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Exponential domination in function spaces

Vladimir V. Tkachuk

Abstract. Given a Tychonoff space X and an infinite cardinal κ, we prove that ex-
ponential κ-domination in X is equivalent to exponential κ-cofinality of Cp(X).
On the other hand, exponential κ-cofinality of X is equivalent to exponential
κ-domination in Cp(X). We show that every exponentially κ-cofinal space X

has a κ+-small diagonal; besides, if X is κ-stable, then nw(X) ≤ κ. In par-
ticular, any compact exponentially κ-cofinal space has weight not exceeding κ.
We also establish that any exponentially κ-cofinal space X with l(X) ≤ κ and
t(X) ≤ κ has i-weight not exceeding κ while for any cardinal κ, there exists an
exponentially ω-cofinal space X such that l(X) ≥ κ.

Keywords: exponential κ-domination; exponential κ-cofinality; κ-stable space;
i-weight; function space; duality; κ+-small diagonal

Classification: 54C35, 54C05, 54G20

1. Introduction

It was proved in the paper [6] that a regular space X must have density not

exceeding κ if any subset of X of cardinality (2κ)+ is κ-dominated, i.e., contained

in the closure of a set B ⊂ X such that |B| ≤ κ. This makes it natural to

study spaces X with exponential κ-domination, in which every set A ⊂ X with

|A| ≤ 2κ is κ-dominated. It was established in [6] that spaces with exponential

κ-domination have nice categorical properties: they are preserved by continuous

images, products with 2κ-many factors and κ-unions. Any Čech-complete space

with exponential κ-domination turns out to have density less than or equal to κ as

well as any space X with χ(X) ≤ κ. It was also shown in [6] that there exist non-

separable spaces of countable pseudocharacter with exponential ω-domination.

In this paper we introduce a new property called exponential κ-cofinality for

any infinite cardinal κ. A space X is exponentially κ-cofinal if for any continuous

onto map f : X → Y such that w(Y ) ≤ 2κ, there exist continuous surjective maps

g : X → Z and h : Z → Y such that iw(Z) ≤ κ and h ◦ g = f . Exponentially

κ-cofinal spaces generalize the class of spaces of i-weight not exceeding κ and give

global information about a space via its small continuous images. The importance

of this class stems from the fact that it is bidual to the class of spaces with
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exponential κ-domination: we will prove that a space X features exponential κ-

domination if and only if the function space Cp(X) is exponentially κ-cofinal and

X is exponentially κ-cofinal if and only if Cp(X) is a space with exponential

κ-domination.

The class of exponentially κ-cofinal spaces turned out to have nontrivial rela-

tionships with some classical properties which makes it interesting in itself. We

will show that the diagonal of any exponentially κ-cofinal space is κ+-small. The

concept of λ-small diagonal was introduced in [8] (under a different name) where

it was proved, among other things, that, under CH, a compact space of count-

able tightness is metrizable whenever it has an ω1-small diagonal. Later it was

proved in [9] that the requirement of countable tightness can be omitted in some

models of ZFC (Zermelo–Fraenkel set theory). We will show that exponential

ω-cofinality of a compact space X implies metrizability of X so this property is

strictly stronger than having a small diagonal.

More generally, if X is an exponentially κ-cofinal space which is κ-stable, then

nw(X) ≤ κ. It is worth noting that the concept of κ-stability was introduced

and studied in [1]. Last, but not least, we show that an exponentially κ-cofinal

space X with l(X) ≤ κ and t(X) ≤ κ must have i-weight not exceeding κ while

exponentially ω-cofinal spaces can have Lindelöf number as large as we wish.

2. Notation and terminology

In this paper all spaces are assumed to be Tychonoff. If X is a space, then

τ(X) is its topology and τ(x,X) = {U ∈ τ(X) : x ∈ U} for any point x ∈ X . If

κ is a cardinal, then [X ]≤κ = {A ⊂ X : |A| ≤ κ}. The set of reals with its usual

topology is denoted by R and I = [0, 1] ⊂ R. A set B ⊂ X is said to dominate

a set A ⊂ X if A ⊂B . The space X features exponential κ-domination if for any

set A ∈ [X ]≤2κ , there exists B ∈ [X ]≤κ that dominates A.

A family N of subsets of a space X is a network in X if every open subset

of X is the union of a subfamily of N . The network weight nw(X) of a space

X is the minimal cardinality of a network in X and the density d(X) of the

space X is the minimal cardinality of a dense subset of X . The cardinal w(X) =

min{|B| : B is a base ofX} is the weight of X . Let s(X) = sup{|D| : D is a discrete

subspace of X} and ext(X) = sup{|D| : D is a closed discrete subspace of X}.

The cardinals s(X) and ext(X) are the spread and extent ofX , respectively. Given

spaces X and Y and a continuous map f : X → Y say that f is a condensation if

it is a bijection.

The cardinal iw(X) = min{κ : there is a condensation of X onto a space of

weight less than or equal to κ} is called the i-weight of the space X . If x ∈ X ,

then the cardinal ψ(x,X) = min
{

|U| : U ⊂ τ(X) and
⋂

U = {x}
}

is called the
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pseudocharacter of x in X and ψ(X) = sup{ψ(x,X) : x ∈ X} is the pseudochar-

acter of X . Furthermore, a space X is κ-stable if nw(Y ) ≤ κ for any continuous

image Y of the space X such that iw(Y ) ≤ κ. If µ is a cardinal, then X is said

to be a Pµ-space if
⋂

U ∈ τ(X) for any U ⊂ [τ(X)]≤µ.

For any space X , let ∆X = {(x, x) : x ∈ X} ⊂ X ×X be the diagonal of the

space X . The space X has a κ+-small diagonal if for any set A ⊂ (X ×X)\∆X

such that |A| = κ+, there exists B ⊂ A such that |B| = κ+ and B ∩ ∆X = ∅.

The cardinal t(X) = min{κ : Ā =
⋃

{B : B ∈ [A]≤κ} for every A ⊂ X} is the

tightness of the space X . A space X is κ-monolithic if nw(Ā) ≤ κ for each

A ∈ [X ]≤κ. We say that X is a Lindelöf Σ-space if there exists a space Y that

maps continuously onto X and perfectly onto a second countable space. A set A

is concentrated around a set F ⊂ X if |A\U | < |A| whenever F ⊂ U ∈ τ(X); the

set A is concentrated around a point x ∈ X if it is concentrated around {x}.

The expression C(X,Y ) denotes the set of all continuous maps from a space X

to a space Y . We follow the usual practice to write C(X) instead of C(X,R). The

space Cp(X) is the set C(X) endowed with the pointwise convergence topology.

Let Cp,0(X) = X and Cp,n+1(X) = Cp(Cp,n(X)) for each natural number n.

Given spaces X and Y , if ϕ : X → Y is a continuous onto map then its dual map

ϕ∗ : Cp(Y ) → Cp(X) is defined by ϕ∗(f) = f ◦ ϕ for every f ∈ Cp(Y ). For any

A ⊂ X , the restriction map πA : Cp(X) → Cp(A) is defined by πA(f) = f |A for

each f ∈ Cp(X). Given a set F ⊂ Cp(X) let eF (x)(f) = f(x) for any x ∈ X

and f ∈ F ; then eF : X → Cp(F ) is the reflection map which coincides with the

diagonal product ∆F of the functions from F .

The rest of our notation is standard and follows the book [5]. All relevant

information on cardinal invariants can be found in the paper of Hodel [7]. The

books [12], [13], [14] contain all necessary facts and notions of Cp-theory.

3. A dual property for exponential κ-domination

We will present a topological property, called exponential κ-cofinality, that is

dual to exponential κ-domination with respect to function spaces in the sense

that X features exponential κ-domination if and only if Cp(X) is exponentially

κ-cofinal. Our purpose is to show that the class of exponentially κ-cofinal spaces

is interesting in itself.

Definition 3.1. Given an infinite cardinal κ, we will say that a space X is

exponentially κ-cofinal if for any continuous onto map f : X → Y such that

w(Y ) ≤ 2κ, there exist continuous surjective maps g : X → Z and h : Z → Y

such that iw(Z) ≤ κ and h ◦ g = f .
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The proof of the following proposition is straightforward from the definition.

It shows that exponential κ-cofinality is a weakening of the property of having

i-weight not exceeding κ. Therefore an important line of study of exponential

κ-cofinality is to find nice classes of spaces in which it coincides with iw ≤ κ.

Proposition 3.2. If iw(X) ≤ κ, then X is an exponentially κ-cofinal space. In

particular, any space X with nw(X) ≤ κ is exponentially κ-cofinal.

Proposition 3.3. Assume that X is an exponentially κ-cofinal space and Y is

a continuous image of X with iw(Y ) ≤ 2κ. Then |Y | ≤ 2κ. In particular, if

nw(Y ) ≤ 2κ, then |Y | ≤ 2κ.

Proof: Let f : X → Y be a continuous onto map. Take a space M and a con-

densation u : Y → M such that w(M) ≤ 2κ and choose continuous onto maps

v : X → Z and w : Z →M such that iw(Z) ≤ κ and w ◦ v = u ◦ f . It follows from

|Z| ≤ 2iw(Z) ≤ 2κ that |M | ≤ 2κ and hence |Y | = |M | ≤ 2κ. �

Corollary 3.4. Any discrete exponentially κ-cofinal space has cardinality not

exceeding 2κ.

Proof: If X is a discrete exponentially κ-cofinal space and |X | > 2κ, then there

exists a surjective map f : X → Y ⊂ I
2κ such that |Y | > 2κ. Since the map f is

continuous and w(Y ) ≤ 2κ, we have a contradiction with Proposition 3.3. �

Proposition 3.5. If X is an exponentially κ-cofinal space and a set Y ⊂ X

is C∗-embedded in X , then Y is exponentially κ-cofinal. In particular, if X

is a normal exponentially κ-cofinal space, then every closed subspace of X is

exponentially κ-cofinal.

Proof: Take any continuous onto map f : Y → Y ′ such that w(Y ′) ≤ µ = 2κ.

There is no loss of generality to consider that Y ′ ⊂ I
µ and there is a family

{fα : α < µ} ⊂ Cp(X, I) such that f = ∆{fα : α < µ}. Let uα : X → I be

a continuous extension of fα for every α < µ. Then the diagonal product u =

∆{uα : α < µ} maps X continuously onto a space X ′ ⊂ I
µ and u|Y = f . By

exponential κ-cofinality of X , we can find continuous onto maps v : X → Z and

w : Z → X ′ such that w ◦ v = u and iw(Z) ≤ κ. Let g = v|Y and h = w|v(Y ).

Then h◦g = f and the i-weight of the space Z ′ = v(Y ) does not exceed iw(Z) ≤ κ

so the maps g and h witness that Y is exponentially κ-cofinal. �

Corollary 3.6. Assume that X is an exponentially κ-cofinal space and D is

a discrete subset of X . If D is C∗-embedded in X , then |D| ≤ 2κ. In particular,

if X is a normal exponentially κ-cofinal space, then ext(X) ≤ 2κ.

Proof: Just apply Proposition 3.5 and Corollary 3.4. �
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Corollary 3.7. If κ is an infinite cardinal and X is an exponentially κ-cofinal

space, then any discrete family of nonempty open subsets of X has cardinality

not exceeding 2κ.

Proof: If U is a discrete family of nonempty open subsets of the space X and

|U| > 2κ, then pick a point xU ∈ U for every U ∈ U . The set D = {xU : U ∈ U}

is closed, discrete and |D| = |U| > 2κ. Since the set D is C-embedded in X by

[13, Fact 5 of Theorem 132], we have a contradiction with Corollary 3.6. �

Theorem 3.8. Given an exponentially κ-cofinal space X and a set A ⊂ X with

nw(A) ≤ 2κ, there exists a continuous map ϕ : X →M such that w(M) ≤ κ and

ϕ|A is an injection. In particular, iw(A) ≤ κ and |A| ≤ 2κ.

Proof: The restriction mapping πA : Cp(X) → Cp(A) is continuous and the

set E = πA(Cp(X)) is dense in Cp(A), see [3, Proposition 0.4.1]. Observe that

d(E) ≤ nw(E) ≤ nw(Cp(A)) = nw(A) ≤ 2κ so we can find a dense subset D ⊂ E

with |D| ≤ 2κ. The set D is also dense in Cp(A) and hence it separates the

points of A. If h = ∆(D) is the diagonal product of the functions from D, then

h : X → R
D; let Y = h(X). The map h : X → Y is continuous and surjective.

Since w(Y ) ≤ 2κ, there exists a space Z and continuous onto maps p : X → Z

and q : Z → Y such that q ◦ p = h and iw(Z) ≤ κ. Observe that the map h|A

is injective and hence so is p|A. There exists a condensation r : Z →M for some

space M such that w(M) ≤ κ. It is immediate that the map ϕ = r ◦ p is as

promised. �

Corollary 3.9. For any exponentially κ-cofinal space X , if A ⊂ X and |A| ≤ κ,

then |Ā| ≤ 2κ and iw(Ā) ≤ κ.

Proof: Just note that w(Ā) ≤ 2κ and apply Theorem 3.8. �

Corollary 3.10. Assume that X is a metrizable exponentially κ-cofinal space.

Then w(X) ≤ 2κ and hence iw(X) ≤ κ.

Proof: It follows from Corollary 3.6 that w(X) = ext(X) ≤ 2κ and we can apply

Theorem 3.8 to conclude that iw(X) ≤ κ. �

Corollary 3.11. If X is an exponentially κ-cofinal space and s(X) ≤ κ, then

iw(X) ≤ κ.

Proof: Observe that nw(X) ≤ 2s(X) ≤ 2κ, see [7, Theorem 5.3], and apply

Theorem 3.8. �

If iw(X) ≤ κ, then the diagonal of X is easily seen to be a Gκ-set. This is not

necessarily the case for an exponentially κ-cofinal space X but we still have an

important weaker property in X .
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Proposition 3.12. If X is an exponentially κ-cofinal space, then the diagonal

of X is κ+-small. In particular, any exponentially ω-cofinal space has a small

diagonal.

Proof: Take any faithfully indexed set A = {zα = (xα, yα) : α < κ+} contained

in (X ×X)\∆X ; then the cardinality of the set Y = {xα, yα : α < κ+} does not

exceed κ+ ≤ 2κ and therefore there exists a continuous map ϕ : X → M such

that w(M) ≤ κ and ϕ|Y is injective, see Theorem 3.8. This implies that the set

{(ϕ(xα), ϕ(yα)) : α < κ+} is contained in (M × M)\∆M which, together with

w(M) ≤ κ, guarantees that there is a set E ⊂ κ+ such that |E| = κ+ and the

closure of the set {(ϕ(xα), ϕ(yα)) : α ∈ E} in M ×M does not meet ∆M . Then

the closure of the set B = {zα : α ∈ E} ⊂ A in X × X does not meet ∆X and

|B| = κ+, i.e., the set B witnesses that X has a κ+-small diagonal. �

Proposition 3.13. Given an infinite cardinal κ, if X is a P2κ -space with

ext(X) ≤ 2κ, then X is exponentially κ-cofinal.

Proof: Let f : X → Y be a continuous onto map such that w(Y ) ≤ 2κ. Then

f−1(y) is open in X being a G2κ -set for every y ∈ Y . Therefore the partition

P = {f−1(y) : y ∈ Y } is a discrete family of open subsets of X so it follows from

ext(X) ≤ 2κ that |P| ≤ 2κ and hence |Y | ≤ 2κ. If Z is the set Y with the

discrete topology and g(x) = f(x) for any x ∈ X , then the map g : X → Z is

continuous and for the identity map h : Z → Y , we have h ◦ g = f . Since there

exists an injection of Z into I
κ, which is automatically continuous, we conclude

that the maps g and h witness exponential κ-cofinality of X . �

Example 3.14. For any cardinal κ > c, consider the set X = κ ∪ {p} where

p /∈ κ. All points of κ are isolated in X and a set U ⊂ X with p ∈ U is open if

and only if κ\U ≤ c. It is immediate that X is a Pc-space and l(X) = ext(X) = c

so X is exponentially ω-cofinal by Proposition 3.13. Therefore the Souslin number

of an exponentially ω-cofinal space can be arbitrarily large. This result should be

compared with Corollary 3.7.

Recall that we have the equalities iw(X) = d(Cp(X)) and d(X) = iw(Cp(X))

for any space X , see [10], i.e., the density and i-weight are bidual with respect to

the functor Cp. Since exponential κ-domination and exponential κ-cofinality are

their respective weakenings, it is natural to expect them to be bidual as well. We

will show next that this is, indeed, the case.

Theorem 3.15. A space X is exponentially κ-cofinal if and only if Cp(X) is

a space with exponential κ-domination.

Proof: Suppose that X is exponentially κ-cofinal and take a set A ⊂ Cp(X) with

|A| ≤ 2κ. If u = ∆A is the diagonal product of the family A, then u : X → R
A
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and hence the space Y = u(X) has weight not exceeding 2κ. We can consider

that u : X → Y and hence the dual map u∗ : Cp(Y ) → Cp(X) is an embedding.

Let Q = u∗(Cp(Y )) and observe that A ⊂ Q, see [14, Fact 5 of U.086].

There exists a space Z together with continuous onto maps v : X → Z and

w : Z → Y such that iw(Z) ≤ κ and w ◦ v = u. The space Cp(Z) has density not

exceeding κ, see [10]; since E = v∗(Cp(Z)) is homeomorphic to Cp(Z), we can fix

a set B ⊂ E such that |B| ≤ κ and E ⊂B . It follows from [12, Problem 163] that

Q ⊂ E whence A ⊂ Q ⊂ E ⊂B so the set B witnesses exponential κ-domination

in Cp(X).

To prove sufficiency, assume that Cp(X) features exponential κ-domination

and take a continuous onto map u : X → Y for some space Y of weight not

exceeding 2κ. The dual map u∗ : Cp(Y ) → Cp(X) is an embedding so the density

of the set Q = u∗(Cp(Y )) is the same as the density of Cp(Y ) while d(Cp(Y )) ≤

nw(Cp(Y )) = nw(Y ) ≤ 2κ. This makes it possible to take a set B ⊂ Cp(X) such

that |B| ≤ κ and Q ⊂B . The reflection map eB : X → Cp(B) is continuous and

the i-weight of space Z = eB (X) ⊂ Cp(B) does not exceed iw(Cp(B)) ≤ |B| ≤ κ.

The dual map ϕ = e∗
B
: Cp(Z) → Cp(X) is an embedding and B ⊂ ϕ(Cp(Z))

by [14, Fact 5 of U.086]. Therefore Q ⊂ B ⊂ ϕ(Cp(Z)) so we can apply [3,

Proposition 0.4.7] to see that there exist continuous onto maps v : X → Z and

w : Z → Y such that u = w ◦ v. Since iw(Z) ≤ κ, the space Z witnesses that X

is exponentially κ-cofinal. �

Theorem 3.16. Let κ be an infinite cardinal. A space X features exponential

κ-domination if and only if Cp(X) is exponentially κ-cofinal.

Proof: Assume first that X is a space with exponential κ-domination and we

have a continuous onto map u : Cp(X) → Y for some space Y with w(Y ) ≤ 2κ.

There exists a set A ⊂ X and a continuous onto map ϕ : πA(Cp(X)) → Y such

that |A| ≤ 2κ and ϕ ◦ πA = u, see [2, Theorem 1]. By exponential κ-domination

of X there exists a set B ⊂ X such that |B| ≤ κ and A ⊂B . It is standard that

the restriction map πA : Cp(X) → πA(Cp(X)) factorizes through πB (Cp(X)) so

there exists a continuous onto map w : Z = πB (Cp(X)) → Y such that u = w◦πB .

Since iw(Z) ≤ Cp(B) ≤ |B| ≤ κ, we conclude that Z witnesses exponential κ-

cofinality of Cp(X).

Now assume that the space Cp(X) is exponentially κ-cofinal and A ⊂ X is

a set of cardinality less than or equal to 2κ. By Theorem 3.15 the space CpCp(X)

features exponential κ-domination so there exists a set E ⊂ CpCp(X) such that

|E| ≤ κ and A ⊂ E . Here we identify the space X with its canonical copy

in CpCp(X), see [3, Corollary 0.5.5]. Every continuous real-valued function on

Cp(X) depends on countably many coordinates, see [2, Theorem 1], so we can
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choose for each u ∈ E a countable set Bu ⊂ X such that u(f) = u(g) whenever

f, g ∈ Cp(X) and f |Bu = g|Bu.

The set B =
⋃

{Bu : u ∈ E} has cardinality not exceeding κ; assume that

p ∈ A\B . There exists a function f ∈ Cp(X) such that f(p) = 1 and f(B) ⊂ {0};

let g(x) = 0 for any x ∈ X . It follows from p ∈E that there is a function u ∈ E

such that u(f) > 1
2 and u(g) < 1

2 . However, f |B = g|B and hence f |Bu = g|Bu
which implies that u(f) = u(g). This contradiction shows that A ⊂ B , i.e., the

set B witnesses that X is a space with exponential κ-domination. �

Corollary 3.17. Given a cardinal κ ≥ ω, if a space X features exponential κ-

domination, then Cp,2n(X) is a space with exponential κ-domination and

Cp,2n+1(X) is exponentially κ-cofinal for all n ∈ ω.

Proof: It follows from Theorem 3.16 that the space Cp(X) must be exponen-

tially κ-cofinal and hence Theorem 3.15 can be applied to see that CpCp(X)

is a space with exponential κ-domination. Proceeding by induction assume that

Cp,2n(X) is a space with exponential κ-domination. Then Cp,2n+1(X) =

Cp(Cp,2n(X)) is an exponentially κ-cofinal space by Theorem 3.16 which makes

it possible to apply Theorem 3.15 again to conclude that

Cp,2n+2(X) = Cp(Cp,2n+1(X))

features exponential κ-domination. �

Corollary 3.18. If X is an exponentially κ-cofinal space, then Cp,2n+1(X) is

a space with exponential κ-domination and Cp,2n(X) is exponentially κ-cofinal

for all n ∈ ω.

Proof: By Theorem 3.15, the space Y = Cp(X) has exponential κ-domination;

apply Corollary 3.17 to convince ourselves that Cp,2n+1(X) = Cp,2n(Y ) is a space

with exponential κ-domination and Cp,2n(X) = Cp,2n−1(Y ) is an exponentially

κ-cofinal space. �

Theorem 3.19. Suppose that X is an exponentially κ-cofinal space such that

l(X) ≤ κ and t(X) ≤ κ. Then iw(X) ≤ κ and hence |X | ≤ 2κ.

Proof: We will prove first that ψ(X) ≤ κ. Striving for contradiction, assume

that p ∈ X and ψ(p,X) > κ. Take any x0 ∈ X\{p} and let G0 = X . Proceeding

by induction, assume that β < κ+ and we have a set {xα : α < β} ⊂ X\{p} and

a family {Gα : α < β} of closed Gκ-subsets of X with the following properties:

(1) {p, xα} ⊂ Gα for all α < β;

(2) Gα ⊂ Gγ whenever γ < α < β;

(3) {xγ : γ < α} ∩Gα ⊂ {p} for every α < β.
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The set Bβ = {p} ∪ {xα : α < β} has cardinality less than or equal to 2κ by

Corollary 3.9 which implies, by Theorem 3.8, that ψ(p,Bβ) ≤ κ and hence we

can choose a closed Gκ-set Q in the space X such that Q ∩ Bβ = {p}. Let

Gβ =
⋂

{Gα : α < β} ∩ Q; since ψ(p,X) > κ, we can pick a point xβ ∈ Gβ\{p}

completing our inductive construction. Observe that it follows from the properties

(1) and (3) that the set A = {xα : α < κ+} is faithfully indexed and hence

|A| = κ+.

Let Fα = {xβ : α ≤ β < κ+} ⊂ Gα for any α < κ+; it follows from l(X) ≤ κ

that ∅ 6= F =
⋂

{Fα : α < κ+}. If x 6= p and x ∈ F , then x ∈ Ā; since t(X) ≤ κ,

there exists β < κ+ such that x ∈ {xα : α < β}. Since also x ∈ Fβ ⊂ Gβ , we

obtained a contradiction with the property (3). Thus, F = {p} and it is standard

to deduce from l(X) ≤ κ that

(4) the family {Fα : α < κ+} is a network at p, i.e., for any set U ∈ τ(p,X)

there exists α < κ+ such that Fα ⊂ U and hence {xβ : α < β} ⊂ U .

It is an immediate consequence of the property (4) that A is concentrated

around the point p and hence the set D = {(p, xα) : α < κ+} ⊂ (X × X)\∆X

is concentrated around the diagonal ∆X . Since |D| = κ+, the diagonal of X

is not κ+-small; this contradiction with Proposition 3.12 shows that ψ(X) ≤ κ.

Arhangel’skii’s inequality |X | ≤ 2l(X)·ψ(X)·t(X) ≤ 2κ shows that |X | ≤ 2κ and

therefore iw(X) ≤ κ by Theorem 3.8. �

Corollary 3.20. If X is a Lindelöf exponentially ω-cofinal space and t(X) ≤ ω,

then iw(X) ≤ ω.

Corollary 3.21. Suppose that X is a space for which Cp(X) features exponential

κ-domination while l(Cp(X)) ≤ κ and t(Cp(X)) ≤ κ. Then d(Cp(X)) ≤ κ.

Proof: The space X is exponentially κ-cofinal by Theorem 3.15. Next, observe

that t(X) ≤ l(Cp(X)) ≤ κ by [4] and l(X) ≤ t(Cp(X)) ≤ κ by [11] which shows

that Theorem 3.19 can be applied to see that iw(X) ≤ κ whence d(Cp(X)) =

iw(X) ≤ κ, see [10]. �

Proposition 3.22. Assume that X is a κ-stable exponentially κ-cofinal space.

Then nw(X) ≤ κ.

Proof: If d(Cp(X)) > κ, then there exists a left-separated set L ⊂ Cp(X) with

|L| = κ+. Next, observe that Cp(X) is a space with exponential κ-domination

by Theorem 3.15 and hence there exists a set A ⊂ Cp(X) such that |A| ≤ κ

and L ⊂ Ā. The space Cp(X) is κ-monolithic by [1] so nw(Ā) ≤ κ. Therefore

κ+ ≤ hd(L) ≤ nw(L) ≤ nw(Ā) ≤ κ; this contradiction shows that d(Cp(X)) ≤ κ

and therefore iw(X) = d(Cp(X)) ≤ κ. Finally, apply κ-stability of X to conclude

that nw(X) ≤ κ. �
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Corollary 3.23. Any exponentially ω-cofinal Lindelöf Σ-space has a countable

network.

Proof: Observe that any Lindelöf Σ-space is ω-stable by [3, Theorem II.6.21];

Proposition 3.22 does the rest. �

Corollary 3.24. Any exponentially ω-cofinal pseudocompact space is compact

and metrizable.

Proof: Observe that it follows from Corollary II.6.34 of [3] that any pseudocom-

pact space is ω-stable and apply Proposition 3.22. �

Example 3.25. For any cardinal κ > c, there exists an exponentially ω-cofinal

space Y such that l(Y ) ≥ κ. To see it, consider the exponentially ω-cofinal space

X = κ ∪ {p} from Example 3.14. All points of κ are isolated in X and a set

U ⊂ X with p ∈ U is open if and only if κ\U ≤ c. It is standard to see that

Cp(X) is homeomorphic to the Σc-product S = {x ∈ R
κ : |x−1(R\{0})| ≤ c}

in the space R
κ and therefore S is a space with exponential ω-domination by

Theorem 3.15. If we let u(α) = 1 for any α < κ, then we obtain a point u ∈ R
κ

such that u /∈ Ā for any A ⊂ S with |A| < κ. This shows that the space

Z = S ∪ {u} has tightness equal to κ. The union of countably many spaces with

exponential ω-domination is easily seen to have exponential ω-domination so Z

features exponential ω-domination. It was proved in [4] that l(Cp(Z)) ≥ t(Z) = κ

and therefore l(Cp(Z)) ≥ κ. Finally, observe that Cp(Z) is exponentially ω-cofinal

by Theorem 3.16 and hence the space Y = Cp(Z) is as promised.

4. Open questions

The author hopes that this work demonstrates that exponentially κ-cofinal

spaces form a class interesting in itself. This class encompasses important new

information about function spaces and a new metrization theorem for compact

spaces. The most intriguing open question in this topic is whether Lindelöf expo-

nentially ω-cofinal spaces must have countable i-weight.

Question 4.1. Suppose that X is a Lindelöf exponentially ω-cofinal space. Is it

true that iw(X) ≤ ω?

Question 4.2. Suppose that X is a Lindelöf exponentially ω-cofinal space. Is it

true that ψ(X) ≤ ω?

Question 4.3. Suppose that X is a Lindelöf exponentially ω-cofinal space. Is it

true that |X | ≤ 2c?
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Question 4.4. Suppose that X is an exponentially ω-cofinal space of countable

character. Is it true that iw(X) ≤ ω?

Question 4.5. Suppose that X is an exponentially ω-cofinal Fréchet–Urysohn

space. Is it true that iw(X) ≤ ω?

Question 4.6. Let X be an exponentially ω-cofinal space with ψ(X) ≤ ω. Is it

true that iw(X) ≤ ω?

Question 4.7. Let X be an exponentially ω-cofinal space with a Gδ-diagonal. Is

it true that iw(X) ≤ ω?

Question 4.8. Suppose that X is an exponentially ω-cofinal space. Is it true

that ext(X) ≤ c?

Question 4.9. Suppose that X is a space with exponential ω-domination such

that t(X) = l(X) = ω. Must X be separable?

Question 4.10. Suppose that X is a Lindelöf Fréchet–Urysohn space featuring

exponential ω-domination. Must X be separable?

Question 4.11. Suppose that Cp(X) is a Fréchet–Urysohn space that features

exponential ω-domination. Must Cp(X) be separable?

Question 4.12. Suppose that Cp(X) is an exponentially ω-cofinal Fréchet–Ury-

sohn space. Must X be separable?
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