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REMARKS ON THE EXISTENCE OF NONOSCILLATORY
SOLUTIONS OF HALF-LINEAR ORDINARY

DIFFERENTIAL EQUATIONS, II

Manabu Naito

Abstract. We consider the half-linear differential equation of the form
(p(t)|x′|αsgnx′)′ + q(t)|x|αsgnx = 0 , t ≥ t0 ,

under the assumption that p(t)−1/α is integrable on [t0,∞). It is shown
that if a certain condition is satisfied, then the above equation has a pair of
nonoscillatory solutions with specific asymptotic behavior as t→∞.

1. Introduction

In this paper we consider the half-linear ordinary differential equation

(1.1) (p(t)|x′|αsgn x′)′ + q(t)|x|αsgn x = 0 , t ≥ t0 ,

where α is a positive constant, and p(t) and q(t) are real-valued continuous functions
on [t0,∞) and p(t) > 0 for t ≥ t0.

If α = 1, then (1.1) becomes the linear equation

(1.2) (p(t)x′)′ + q(t)x = 0 , t ≥ t0 .

It is known that basic results and qualitative results for the linear equation (1.2)
can be generalized to the half-linear equation (1.1). The important works for (1.1)
are summarized in the book of Došlý and Řehák [2].

Recently the problem of asymptotic behavior of nonoscillatory solutions of (1.2)
or (1.1) is investigated in the framework of regular variation. We refer the reader, for
instance, to [5,6,7,8,9,10,11,14,15] and the references therein. The classical theory
on regularly varying functions is suited for the case p(t) ≡ 1 in (1.1). However
the classical theory is not sufficient to properly describe the possible asymptotic
behavior of nonoscillatory solutions of (1.1) for the case p(t) 6≡ 1 in (1.1). In fact,
the asymptotic behavior of a nonoscillatory solution of (1.1) is strongly affected by
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the condition on p(t), more precisely, by the condition∫ ∞
t0

1
p(s)1/α ds =∞ or

∫ ∞
t0

1
p(s)1/α ds <∞ .

Then the notion of regular variation in the classical sense has been generalized by
Jaroš and Kusano [5].

Let R(t) be a continuously differentiable function on some neighborhood [T0,∞)
of infinity and satisfy

R′(t) > 0 for t ≥ T0 and lim
t→∞

R(t) =∞ .

For simplicity, we suppose that a function f(t) is positive and continuously dif-
ferentiable on [T0,∞). Then, f(t) is said to be a regularly varying function with
respect to R(t) if and only if f(t) can be written in the form

(1.3) f(t) = c(t) exp
{∫ t

T

R′(s)
R(s) µ(s) ds

}
, t ≥ T ,

for some T > T0 and some continuous functions c(t) and µ(t) such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

µ(t) = µ ∈ R .

The real number µ is called the index of f(t). If c(t) ≡ c (positive constant) in
(1.3), then f(t) is said to be a normalized regularly varying function (of index µ)
with respect to R(t). We omit the description of the original definition of regular
variation with respect to R(t). For details, see the paper [5]. It is worth noting that
f(t) is a normalized regularly varying function of index µ with respect to R(t) if
and only if

lim
t→∞

R(t)
R′(t)

f ′(t)
f(t) = µ .

The set of normalized regularly varying functions of index µ with respect to R(t)
is denoted by n–RVR(µ).

The half-linear equation (1.1) of the case∫ ∞
t0

1
p(s)1/α ds =∞

has been discussed in [13]. In the present paper we consider the case

(1.4)
∫ ∞
t0

1
p(s)1/α ds <∞ .

Then the function π(t) can be defined by

(1.5) π(t) =
∫ ∞
t

1
p(s)1/α ds , t ≥ t0 .

Now, put

(1.6) E(α) = αα

(α+ 1)α+1 .
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If c is a constant such that c < E(α), then the equation

(1.7) |σ|(α+1)/α + σ + c = 0

has two real roots σ1, σ2 (σ1 < σ2). They satisfy σ1 < −(α+ 1)E(α) < σ2.
Under the assumption that

(1.8)
∫ ∞
t0

π(s)α+1q(s) ds = lim
t→∞

∫ t

t0

π(s)α+1q(s) ds exists and is finite,

we define the function Qπ,α(t) by

(1.9) Qπ,α(t) =
∫ ∞
t

π(s)α+1q(s) ds , t ≥ t0 .

Then the condition

(1.10) lim
t→∞

Qπ,α(t)
π(t) = αc (c < E(α))

plays an important role. The following theorem has been proved by Jaroš, Kusano
and Tanigawa [7, Theorem 3.1]. As usual, the asterisk notation

ξγ∗ = |ξ|γsgn ξ, ξ ∈ R , γ > 0 ,

is used.

Theorem A. Consider the equation (1.1) under the condition (1.4). Define the
function π(t) by (1.5). Let c ∈ (−∞, E(α)) be fixed and let σ1, σ2 (σ1 < σ2) be the
real roots of (1.7).

If (1.1) has a solution xi(t) ∈ n–RV1/π(σ(1/α)∗
i ) (i = 1 or 2), then (1.10)

is satisfied. Conversely, if (1.10) is satisfied, then (1.1) has a pair of solutions
xi(t) ∈ n–RV1/π(σ(1/α)∗

i ) (i = 1 and 2).

Observe that xi(t) belongs to n–RV1/π(σ(1/α)∗
i ) if and only if

lim
t→∞

p(t)1/απ(t)x
′
i(t)
xi(t)

= σ
(1/α)∗
i .

Throughout the paper the following fact plays an essential part. Let x(t) be a
nonoscillatory solution of (1.1). We suppose that x(t) > 0 for t ≥ T (> t0). Put

(1.11) y(t) = p(t)
(x′(t)
x(t)

)α∗
, t ≥ T .

Then, y(t) satisfies the generalized Riccati differential equation

(1.12) y′(t) = −q(t)− αp(t)−1/α|y(t)|(α+1)/α , t ≥ T .

Conversely, if y(t) is a solution of (1.12) on [T,∞), then

(1.13) x(t) = exp
(∫ t

T

p(s)−1/αy(s)(1/α)∗ ds
)
, t ≥ T ,

is a positive solution of (1.1) on [T,∞). The proof is immediate.



44 M. NAITO

In this paper we first note that the condition (1.8) is necessary for the existence
of a solution x(t) which belongs to the class n–RV1/π(µ) for some µ ∈ R. Then, a
natural integral form of (1.12) is

(1.14)
π(t)α+1y(t) = Qπ,α(t) + (α+ 1)

∫ ∞
t

p(s)−1/απ(s)αy(s) ds

+ α

∫ ∞
t

p(s)−1/απ(s)α+1|y(s)|(α+1)/α ds , t ≥ T ,

where Qπ,α(t) is defined by (1.9). Actually, we have the following proposition.

Proposition 1.1. Consider the equation (1.1) under the condition (1.4). Define
the function π(t) by (1.5). If the equation (1.1) has a nonoscillatory solution x(t),
x(t) > 0 (t ≥ T ), such that

(1.15) lim
t→∞

p(t)1/απ(t)x
′(t)
x(t) = µ

for some µ ∈ R, then (1.8) holds, and moreover, the function y(t) defined by (1.11)
satisfies (1.14).

Proposition 1.1 is essentially proved in [7]. See the proof of the “only if” part of
Theorem 3.1 in [7].

The purpose of this paper is to show that the last statement of Theorem A can
be refined as follows:

Theorem 1.1. Consider the equation (1.1) under the condition (1.4). Define the
function π(t) by (1.5). Assume that (1.8) holds and define Qπ,α(t) by (1.9). Let
c ∈ (−∞, E(α)) be fixed and let σ1, σ2 be the real roots of (1.7) such that σ1 < σ2
and σ2 6= 0. Suppose that (1.10) holds and put

(1.16) ε(t) = Qπ,α(t)
π(t) − αc , t ≥ t0 .

If

(1.17)
∫ ∞
t0

|ε(t)|
p(t)1/απ(t)

dt <∞ ,

then (1.1) has a pair of solutions xi(t) (i = 1 and 2) such that

(1.18)

xi(t) ∼ π(t)−µi as t→∞ ,

x′i(t) ∼ µip(t)−1/απ(t)−µi−1 as t→∞ ,

where µi = σ
(1/α)∗
i (i = 1, 2).

Here, the notation f(t) ∼ g(t) as t→∞ means that

lim
t→∞

f(t)
g(t) = 1 .

Note that the solution xi(t) satisfying (1.18) belongs to the class n–RV1/π(µi),
i = 1, 2.
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Recent results on regularly varying solutions of (1.1) are found, e.g., in [8,10,14,
15]. The paper [10] is a systematic survey of the theory of existence and asymptotic
behavior of nonoscillatory solutions of (1.1) and (1.2) by means of regularly varying
functions (in the sense of Karamata). In [8] the detailed information about the
asymptotic behavior of generalized regularly varying solutions of (1.1) is obtained.
Řehák [14] and Řehák and Taddei [15] considered the equation (1.1) of the case
q(t) < 0 and obtained the precise asymptotic behavior of nonoscillatory (monotone)
solutions of (1.1) with the aid of the Karamata theory of regular variation and
the de Haan theory, and, in particular, the conditions which guarantee that all
(nonoscillatory) solutions of (1.1) are regularly varying were given.

The result in this paper is new even for the linear equation (1.2). However, an
analogous result to Theorem 1.1 is derived from Theorem 9.1 in [4]. As an auxiliary
equation, consider the Euler equation

(p(t)y′)′ + c

p(t)π(t)2 y = 0,

which has a principal solution y1(t) = π(t)−µ1 and a nonprincipal solution y2(t) =
π(t)−µ2 . Applying Theorem 9.1 in [4], we have the following result. If

(1.19)
∫ ∞ |p(t)π(t)2q(t)− c|

p(t)π(t) dt <∞ ,

then (1.2) has a pair of solutions xi(t) (i = 1 and 2) such that (1.18) with α = 1
holds. Moreover (see Exercise 9.4 in [4]), if p(t)π(t)2q(t)− c does not change signs,
and (1.2) has a solution xi(t) satisfying (1.18) with α = 1 for either i = 1 or i = 2,
then (1.19) holds.

Theorem 1.1 for the case of α = 1 yields the result of [13, Theorem 1.3 (α = 1)].
To see this, we introduce the transformation of variables

τ = 1 +
∫ t

t0

1
p(s) ds , y(τ) = x(t)

τ
.

Then the equation of the form (1.1) with
∫ ∞
t0

p(s)−1ds =∞ reduces to the equation

d

dτ

(
τ2 d

dτ
y
)

+ τ2p(t)q(t)y = 0 , τ ≥ 1 .

Since this is an equation of the type in the present paper, we are able to apply
Theorem 1.1 (α = 1). Then it is easy to check that the result of [13, Theorem 1.3
(α = 1)] is derived from Theorem 1.1 (α = 1).

Conversely, Theorem 1.1 for the case of α = 1 may be derived from the result
of [13, Theorem 1.3 (α = 1)]. In fact, the change of variables

τ =
(∫ ∞

t

1
p(s) ds

)−1
, z(τ) = τx(t)

transforms the equation (1.1) into the equation
d2

dτ2 z + 1
τ4 p(t)q(t)z = 0 , τ ≥

(∫ ∞
t0

1
p(t) dt

)−1
,
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to which the result of [13, Theorem 1.3 (α = 1)] can be applicable.
The proof of Theorem 1.1 is similar to that used in [7]. The key idea of the proof

of Theorem 1.1 is to use Hardy-type integral inequalities. For the classical Hardy
inequality, see Hardy et al. [3, Theorem 330]. In [1], Beesack gave a systematic
treatment of some analogues and extensions of the classical Hardy inequality.
Then Beesack employed half-linear differential equations of the special form and
corresponding generalized Riccati differential equations. We adapt the method
of Beesack [1], and give two kinds of Hardy-type integral inequalities which are
necessary for the proof of Theorem 1.1. These are stated and proved in Section 2.
The proof of Theorem 1.1 is given in Section 3.

2. Hardy-type inequalities

Suppose that g(t) is a continuous and positive function on an interval [a,∞)
such that

(2.1)
∫ ∞
a

g(s) ds <∞ .

Then we define the function γ(t) by

(2.2) γ(t) =
∫ ∞
t

g(s) ds , t ≥ a .

As a general inequality we have, for ρ > 1,

(2.3) ξρ + (ρ− 1)ηρ − ρξηρ−1 ≥ 0 (ξ ≥ 0, η ≥ 0) .

The inequality (2.3) plays an important part in this section.

Theorem 2.1. Let ρ and r be constants such that ρ > 1 and r > 1, respectively.
Suppose that g(t) is continuous on [a,∞), and g(t) > 0 (t ≥ a), and (2.1) holds.
Define the function γ(t) by (2.2). Suppose further that f(t) is continuous on [a,∞)
and satisfies ∫ ∞

a

g(s)|f(s)| ds <∞ , and(2.4) ∫ ∞
a

g(s)γ(s)ρ−r|f(s)|ρ ds <∞ .(2.5)

Then we have

(2.6)

∫ ∞
a

g(s)γ(s)−r
[ ∫ ∞

s

g(σ)|f(σ)| dσ
]ρ
ds

≤
( ρ

r − 1

)ρ ∫ ∞
a

g(s)γ(s)ρ−r|f(s)|ρ ds .

Equality holds if and only if f(t) ≡ 0 on [a,∞).

Proof. We adapt the method of Beesack [1]. Define the functions ϕ(t) and ψ(t) by

ϕ(t) =
( ρ

r − 1

)ρ
γ(t)ρ−r and ψ(t) = γ(t)−r
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for t ≥ a. Clearly, ϕ(t) > 0 and ψ(t) > 0 (t ≥ a). It is easily seen that the function

x(t) = γ(t)(r−1)/ρ , t ≥ a ,
satisfies x′(t) < 0 (t ≥ a), and that x = x(t) is a positive solution of the half-linear
differential equation

(g(t)−ρ+1ϕ(t)|x′|ρ−1sgn x′)′ + g(t)ψ(t)|x|ρ−1sgn x = 0 , t ≥ a .
Therefore the function

y(t) = −
(x′(t)
x(t)

)(ρ−1)∗
(> 0)

satisfies the generalized Riccati differential equation

(2.7)
(
g(t)−ρ+1ϕ(t)y(t)

)′ = g(t)ψ(t) + (ρ− 1)g(t)−ρ+1ϕ(t)y(t)ρ/(ρ−1)

for t ≥ a.
Applying the inequality (2.3) to the case

ξ = g(t)|f(t)| , η = y(t)1/(ρ−1)
∫ ∞
t

g(σ)|f(σ)| dσ ,

we obtain

g(t)ρ|f(t)|ρ + (ρ− 1)y(t)ρ/(ρ−1)
[ ∫ ∞

t

g(σ)|f(σ)|dσ
]ρ

− ρg(t)|f(t)|y(t)
[ ∫ ∞

t

g(σ)|f(σ)|dσ
]ρ−1

≥ 0 , t ≥ a .

Multiply the above inequality by g(t)−ρ+1ϕ(t) and integrate from a to t (t ≥ a).
Then it is seen that the function

I(t) ≡
∫ t

a

g(s)ϕ(s)|f(s)|ρds

+ (ρ− 1)
∫ t

a

g(s)−ρ+1ϕ(s)y(s)ρ/(ρ−1)
[ ∫ ∞

s

g(σ)|f(σ)| dσ
]ρ
ds

− ρ
∫ t

a

g(s)−ρ+1ϕ(s)y(s)g(s)|f(s)|
[ ∫ ∞

s

g(σ)|f(σ)| dσ
]ρ−1

ds

is nonnegative for t ≥ a. Denote the last term of I(t) by I3(t). An integration by
parts and use of (2.7) imply

I3(t) = g(t)−ρ+1ϕ(t)y(t)
[ ∫ ∞

t

g(σ)|f(σ)| dσ
]ρ

− g(a)−ρ+1ϕ(a)y(a)
[ ∫ ∞

a

g(σ)|f(σ)| dσ
]ρ

−
∫ t

a

{
g(s)ψ(s) + (ρ− 1)g(s)−ρ+1ϕ(s)y(s)ρ/(ρ−1)}

×
[ ∫ ∞

s

g(σ)|f(σ)|dσ
]ρ
ds , t ≥ a .

Therefore, since I(t) ≥ 0 (t ≥ a), we obtain
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(2.8)

∫ t

a

g(s)ψ(s)
[ ∫ ∞

s

g(σ)|f(σ)| dσ
]ρ
ds

≤
∫ t

a

g(s)ϕ(s)|f(s)|ρds+ g(t)−ρ+1ϕ(t)y(t)
[ ∫ ∞

t

g(σ)|f(σ)|dσ
]ρ

− g(a)−ρ+1ϕ(a)y(a)
[ ∫ ∞

a

g(σ)|f(σ)|dσ
]ρ
.

We claim that

(2.9) lim
t→∞

g(t)−ρ+1ϕ(t)y(t)
[ ∫ ∞

t

g(σ)|f(σ)| dσ
]ρ

= 0 .

To prove (2.9), we note that y(t) is explicitly given by

y(t) =
( ρ

r − 1

)−ρ+1
g(t)ρ−1γ(t)−ρ+1 , t ≥ a ,

and so
g(t)−ρ+1ϕ(t)y(t) = ρ

r − 1γ(t)1−r .

Using the Hölder inequality, we have∫ ∞
t

g(σ)|f(σ)| dσ ≤
[ ∫ ∞

t

g(σ)γ(σ)−(ρ−r)/(ρ−1) dσ
](ρ−1)/ρ

×
[ ∫ ∞

t

g(σ)γ(σ)ρ−r|f(σ)|ρ dσ
]1/ρ

= Aγ(t)(r−1)/ρ
[ ∫ ∞

t

g(σ)γ(σ)ρ−r|f(σ)|ρ dσ
]1/ρ

,

where
A =

(ρ− 1
r − 1

)(ρ−1)/ρ
> 0 .

Therefore we find that

0 ≤ g(t)−ρ+1ϕ(t)y(t)
[ ∫ ∞

t

g(σ)|f(σ)| dσ
]ρ

≤ ρ

r − 1A
ρ

∫ ∞
t

g(σ)γ(σ)ρ−r|f(σ)|ρdσ .

Then, by (2.5), we see that (2.9) holds as claimed.
Let t→∞ in (2.8). Then, noting that (2.9) holds, we find∫ ∞

a

g(s)ψ(s)
[ ∫ ∞

s

g(σ)|f(σ)|σ
]ρ
ds

≤
∫ ∞
a

g(s)ϕ(s)|f(s)|ρds− g(a)−ρ+1ϕ(a)y(a)
[ ∫ ∞

a

g(σ)|f(σ)|dσ
]ρ
,

and so

(2.10)
∫ ∞
a

g(s)ψ(s)
[ ∫ ∞

s

g(σ)|f(σ)| dσ
]ρ
ds ≤

∫ ∞
a

g(s)ϕ(s)|f(s)|ρ ds .
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The inequality (2.10) is identical with the inequality (2.6). The equality holds in
(2.10) if and only if

g(a)−ρ+1ϕ(a)y(a)
[ ∫ ∞

a

g(σ)|f(σ)| dσ
]ρ

= 0 , i.e. f(t) ≡ 0 on [a,∞) .

This finishes the proof of Theorem 2.1. �

Theorem 2.2. Let ρ and r be constants such that ρ > 1 and r < 1, respectively.
Suppose that g(t) is continuous on [a,∞), and g(t) > 0 (t ≥ a), and (2.1) holds.
Define the function γ(t) by (2.2). Let b > a. Suppose that f(t) is continuous on
[a, b]. Then we have

(2.11)

∫ b

a

g(s)γ(s)−r
[ ∫ s

a

g(σ)|f(σ)| dσ
]ρ
ds

≤
( ρ

1− r

)ρ ∫ b

a

g(s)γ(s)ρ−r|f(s)|ρ ds .

Equality holds if and only if f(t) ≡ 0 on [a, b].

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1. We put

ϕ(t) =
( ρ

1− r

)ρ
γ(t)ρ−r and ψ(t) = γ(t)−r

for t ∈ [a, b]. It is easy to see that the function
x(t) = γ(t)−(1−r)/ρ , a ≤ t ≤ b ,

satisfies x′(t) > 0 (a ≤ t ≤ b), and that x = x(t) is a positive solution of the
half-linear differential equation

(g(t)−ρ+1ϕ(t)|x′|ρ−1sgn x′)′ + g(t)ψ(t)|x|ρ−1sgn x = 0 , a ≤ t ≤ b .
Therefore the function

y(t) =
(x′(t)
x(t)

)(ρ−1)∗
(> 0)

satisfies the generalized Riccati differential equation
(2.12)

(
g(t)−ρ+1ϕ(t)y(t)

)′ + g(t)ψ(t) + (ρ− 1)g(t)−ρ+1ϕ(t)y(t)ρ/(ρ−1) = 0
for t ∈ [a, b].

Apply the inequality (2.3) to the case

ξ = g(t)|f(t)| , η = y(t)1/(ρ−1)
∫ t

a

g(σ)|f(σ)| dσ .

Then, it is found that the number

J ≡
∫ b

a

g(s)ϕ(s)|f(s)|ρ ds

+ (ρ− 1)
∫ b

a

g(s)−ρ+1ϕ(s)y(s)ρ/(ρ−1)
[ ∫ s

a

g(σ)|f(σ)| dσ
]ρ
ds

− ρ
∫ b

a

g(s)−ρ+1ϕ(s)y(s)g(s)|f(s)|
[ ∫ s

a

g(σ)|f(σ)| dσ
]ρ−1

ds
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is nonnegative. Integrating the last term of J by parts and using (2.12), we find
that ∫ b

a

g(s)ψ(s)
[ ∫ s

a

g(σ)|f(σ)| dσ
]ρ
ds

≤
∫ b

a

g(s)ϕ(s)|f(s)|ρ ds− g(b)−ρ+1ϕ(b)y(b)
[ ∫ b

a

g(σ)|f(σ)| dσ
]ρ
,

and so

(2.13)
∫ b

a

g(s)ψ(s)
[ ∫ s

a

g(σ)|f(σ)| dσ
]ρ
ds ≤

∫ b

a

g(s)ϕ(s)|f(s)|ρ ds .

The inequality (2.13) is identical with (2.11). The equality holds in (2.13) if and
only if

g(b)−ρ+1ϕ(b)y(b)
[ ∫ b

a

g(σ)|f(σ)| dσ
]ρ

= 0 , i.e. f(t) ≡ 0 on [a, b] .

This completes the proof of Theorem 2.2. �

3. Proof of Theorem 1.1

To prove Theorem 1.1, we use the following lemmas.

Lemma 3.1. Let µ 6= 0 be fixed. Let w and ε be real numbers satisfying |w| <∞
and |ε| ≤ |µ|α/4, respectively. The function

(3.1)
F (w, ε) = |w + µα∗ + ε|(α+1)/α − |µα∗ + ε|(α+1)/α

− α+ 1
α

(µα∗ + ε)(1/α)∗w

satisfies

0 ≤ F (w, ε) ≤ K(α)|µ|−α+1w2
(
|w| ≤ |µ|

α

4 , |ε| ≤ |µ|
α

4

)
,

where

K(α) =


α+ 1
2α2

(3
2

)(−α+1)/α
(0 < α ≤ 1),

α+ 1
2α2

(1
2

)(−α+1)/α
(α > 1).

Note that the function F (w, ε) defined by (3.1) arises naturally in [6, 7]. For a
brief proof of Lemma 3.1, see Naito [12, Lemma 2.4].

Lemma 3.2. Let µ 6= 0. Then

(3.2) ||µα∗ + ε|(α+1)/α − |µ|α+1| ≤ 2α+ 1
α
|µ||ε| and

(3.3) |(µα∗ + ε)(1/α)∗ − µ| ≤ 2
α
|µ|−α+1|ε|

for all sufficiently small |ε|.
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Since

lim
ε→0

|µα∗ + ε|(α+1)/α − |µ|α+1

ε
= α+ 1

α
µ and

lim
ε→0

(µα∗ + ε)(1/α)∗ − µ
ε

= 1
α
|µ|−α+1 (µ 6= 0) ,

Lemma 3.2 is obvious.
Now, let c be a real constant such that c < E(α), where E(α) is defined by (1.6).

We suppose that (1.8) and (1.10) hold. Here, π(t) and Qπ,α(t) are defined by (1.5)
and (1.9), respectively. For the roots σ1 and σ2 (σ1 < σ2) of (1.7), set µi = σ

(1/α)∗
i

(i = 1, 2). Then, µ1 and µ2 are solutions of the equation
(3.4) |µ|α+1 + µα∗ + c = 0,
and satisfy µ1 < −α/(α + 1) < µ2. Let x(t) be a nonoscillatory solution of (1.1)
and satisfy the asymptotic condition of the form (1.18). We suppose that x(t) > 0
for t ≥ T , and define the function y(t) by (1.11). According to Proposition 1.1, the
function y(t) satisfies (1.14).

Let µ = µ1 or µ = µ2 6= 0. We define the function w(t) by
w(t) = π(t)αy(t)− µα∗ − ε(t) , t ≥ T ,

where ε(t) is given by (1.16). Since ε(t) → 0 (t → ∞), we may suppose that
|ε(t)| ≤ |µ|α/4 for t ≥ T . Using (3.4) and (1.14), we have

(3.5)

w(t) = −α|µ|α+1 − (α+ 1)µα∗

+ α+ 1
π(t)

∫ ∞
t

p(s)−1/α (w(s) + µα∗ + ε(s)) ds

+ α

π(t)

∫ ∞
t

p(s)−1/α |w(s) + µα∗ + ε(s)|(α+1)/α
ds

for t ≥ T . Then it is easy to see that
p(t)1/απ(t)w′(t) = w(t) + α|µ|α+1 + (α+ 1)µα∗

− (α+ 1) (w(t) + µα∗ + ε(t))

− α |w(t) + µα∗ + ε(t)|(α+1)/α
, t ≥ T.

This equality can be rewritten as
p(t)1/απ(t)w′(t) = −{(α+ 1)µ+ α}w(t)− (α+ 1)ε(t)

− α
{
|µα∗ + ε(t)|(α+1)/α − |µ|α+1

}
− (α+ 1)

{
(µα∗ + ε(t))(1/α)∗ − µ

}
w(t)

− αF (w(t), ε(t)) , t ≥ T ,

where F (w, ε) is defined by (3.1).
For simplicity of notation, we put

(3.6) f1(t) = |µα∗ + ε(t)|(α+1)/α − |µ|α+1, f2(t) = (µα∗ + ε(t))(1/α)∗ − µ,



52 M. NAITO

and so

(3.7)
p(t)1/απ(t)w′(t) = −{(α+ 1)µ+ α}w(t)− (α+ 1)ε(t)

− αf1(t)− (α+ 1)f2(t)w(t)
− αF

(
w(t), ε(t)

)
for t ≥ T . Since ε(t)→ 0 (t→∞), it follows from Lemma 3.2 that

(3.8) |f1(t)| ≤ 2α+ 1
α
|µ||ε(t)| , |f2(t)| ≤ 2

α
|µ|−α+1|ε(t)|

for all large t. Without loss of generality we assume that (3.8) holds for t ≥ T .
In the following, we distinguish the cases

(α+ 1)µ+ α < 0 and (α+ 1)µ+ α > 0 .
Let us consider the first case (α+ 1)µ+ α < 0, i.e., µ = µ1. In this case we set

β = −(α+ 1)µ1 − α (> 0) .
Then, (3.7) yields

(3.9)

(π(t)βw(t))′ = −(α+ 1)p(t)−1/απ(t)β−1ε(t)

− αp(t)−1/απ(t)β−1f1(t)

− (α+ 1)p(t)−1/απ(t)β−1f2(t)w(t)

− αp(t)−1/απ(t)β−1F
(
w(t), ε(t)

)
for t ≥ T . Note that x(t) is assumed to satisfy the asymptotic condition of the
form (1.18) with i = 1. Therefore we have

π(t)αy(t) = p(t)π(t)α
(
x′(t)/x(t)

)α∗ → µα∗1 as t→∞ ,

and so w(t) with µ = µ1 tends to 0 as t→∞. In particular, π(t)βw(t) tends to 0
as t→∞. Therefore, it follows from (3.9) that

(3.10)

w(t) = (α+ 1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1ε(s) ds

+ απ(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1f1(s) ds

+ (α+ 1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1f2(s)w(s) ds

+ απ(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1F
(
w(s), ε(s)

)
ds, t ≥ T .

We are now ready for the proof of Theorem 1.1 of the case i = 1.
Proof of Theorem 1.1 of the case i = 1. Since ε(t)→ 0 (t→∞), we can take
T > t0 sufficiently large so that |ε(t)| ≤ |µ1|α/4 for t ≥ T . Define the functions
f1(t) and f2(t) by (3.6) with µ = µ1. We may suppose that (3.8) (µ = µ1) holds
for t ≥ T . Put

(3.11) η(t) = π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1|ε(s)| ds , t ≥ T .
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Since ε(t) → 0 (t → ∞), the function η(t) is well defined and η(t) → 0 (t → ∞).
We put

M(α, µ1) = 3(α+ 1)(1 + 2|µ1|).

Since η(t)→ 0 (t→∞), we may suppose that

M(α, µ1)η(t) ≤ |µ1|α/4 , t ≥ T .

Denote by W the set of all functions w ∈ C[T,∞) such that

(3.12) |w(t)| ≤M(α, µ1)η(t) , t ≥ T .

Moreover, keeping (3.10) in mind, we define the operator F : W → C[T,∞) by

(Fw)(t) = (α+ 1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1ε(s) ds

+ απ(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1f1(s) ds

+ (α+ 1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1f2(s)w(s)ds

+ απ(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1F
(
w(s), ε(s)

)
ds

for t ≥ T . Here, F (w, ε) is given by (3.1) with µ = µ1. As is easily verified,
the set W is a nonempty closed convex subset of the Fréchet space C[T,∞) of
all continuous functions on [T,∞) with the topology of uniform convergence on
compact subintervals of [T,∞). Note that if w ∈ W , then |w(t)| ≤ |µ1|α/4 for
t ≥ T , and so, by Lemma 3.1,

(3.13) 0 ≤ F
(
w(t), ε(t)

)
≤ K(α)|µ1|−α+1w(t)2 , t ≥ T .

Then it is easily observed that Fw is well defined for w ∈W .
Let w ∈W . Then, by (3.8) with µ = µ1 and (3.12) and (3.13), we have

|(Fw)(t)| ≤ (α+ 1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1|ε(s)| ds

+ 2(α+ 1)|µ1|π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1|ε(s)| ds

+ 2(α+ 1)
α

|µ1|−α+1M(α, µ1)π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1|ε(s)|η(s) ds

+ αK(α)|µ1|−α+1M(α, µ1)2π(t)−β
∫ ∞
t

p(s)−1/απ(s)β−1η(s)2 ds

for t ≥ T . For the integral in the last term of the right-hand side of the above,
apply the Hardy-type inequality (2.6) in Theorem 2.1 to the case a = t, ρ = 2,
r = β + 1, and

g(t) = p(t)−1/α and f(t) = π(t)β−1|ε(t)| .
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Then it can be concluded that∫ ∞
t

p(s)−1/απ(s)β−1η(s)2ds

=
∫ ∞
t

p(s)−1/απ(s)−β−1
[∫ ∞

s

p(σ)−1/απ(σ)β−1|ε(σ)|dσ
]2
ds

≤
(

2
β

)2 ∫ ∞
t

p(s)−1/απ(s)β−1|ε(s)|2 ds, t ≥ T .

Therefore, |(Fw)(t)| is estimated as follows:
|(Fw)(t)| ≤ (α+ 1)η(t) + 2(α+ 1)|µ1|η(t)

+ 2(α+ 1)
α

|µ1|−α+1M(α, µ1)
[

sup
s≥t

η(s)
]
η(t)

+ αK(α)|µ1|−α+1M(α, µ1)2
( 2
β

)2[
sup
s≥t
|ε(s)|

]
η(t)

for t ≥ T . Since sups≥t η(s)→ 0 and sups≥t |ε(s)| → 0 as t→∞, we can suppose
that

2(α+ 1)
α

|µ1|−α+1
[

sup
s≥t

η(s)
]
≤ 1

3 , t ≥ T ,

and
αK(α)|µ1|−α+1M(α, µ1)

( 2
β

)2[
sup
s≥t
|ε(s)|

]
≤ 1

3 , t ≥ T .

Then we obtain
|(Fw)(t)| ≤M(α, µ1)η(t) , t ≥ T .

This means that
(i) F maps W into W .

Moreover it can be checked that
(ii) F is continuous on W ;
(iii) FW is uniformly bounded and equicontinuous at every point of [T,∞).

The Schauder-Tychonoff fixed point theorem implies that F has a fixed element
w ∈ W : w(t) = (Fw)(t), t ≥ T . It is clear that this fixed element w(t) satisfies
(3.10) and (3.12). Since η(t) → 0 (t → ∞), it follows from (3.12) that w(t) → 0
as t→∞. In addition, it can be shown without difficulty that w(t) satisfies (3.5)
(µ = µ1) for t ≥ T . Put

(3.14) y(t) = w(t) + µα∗1 + ε(t)
π(t)α , t ≥ T .

Then we find that y(t) satisfies (1.14). Moreover, it can be shown that y(t) satisfies
(1.12). Therefore, the function x(t) which is defined by (1.13) is a positive solution
of (1.1) on [T,∞). Furthermore, we have

p(t)π(t)α
(x′(t)
x(t)

)α∗
= π(t)αy(t) = w(t) + µα∗1 + ε(t)→ µα∗1
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as t→∞, and so

(3.15) lim
t→∞

p(t)1/απ(t)x
′(t)
x(t) = µ1 .

Since µ1 = σ
(1/α)∗
1 , this implies that x(t) belongs to the class n–RV1/π(σ(1/α)∗

1 ).
Note that the arguments up to now give a proof of the last statement (i = 1) of

Theorem A. The advantage of the arguments here is the bound (3.12). In fact, it
follows from (1.11) and (3.14) that

x′(t)
x(t) = (w(t) + µα∗1 + ε(t))(1/α)∗

p(t)1/απ(t)

= µ1

p(t)1/απ(t)
+ (w(t) + µα∗1 + ε(t))(1/α)∗ − µ1

p(t)1/απ(t)
, t ≥ T .(3.16)

Noting that ε(t)→ 0 and w(t)→ 0 (t→∞) and using (3.3) in Lemma 3.2, we see
that

(3.17) |(w(t) + µα∗1 + ε(t))(1/α)∗ − µ1| ≤
2
α
|µ1|−α+1{|w(t)|+ |ε(t)|}

for all large t. By (3.16), we have

(3.18) x(t) = x(T1)
π(T1)−µ1

exp
(∫ t

T1

(w(s) + µα∗1 + ε(s))(1/α)∗ − µ1

p(s)1/απ(s)
ds
)
π(t)−µ1

for t ≥ T1, where T1 is a constant and is taken sufficiently large. It should be
noticed that the assumption (1.17), together with the condition ε(t)→ 0 (t→∞),
implies

(3.19)
∫ ∞
T1

η(t)
p(t)1/απ(t)

dt <∞ ,

where η(t) is given by (3.11). The verification of this fact is left to the reader. Then,
by (3.12) and (3.19), we have

(3.20)
∫ ∞
T1

|w(t)|
p(t)1/απ(t)

dt <∞ .

By (1.17), (3.17), (3.18) and (3.20), it is found that x(t) is written in the form
(3.21) x(t) = c0(t)π(t)−µ1 with c0(t)→ c0 ∈ (0,∞) as t→∞ .

Then we have

x′(t) = c0(t)p(t)−1/απ(t)−µ1−1p(t)1/απ(t)x
′(t)
x(t) ,

and so (3.15) implies that x′(t) is written in the form

(3.22) x′(t) = c1(t)p(t)−1/απ(t)−µ1−1 with c1(t)→ c0µ1 as t→∞.
In general, if x(t) is a solution of the half-linear equation (1.1) and if c is a constant,
then cx(t) is also a solution of (1.1). Therefore, without loss of generality, we may
suppose that c0 = 1 in (3.21) and (3.22). This shows (1.18) with i = 1. The proof
of Theorem 1.1 of the case i = 1 is complete. �
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In order to discuss the second case (α+ 1)µ+α > 0, let us return to (3.7). Note
that µ = µ2 for this case. We set

β = (α+ 1)µ2 + α (> 0) .

Then, (3.7) yields(
π(t)−βw(t)

)′ = −(α+ 1)p(t)−1/απ(t)−β−1ε(t)

− αp(t)−1/απ(t)−β−1f1(t)

− (α+ 1)p(t)−1/απ(t)−β−1f2(t)w(t)

− αp(t)−1/απ(t)−β−1F
(
w(t), ε(t)

)
, t ≥ T .

Therefore we have

(3.23)

w(t) = π(T )−βw(T )π(t)β

− (α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1ε(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1f1(s) ds

− (α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1f2(s)w(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1F
(
w(s), ε(s)

)
ds , t ≥ T .

We can now give the proof of Theorem 1.1 of the case i = 2.
Proof of Theorem 1.1 of the case i = 2. Since ε(t) → 0 (t → ∞), we can
choose T > t0 sufficiently large so that |ε(t)| ≤ |µ2|α/4 for t ≥ T . Define the
functions f1(t) and f2(t) by (3.6) with µ = µ2. We may suppose that (3.8) (µ = µ2)
holds for t ≥ T . Put

η(t;T ) = π(t)β
∫ t

T

p(s)−1/απ(s)−β−1|ε(s)| ds , t ≥ T .

Since ε(t)→ 0 (t→∞), we have η(t;T )→ 0 (t→∞). It is clear that

(3.24) η(t;T ) ≤ π(t)β
∫ t

T

p(s)−1/απ(s)−β−1 ds
[

sup
s≥T
|ε(s)|

]
≤ 1
β

[
sup
s≥T
|ε(s)|

]
for t ≥ T . We put

M(α, µ2) = 3(α+ 1)(1 + 2|µ2|) .
Since sups≥T |ε(s)| → 0 as T →∞, we may suppose that

M(α, µ2) 1
β

[
sup
s≥T
|ε(s)|

]
≤ |µ2|α/4 .

Denote by W the set of all functions w ∈ C[T,∞) such that

(3.25) |w(t)| ≤M(α, µ2)η(t;T ) , t ≥ T .
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For w ∈ W , we have w(T ) = 0. Then, keeping (3.23) in mind, we define the
operator F : W → C[T,∞) by

(Fw)(t) = −(α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1ε(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1f1(s) ds

− (α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1f2(s)w(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1F
(
w(s), ε(s)

)
ds

for t ≥ T . Here, F (w, ε) is given by (3.1) with µ = µ2.
Let w ∈W . We have |w(t)| ≤ |µ2|α/4 for t ≥ T , and so, by Lemma 3.1,

(3.26) 0 ≤ F
(
w(t), ε(t)

)
≤ K(α)|µ2|−α+1w(t)2 , t ≥ T .

Therefore, by (3.8) with µ = µ2 and (3.25) and (3.26), we have

|(Fw)(t)| ≤ (α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1|ε(s)| ds

+ 2(α+ 1)|µ2|π(t)β
∫ t

T

p(s)−1/απ(s)−β−1|ε(s)| ds

+ 2(α+ 1)
α

|µ2|−α+1M(α, µ2)π(t)β

×
∫ t

T

p(s)−1/απ(s)−β−1|ε(s)|η(s;T ) ds

+ αK(α)|µ2|−α+1M(α, µ2)2π(t)β
∫ t

T

p(s)−1/απ(s)−β−1η(s;T )2 ds

for t ≥ T . For the third term of the right-hand side of the above, we use (3.24).
For the last term of the right-hand, we apply the Hardy-type inequality (2.11) in
Theorem 2.2 to the case a = T , b = t, ρ = 2, r = −β + 1 and

g(t) = p(t)−1/α and f(t) = π(t)−β−1|ε(t)| .

Then we find that∫ t

T

p(s)−1/απ(s)−β−1η(s;T )2 ds

=
∫ t

T

p(s)−1/απ(s)β−1
[ ∫ s

T

p(σ)−1/απ(σ)−β−1|ε(σ)|dσ
]2
ds

≤
( 2
β

)2 ∫ t

T

p(s)−1/απ(s)−β−1|ε(s)|2 ds , t ≥ T .
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Therefore, |(Fw)(t)| is estimated in the following way:
|(Fw)(t)| ≤ (α+ 1)η(t;T ) + 2(α+ 1)|µ2|η(t;T )

+ 2(α+ 1)
α

|µ2|−α+1M(α, µ2) 1
β

[
sup
s≥T
|ε(s)|

]
η(t;T )

+ αK(α)|µ2|−α+1M(α, µ2)2
( 2
β

)2[
sup
s≥T
|ε(s)|

]
η(t;T )

for t ≥ T . Since sups≥T |ε(s)| → 0 as T →∞, we can suppose that

2(α+ 1)
α

|µ2|−α+1 1
β

[
sup
s≥T
|ε(s)|

]
≤ 1

3
and

αK(α)|µ2|−α+1M(α, µ2)
( 2
β

)2[
sup
s≥T
|ε(s)|

]
≤ 1

3 .

Then we deduce that
|(Fw)(t)| ≤M(α, µ2)η(t;T ) , t ≥ T .

This means that
(i) F maps W into W .

Moreover it can be checked without difficulty that
(ii) F is continuous on W ;
(iii) FW is uniformly bounded and equicontinuous at every point of [T,∞).

The Schauder-Tychonoff fixed point theorem implies that F has a fixed element w
in W . This fixed element w(t) satisfies

w(t) = −(α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1ε(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1f1(s) ds

− (α+ 1)π(t)β
∫ t

T

p(s)−1/απ(s)−β−1f2(s)w(s) ds

− απ(t)β
∫ t

T

p(s)−1/απ(s)−β−1F
(
w(s), ε(s)

)
ds , t ≥ T ,

and has the bound (3.25). It is obvious that w(t) → 0 as t → ∞. Further, w(t)
satisfies (3.5) (µ = µ2) for t ≥ T . Put

(3.27) y(t) = w(t) + µα∗2 + ε(t)
π(t)α , t ≥ T ,

and define x(t) by (1.13). Then, as in the first case, we see that x(t) is a positive
solution of (1.1) on [T,∞), and

p(t)π(t)α
(x′(t)
x(t)

)α∗
= π(t)αy(t) = w(t) + µα∗2 + ε(t)→ µα∗2
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as t→∞. Consequently,

(3.28) lim
t→∞

p(t)1/απ(t)x
′(t)
x(t) = µ2 .

Since µ2 = σ
(1/α)∗
2 , this implies that x(t) belongs to the class n–RV1/π(σ(1/α)∗

2 ).
As in the first case, it follows from (1.11) and (3.27) that

x′(t)
x(t) = (w(t) + µα∗2 + ε(t))(1/α)∗

p(t)1/απ(t)

= µ2

p(t)1/απ(t)
+ (w(t) + µα∗2 + ε(t))(1/α)∗ − µ2

p(t)1/απ(t)
, t ≥ T .(3.29)

Using (3.3) in Lemma 3.2, we see that

|(w(t) + µα∗2 + ε(t))(1/α)∗ − µ2| ≤
2
α
|µ2|−α+1{|w(t)|+ |ε(t)|

}
for all large t. By (3.29), the solution x(t) is expressed as

x(t) = x(T1)
π(T1)−µ2

exp
(∫ t

T1

(w(s) + µα∗2 + ε(s))(1/α)∗ − µ2

p(s)1/απ(s)
ds
)
π(t)−µ2

for t ≥ T1, where T1 is taken sufficiently large. Note that the assumption (1.17)
implies ∫ ∞

T1

η(t;T )
p(t)1/απ(t)

dt <∞ .

Then, by (3.25), we get ∫ ∞
T1

|w(t)|
p(t)1/απ(t)

dt <∞ .

Therefore, as in the first case, it is seen that x(t) is written in the form

(3.30) x(t) = c0(t)π(t)−µ2 with c0(t)→ c0 ∈ (0,∞) as t→∞ .

Then, by (3.28), we have

(3.31) x′(t) = c1(t)p(t)−1/απ(t)−µ2−1 with c1(t)→ c0µ2 as t→∞ .

Without loss of generality, we may suppose that c0 = 1 in (3.30) and (3.31).
This implies (1.18) with i = 2. The proof of Theorem 1.1 of the case i = 2 is
complete. �
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