X). Repeating the same reasoning as in

the proof of Theorem 3.15, we get easily that for each n ≥ 1, Γn(u) ∈ C(R,X).

Let us show that the operator Γ maps Eϕ
loc(R,X) ∩ BSϕ(R,X) into BC(R,X).

We begin by showing that for each n ≥ 1,

Γn(BS
ϕ(R,X)) ⊂ L∞(R,X).

To this end, let u ∈ BSϕ(R,X). Using assumptions (H1), (H3), (Lip), and

inequality (2.4), we get for each n ≥ 1 and any t ∈ R

(3.21)

‖Γnu(t)‖ ≤Me−ω(n−1)

∫ t−n+1

t−n

(‖F (s, u(s))− F (s, 0)‖+ ‖F (s, 0)‖) ds

≤Me−ω(n−1)

∫ t−n+1

t−n

(L‖u(s)‖+ ‖F (s, 0)‖) ds

≤Me−ω(n−1)(L‖u‖S1 + ‖F (·, 0)‖S1)

≤Me−ω(n−1)(Lαu,ϕ‖u‖Sϕ + βF,ϕ‖F (·, 0)‖Sϕ),

where the constants αu,ϕ > 0 and βF,ϕ > 0 come from (2.4). According to

the S
ϕ-boundedness of both F and (3.21), it follows that the series

∑
n≥1 Γnu

is uniformly convergent on R. Clearly, Γ(u) =
∑

n≥1 Γn(u) ∈ C(R,X) for every

u ∈ Eϕ
loc(R,X). Moreover,

‖Γ(u)‖∞ ≤
M

1− e−ω
(Lαu,ϕ‖u‖Sϕ + βF,ϕ‖F (·, 0)‖Sϕ).
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Therefore,

Γ(Eϕ
loc(R,X) ∩ BSϕ(R,X)) ⊂ BC(R,X).

Now, let us prove that if in addition F ∈ S
ϕAPK(R × X,X), the operator Γ

maps S
ϕAP(R,X) into AP(R,X). For, let u ∈ S

ϕAP(R,X). By Theorem 3.13, we

infer that g ∈ S
ϕAP(R,X). Hence, using the proof of Theorem 3.15, we have that

Γu ∈ AP(R,X). Thus

Γ(SϕAP(R,X)) ⊂ AP(R,X).

To complete the proof, we need to prove that Γ is a contraction mapping on

AP(R,X). It suffices to apply the Banach fixed-point theorem to the nonlinear

operator Γ. The calculations are similar to the existing ones in the literature,

see for instance [15], [32]. We repeat them for convenience of the reader. Under

assumptions (H1) and (Lip), we have

‖Γu− Γv‖∞ ≤
LM

1− e−ω
‖u− v‖,

which implies that Γ is a contraction mapping on AP(R,X) provided that LM/

(1− e−ω) < 1. So by the Banach contraction principle, there exists a unique fixed

point u ∈ AP(R,X), such that Γu = u. Moreover, using the reasoning as in [15],

we can see that u is a mild solution to equation (3.16). �
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[23] Kufner A., John O., Fuč́ık S., Function Spaces, Monographs and Textsbooks on Mechanics
of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leyden,
Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977.

[24] Levitan B.M., Zhikov V.V., Almost Periodic Functions and Differential Equations, Cam-
bridge University Press, Cambridge, 1982.

[25] Luxemburg W.A. J., Banach Function Spaces, PhD. Dissertation, Delft University of Tech-
nology, Delft, 1955.

[26] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034,
Springer, Berlin, 1983.

[27] Pankov A.A., Bounded and Almost Periodic Solutions of Nonlinear Operator Differen-

tial Equations, Mathematics and Its Applications (Soviet Series), 55, Kluwer Academic
Publishers Group, Dordrecht, 1990.
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