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Abstract. The reducing subspaces of Toeplitz operators TzN
1
zM
2
on Dirichlet type spaces

of the Dα(D
2) are described, which extends the results for the corresponding operators on

Bergman spaces of the bidisk.
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1. Introduction

Let Z denote the set of integers and N denote the set of nonnegative integers.

Let D be the open unit disk of complex plane C and D2 = {(z1, z2) ; z1 ∈ D, z2 ∈ D}

is called the bidisk. We say that a function f : D
2 → C is holomorphic if it is

holomorphic in each variable separately. Each holomorphic function f on the bidisk

can be represented as

f(z, w) =
∑

i,j∈N

ai,jz
i
1z

j
2

with (z, w) ∈ D
2 and ai,j ∈ C. Let α = (α1, α2) ∈ Z

2, the Dirichlet type space of

the bidisk Dα(D
2) consisting of all holomorphic functions f on the bidisk satisfying

‖f‖Dα(D2) =
∑

i,j∈N

|ai,j |
2(1 + i)α1(1 + j)α2 < ∞.
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Assume that Dα(D
2) is a Hilbert space with the inner product

〈f, g〉 =
∑

i,j∈N

ai,jbi,j(1 + i)α1(1 + j)α2 ,

where f =
∑

i,j∈N

ai,jz
i
1z

j
2 and g =

∑

i,j∈N

bi,jz
i
1z

j
2. Given z = (z1, z2) ∈ D

2, each

point evaluation λα
z (f) = f(z) is a bounded linear functional on Dα(D

2). Hence,

for each z ∈ D
2, there exists a unique reproducing kernel Kz(w) ∈ Dα(D

2) with

w = (w1, w2) ∈ D
2 such that

f(z) = 〈f(w),Kz(w)〉 ∀ f ∈ Dα(D
2).

Actually, it can be calculated that

Kz(w) =
∑

i,j>0

wi
1w

j
2z

i
1z

j
2

(1 + i)α1(1 + j)α2
.

One can see [6] for more details about Dirichlet type space Dα(D
2). Throughout

this paper, we denote γα1,i =
√

(1 + i)α1 and γα2,j =
√

(1 + j)α2 . It follows that

‖zi1z
j
2‖Dα(D2) = γα1,iγα2,j . For simplicity, we denote ‖z

i
1z

j
2‖Dα(D2) by ‖z

i
1z

j
2‖.

It is easy to see that D(0,0)(D
2) is the Hardy space over the bidisk H2(D2) and

D(−1,−1)(D
2) is the Bergman space over the bidisk A2(D2). In this paper, we only

deal with Dα(D
2) satisfying α1α2 6= 0.

Given a holomorphic function f on the bidisk D
2, if hf ∈ Dα(D

2) for any

h ∈ Dα(D
2), we define Tf : Dα(D

2) → Dα(D
2) by

Tf(h) = fh ∀h ∈ Dα(D
2).

Let N , M be integers larger than 1 with N 6= M ; it is easy to check that TzN
1

(or TzM
2
) is a bounded linear operator on Dα(D

2). Note that

‖TzN
1
zM
2
‖ = ‖TzN

1
TzM

2
‖ 6 ‖TzN

1
‖‖TzM

2
‖,

where TzN
1
zM
2
are bounded linear operators on Dα(D

2).

Suppose that M is a closed subspace of Hilbert space H. Recall that M is a re-

ducing subspace of the operator T if T (M) ⊆ M and T ∗(M) ⊆ M. A reducing

subspace M is said to be minimal if there are none nontrivial reducing subspaces

of T contained in M.

Stessin and Zhu in [10] completely characterized the reducing subspaces of the

power of scalar weighted unilateral shifts. As an consequence, they gave the descrip-

tion of the reducing subspaces of TzN on the Bergman space and Dirichlet space of
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the unit disk. For more general symbols, the reducing subspaces of the Toeplitz op-

erators with finite Blaschke product were well studied (see [4], [5], [12] for example).

Lu, Shi and Zhou extended the result in [10] to Bergman space with several vari-

ables. They characterized the reducing subspaces of TzN
1
, TzN

1
zN
2
and TzN

1
zM
2
on the

weighted Bergman space over the bidisk and polydisk (see [8], [9], [11]). However,

we knew little about the reducing subspaces of Toeplitz operators with non-analytic

symbols. On the weighted Bergman space over the bidisk, Lu and his students iden-

tified reducing subspaces of TzN
1
zM
2
in [1] and TzN

1
+αzM

2
in [2], respectively. Recently,

Gu in [3] extended the results about TzN
1
+αzM

2
to the weighted Hardy space case.

The author in [7] has described the reducing subspaces of Toeplitz operators TzN
1

(or TzN
2
), TzN

1
zN
2
and TzN

1
zM
2
on Dirichlet type spaces of the bidisk Dα(D

2). Motivated

by the above work, we will investigate the reducing subspaces of Toeplitz opera-

tors TzN
1
zM
2
on Dirichlet type spaces of the bidisk, which generalizes the results in [1].

We characterize the reducing subspaces of TzN
1
zM
2
on Dirichlet type spaces Dα(D

2)

with |α1| = |α2| in Section 2 and |α1| 6= |α2| in Section 3, respectively.

Throughout this paper, we denote T = TzN
1
zM
2
and [f ] be the reducing subspace

of T generated by f ∈ Dα(D
2). By a direct computation for k, l, h ∈ N we have

T h(zk1 z
l
2) =







γ2
α2,l

γ2
α2,l−hM

zk+hN
1 zl−hM

2 , l > hM,

0, else

and

T ∗h(zk1 z
l
2) =







γ2
α1,k

γ2
α1,k−hN

zk−hN
1 zl+hM

2 , k > hN,

0, else.

2. The case of Dirichlet type spaces Dα(D
2) with |α1| = |α2|

In this section, we will characterize reducing subspace of T on Dirichlet type

spaces Dα(D
2) with |α1| = |α2|. The following lemma is easy but useful.

Lemma 2.1. Suppose |α1| = |α2| and

f(x) =
(a− x

b− x

)α2
( c+ x

d+ x

)α1

with a, b, c, d ∈ R. If f(0) = f(λ1) = f(λ2), where nonzero λ1, λ2 ∈ R with λ1 6= λ2,

then a = b and c = d.
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P r o o f. First suppose α1 = α2. Let f1 = (a− x)(c+ x) and f2 = (b− x)(d+ x),

then we have

f(0) =
fα2

1 (0)

fα2

2 (0)
, f(λ1) =

fα2

1 (λ1)

fα2

2 (λ1)
, f(λ2) =

fα2

1 (λ2)

fα2

2 (λ2)
.

By the assumption, it follows that

f1(0) = f2(0)
f1(0)

f2(0)
, f1(λ1) = f2(λ1)

f1(0)

f2(0)
, f1(λ2) = f2(λ2)

f1(0)

f2(0)
.

Since f1 and f2 are both quadratic polynomials, it follows that f1(x) = f2(x).

Therefore, a = b and c = d.

Now suppose α1 = −α2. Then

f(x) =
(a− x

b − x

)α2
(d+ x

c+ x

)α2

.

By the discussion above, we have a = b and c = d. Thus, the desired result is proved.

�

Observe that N2 = N× N =
5
⋃

i=0

Ei. It follows that

Dα(D
2) =

5
⊕

i=0

span{zk1z
l
2; (k, l) ∈ Ei} :=

5
⊕

i=0

Mi,

where
E0 = {(k, l) ∈ N

2 : 0 6 k < N, 0 6 l < M},

E1 = {(k, l) ∈ N
2 : k > 2N},

E2 = {(k, l) ∈ N
2 : 0 6 k < 2N, l > 2M},

E3 = {(k, l) ∈ N
2 : N 6 k < 2N, M 6 l < 2M},

E4 = {(k, l) ∈ N
2 : 0 6 k < N, M 6 l < 2M},

E5 = {(k, l) ∈ N
2 : N 6 k < 2N, 0 6 l < M}.

Letting

f(x) =
( (1 + l)/M − x

(1 + q)/M − x

)α2
( (1 + p)/N + x

(1 + k)/N + x

)α1

,

we define two equivalences on E4 and E5, respectively, by

(i) for (p, q), (k, l) ∈ E4, (p, q) ∼1 (k, l) if and only if f(0) = f(1), which is equiva-

lent to
γ2
α2,l

γ2
α1,k+N

γ2
α2,l−Mγ2

α1,k

=
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

.
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(ii) for (p, q), (k, l) ∈ E5, (p, q) ∼2 (k, l) if and only if f(0) = f(−1), which is

equivalent to
γ2
α2,l

γ2
α1,k−N

γ2
α2,l+Mγ2

α1,k

=
γ2
α2,q

γ2
α1,p−N

γ2
α2,q+Mγ2

α1,p

.

It is easy to check the following statements:

(1) (p, q) ∈ E4 if and only if (p+N, q −M) ∈ E5,

(2) for (p, q), (k, l) ∈ E4, (p, q) ∼1 (k, l) if and only if (p+N, q−M) ∼2 (k+N, l−M),

(3) for (p, q), (k, l) ∈ E5, (p, q) ∼2 (k, l) if and only if (p−N, q+M) ∼1 (k−N, l+M).

It is easy to see that M0 is a reducing subspace of T . Next, we will study the or-

thogonal decomposition of zk1z
l
2 with respect toM, whereM ⊂ Dα(D

2) andM ⊥ M0.

Lemma 2.2. Suppose M is a reducing subspace of T and M ⊥ M0. Let PM be

the orthogonal projection from Dα(D
2) to M. Then the following statements hold.

(1) If (k, l) ∈ E1 ∪ E2 ∪E3, then PMzk1z
l
2 = λzk1 z

l
2, where λ = 0 or 1.

(2) If (k, l) ∈ E4, then PMzk1z
l
2 ∈ M4.

(3) If (k, l) ∈ E5, then PMzk1z
l
2 ∈ M5.

P r o o f. Note that

T ∗hT h(zk1z
l
2) =

γ2
α2,l

γ2
α1,k+hN

γ2
α2,l−hMγ2

α1,k

zk1z
l
2 ∀ l > hM.

It follows that

〈PMT ∗hT h(zk1 z
l
2), z

p
1z

q
2〉 =

〈

PM

γ2
α2,l

γ2
α1,k+hN

γ2
α2,l−hMγ2

α1,k

zk1z
l
2, z

p
1z

q
2

〉

=
γ2
α2,l

γ2
α1,k+hN

γ2
α2,l−hMγ2

α1,k

〈PMzk1z
l
2, z

p
1z

q
2〉 ∀ l > hM.

On the other hand,

〈T ∗hT hPM(zk1z
l
2), z

p
1z

q
2〉 = 〈PM(zk1 z

l
2), T

∗hT h(zp1z
q
2)〉

=
γ2
α2,q

γ2
α1,p+hN

γ2
α2,q−hMγ2

α1,p

〈PMzk1z
l
2, z

p
1z

q
2〉 ∀ q > hM.

Since M is a reducing subspace of T , the operators T ∗h and T h commute with PM.

If 〈PM(zk1 z
l
2), z

p
1z

q
2〉 6= 0 for l > hM , q > hM we have

(2.1)
γ2
α2,l

γ2
α1,k+hN

γ2
α2,l−hMγ2

α1,k

=
γ2
α2,q

γ2
α1,p+hN

γ2
α2,q−hMγ2

α1,p

,
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which is equivalent to

(2.2)
(1 + l)α2(1 + p)α1

(1 + q)α2(1 + k)α1
=

(1 + l − hM)α2(1 + p+ hN)α1

(1 + q − hM)α2(1 + k + hN)α1
.

(1) If (k, l) ∈ E1 ∪ E2 ∪ E3, we only need to show that the equation (2.2) holds if

and only if p = k and q = l.

(i) If (k, l) ∈ E2, then l > 2M . By the assumption, T ∗hT h commutes with PM.

Then the equations (2.1) and (2.2) show that

f(0) = f(1) = f(2),

where

f(x) =
( (1 + l)/M − x

(1 + q)/M − x

)α2
( (1 + p)/N + x

(1 + k)/N + x

)α1

with |α1| = |α2|. By Lemma 2.1, we get

1 + l

M
=

1 + q

M
,

1 + p

N
=

1 + k

N
,

which is equivalent to p = k and q = l.

(ii) If (k, l) ∈ E1, then k > 2N . By the assumption, T hT ∗h commutes with PM.

Then a detailed computation like equations (2.1) and (2.2) show that

f(0) = f(−1) = f(−2),

which leads to p = k and q = l by Lemma 2.1.

(iii) If (k, l) ∈ E3, then M 6 l < 2M and N 6 k < 2N . We consider that T ∗T

and TT ∗ both commute with PM. Then a detailed computation shows

that

f(0) = f(−1) = f(1),

which also leads to p = k and q = l by Lemma 2.1. Therefore, the state-

ment (1) holds.

(2) If (k, l) ∈ E4, the statement (2) holds by showing PMzk1z
l
2 ⊥ Mi where

i = 1, 2, 3, 5, which is implied by the fact that for (n,m) ∈
3
⋃

i=1

Ei,

〈PM(zk1 z
l
2), z

n
1 z

m
2 〉 = 〈zk1z

l
2, PM(zn1 z

m
2 )〉

= λ̄〈zk1z
l
2, z

n
1 z

m
2 〉 (by statement (1))

= 0
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and for (n,m) ∈ E5,

〈PM(zk1 z
l
2), z

n
1 z

m
2 〉 =

γ2
α2,l−Mγ2

α1,k

γ2
α2,l

γ2
α1,k+N

〈PMT ∗Tzk1z
l
2, z

n
1 z

m
2 〉

=
γ2
α2,l−Mγ2

α1,k

γ2
α2,l

γ2
α1,k+N

〈T ∗PMTzk1z
l
2, z

n
1 z

m
2 〉

=
γ2
α2,l−Mγ2

α1,k

γ2
α2,l

γ2
α1,k+N

〈PMTzk1z
l
2, T z

n
1 z

m
2 〉 (since Tzn1 z

m
2 = 0)

= 0.

(3) Replacing T ∗T by TT ∗ in the case (2), we can get the statement (3) with

a similar argument. �

By Lemma 2.2, the structure of the reducing subspaces on
3
⊕

i=0

Mi is relatively clear.

However, we still know little about the structure of the reducing subspaces on M4

or M5. In order to describe it, we introduce some notations. Given (n,m) ∈ E4,

define

Pn,m : Dα(D
2) → Mn,m

as the orthogonal projection, whereMn,m=span{zp1z
q
2 : (p, q) ∼1 (n,m), (p, q) ∈ E4}.

Similarly given (n,m) ∈ E5, we can define the orthogonal projection

Qn,m : Dα(D
2) → Mn,m,

where Mn,m = span{zp1z
q
2 : (p, q) ∼2 (n,m), (p, q) ∈ E5}.

For f ∈ Dα(D
2), note that T ∗Pn,mf = 0, T 2Pn,mf = 0 and

T ∗TPn,mf =
γ2
α2,m

γ2
α1,n+N

γ2
α2,m−Mγ2

α1,n

Pn,mf,

and we have

(2.3) [Pn,mf ] = span{Pn,mf, TPn,mf}.

Similarly, we have

(2.4) [Qn,mf ] = span{Qn,mf, T ∗Qn,mf}.

Lemma 2.3. LetM ⊥ M0 be the reducing subspace of T and (n,m) ∈ E4. Then

the following statements hold.
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(1) Pn,mPM = PMPn,m and Qn+N,m−MPM = PMQn+N,m−M . Thus if f ∈ M, then

[Pn,mf ] ⊆ M and [Qn+N,m−Mf ] ⊆ M.

(2) If f1, f2 ∈ Pn,mM and f1 ⊥ f2, then [f1] ⊥ [f2].

(3) If f ∈ M, then Pn,mT ∗f = T ∗Qn+N,m−Mf and TPn,mf = Qn+N,m−MTf.

(4) If f ∈ M, then [Pn,mf ] = [Qn+N,m−MTf ] and [Qn+N,m−Mf ] = [Pn,mT ∗f ].

(5) Pn,mM⊕Qn+N,m−MM ⊆ M is a reducing subspace of T .

P r o o f. By Lemma 2.2, we have PMzk1z
l
2 ∈ E4 if (k, l) ∈ E4 and PMzk1z

l
2 ∈ E⊥

4

if (k, l) /∈ E4, which implies that

PMPn,m = Pn,mPM.

Thus, Pn,mf ∈ M. It follows that [Pn,mf ] ⊆ M. Similarly, we get Qn+N,m−MPM =

PMQn+N,m−M and [Qn+N,m−Mf ] ⊆ M. So, statement (1) holds.

By equation (2.3), we have [fi] = span{fi, T fi} since fi ∈ Pn,mM for i = 1 or 2.

Note that since Tfi ∈ M5 if fi ∈ M4

(2.5) Tfi ⊥ fj

for i, j = 1 or 2. Also we get

(2.6) Tfi ⊥ Tfj

by the fact that

〈Tf1, T f2〉 = 〈T ∗Tf1, f2〉 =
γ2
α2,m

γ2
α1,n+N

γ2
α2,m−Mγ2

α1,n

〈f1, f2〉 = 0.

Then statement (2) holds by equations (2.5) and (2.6).

Write f =
∑

i,j∈N

ai,jz
i
1z

j
2 ∈ M. Recall that

Tzk1z
l
2 =

γ2
α2,l

γ2
α2,l−M

zk+N
1 zl−M

2 .

Then TPn,mf = Qn+N,m−MTf holds since

TPn,mf = T
∑

(i,j)∼1(n,m)

ai,jz
i
1z

j
2 =

∑

(i,j)∼1(n,m)

ai,j
γ2
α2,j

γ2
α2,j−M

zi+N
1 zj−M

2

8



and

Qn+N,m−MTf = Qn+N,m−M

∑

i,j∈N

ai,j
γ2
α2,j

γ2
α2,j−M

zi+N
1 zj−M

2

=
∑

(i+N,j−M)∼2(n+N,m−M)

ai,j
γ2
α2,j

γ2
α2,j−M

zi+N
1 zj−M

2

=
∑

(i,j)∼1(n,m)

ai,j
γ2
α2,j

γ2
α2,j−M

zi+N
1 zj−M

2 .

We may prove the second half of the statement (3) in a similar way.

By equations (2.3), (2.4), statement (3) and

T ∗TPn,mf =
γ2
α2,m

γ2
α1,n+N

γ2
α2,m−Mγ2

α1,n

Pn,mf,

we have
[Qn+N,m−MTf ] = span{Qn+N,m−MTf, T ∗Qn+N,m−MTf}

= span{TPn,mf, T ∗TPn,mf}

= span{TPn,mf, Pn,mf} = [Pn,mf ]

and

[Pn,mT ∗f ] = span{Pn,mT ∗f, TPn,mT ∗f}

= span{T ∗Qn+N,m−Mf, TT ∗Qn+N,m−Mf}

= span{T ∗Qn+N,m−Mf,Qn+N,m−Mf} = [Qn+N,m−Mf ].

Thus, statement (4) holds.

By statement (1), we obtain Pn,mM ⊕ Qn+N,m−MM ⊆ M. Noticing that

TQn+N,m−MM = {0}, T ∗Pn,mM = {0} and statement (3), it follows that state-

ment (5) holds since

T (Pn,mM⊕Qn+N,m−MM) = TPn,mM⊕ TQn+N,m−MM = TPn,mM

= Qn+N,m−MTM ⊆ Qn+N,m−MM

⊆ Pn,mM⊕Qn+N,m−MM

and

T ∗(Pn,mM⊕Qn+N,m−MM) = T ∗Pn,mM⊕ T ∗Qn+N,m−MM = T ∗Qn+N,m−MM

= Pn,mT ∗
M ⊆ Pn,mM ⊆ Pn,mM⊕Qn+N,m−MM.

�
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Theorem 2.4. Let M ⊥ M0 be the reducing subspace of T on the bidisk. Then

M = M1 ⊕M2, where

(1) M1 =
⊕

(p,q)∈Λ

[zp1z
q
2 ] with Λ = {(p, q) ∈ E1 ∪ E2 ∪E3 : zp1z

q
2 ∈ M},

(2) M2 is a direct sum of minimal reducing subspace [f ] with f ∈ Pn,mM for some

(n,m) ∈ E4.

P r o o f. Firstly, we claim thatM = M1⊕
⊕

(n,m)∈E

Hn,m, where E is the partition

of E4 by the equivalence ∼1 and Hn,m = Pn,mM⊕Qn+N,m−MM.

By Lemma 2.2, statement (1) for each (p, q) ∈ Λ we have that zp1z
q
2 ∈ M and

[zp1z
q
2 ] ⊆ M is a minimal reducing subspace of T . Note that

⊕

(n,m)∈E

Hn,m ⊆ M by

Lemma 2.3, statement (5), it follows that M1 ∪
⊕

(n,m)∈E

Hn,m ⊆ M.

For each g ∈ M, write g = g1 + g2 with

g1 =
∑

(p,q)∈E1∪E2∪E3

ap,qz
p
1z

q
2 and g2 =

∑

(p,q)∈E4∪E5

ap,qz
p
1z

q
2 .

Lemma 2.2, statement (1) shows that g1 ∈ M, which implies that g2 = g−g1 ∈ M.

It follows that g2 =
∑

(n,m)∈E

Pn,mg2 +Qn+N,m−Mg2 ∈
⊕

n,m∈E

Hn,m. Therefore, M ⊆

M1 ⊕
⊕

(n,m)∈E

Hn,m. So we haveM = M1 ⊕
⊕

(n,m)∈E

Hn,m.

To complete the proof, we only need to show that each Hn,m is the direct sum of

minimal reducing subspaces as [f ] = span{f, T f} with f ∈ Pn,mM.

Suppose Pn,mM 6= ∅. Take 0 6= f1 ∈ Pn,mM, then [f1] = span{f1, T f1} ⊆ Hn,m.

If Pn,mM ⊖ Cf1 6= ∅, take 0 6= f2 ∈ Pn,mM ⊖ Cf1. Then [f2] = span{f2, T f2} ⊆

Hn,m ⊖ [f1]. If [f1]⊕ [f2] 6= Hn,m, we continue this process. This process will stop in

finite steps, since the dimension of Hn,m is finite. The proof is complete. �

Remark 2.5. If M is a reducing subspace generated by g = g1 + g2, then by

Theorem 2.4 [g] = [g1]⊕ [g2] = [g1]⊕ [Pn,mg,Qn+N,m−Mg]. In fact, since [Pn,mg] =

span{Pn,mg, TPn,mg}, by Lemma 2.3 we have

[Pn,mg,Qn+N,m−Mg] = [Pn,mg, T ∗Qn+N,m−Mg] = [Pn,mg, Pn,mT ∗g]

= span{Pn,mg, TPn,mg, Pn,mT ∗g, TPn,mT ∗g}

= span{Pn,mg,Qn,mTg, Pn,mT ∗g, TT ∗Qn,mg}

= span{Pn,mg, Pn,mT ∗g} ⊕ span{Qn,mTg,Qn,mg}.

Albaseer, Shi and Lu in [1] completely describe all the reducing subspaces of TzN
1
zM
2

on the common Bergman space of the bidisk. Comparing with the results in [1],

Theorem 2.4 implies that TzN
1
zM
2
shares the same structure of reducing subspaces on
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each Dirichlet type spaces Dα(D
2) with |α1| = |α2|, which extend the result of [1]. In

other words, the structure of reducing subspaces of TzN
1
zM
2
on Dα(D

2) is independent

of the weight α whenever |α1| = |α2|.

3. The case on Dirichlet type spaces Dα(D
2) with |α1| 6= |α2|

In this section, we will study the reducing subspace of TzN
1
zM
2
on Dirichlet type

spaces Dα(D
2) with |α1| 6= |α2|. Generally, we follow the main idea in Section 2, but

it is slightly more complicated. As an analog to Lemma 2.1, we have the next lemma.

Lemma 3.1. Suppose β = |α1|+ |α2| and

f(x) =
(a− x

b − x

)α2
( c+ x

d+ x

)α1

with a, b, c, d > 0. If f(0) = f(λ1) = . . . = f(λn), where λi 6= 0, λi 6= λj for i 6= j

and n > β, then a = b and c = d.

P r o o f. First suppose α1, α2 > 0. Let f1 = (a − x)α2 (c + x)α1 and f2 =

(b− x)α2 (d+ x)α1 , then we have

f(x) =
f1(x)

f2(x)
and f(0) =

f1(0)

f2(0)
, f(λi) =

f1(λi)

f2(λi)
for i = 1, 2, . . . , n.

By the assumption, it follows that

f1(0) = f2(0)
f1(0)

f2(0)
, f1(λi) = f2(λi)

f1(0)

f2(0)
for i = 1, 2, . . . , n.

Since f1 and f2 are both polynomials with degree β = |α1|+ |α2|, it follows that

f1(x) = f2(x). Therefore, a = b and c = d.

Now suppose α1α2 < 0. Without loss of generality, we may assume α1 > 0 and

α2 < 0. Then

f(x) =
( b − x

a− x

)−α2
( c+ x

d+ x

)α1

.

By similar discussion, we have a = b and c = d. Thus, the desired result is obtained.

�

Let i, j be positive integers, observe that N2 = E0 ∪ E1 ∪ E2 ∪ E′
2

⋃

36i+j6β+1

Ei,j ,

it follows that

Dα(D
2) = M0 ⊕M1 ⊕M2 ⊕M

′
2

β+1
⊕

i+j=3

span {zk1z
l
2 ; (k, l) ∈ Ei,j},
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where

E0 = {(k, l) ∈ N
2 : 0 6 k < N, 0 6 l < M},

E1 = {(k, l) ∈ N
2 : k > βN},

E2 = {(k, l) ∈ N
2 : 0 6 k < βN, l > βM},

Ei,j = {(k, l) ∈ N
2 : (i− 1)N 6 k < iN, (j − 1)M 6 l < jM} with 1 6 j 6 i 6 β,

E′
2 = N

2 −
2
⋃

i=1

Ei −
⋃

36i+j6β+1

Ei,j

and

M0 = span {zk1z
l
2 : (k, l) ∈ E0},

M1 = span {zk1z
l
2 : (k, l) ∈ E1},

M2 = span {zk1z
l
2 : (k, l) ∈ E2},

M
′
2 = span {zk1z

l
2 : (k, l) ∈ E′

2},

Mi,j = span {zk1z
l
2 : (k, l) ∈ Ei,j}.

Letting

f(x) =
( (1 + l)/M − x

(1 + q)/M − x

)α2
( (1 + p)/N + x

(1 + k)/N + x

)α1

,

we defined equivalence on Ei,j . For (p, q), (k, l) ∈ Ei,j ,

(1) if j > 1, (p, q) ∼i,j (k, l) if and only if f(0) = f(1), which is equivalent to

γ2
α2,l

γ2
α1,k+N

γ2
α2,l−Mγ2

α1,k

=
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

;

(2) if j = 1, (p, q) ∼i,1 (k, l) if and only if f(0) = f(−1), which is equivalent to

γ2
α2,l

γ2
α1,k−N

γ2
α2,l+Mγ2

α1,k

=
γ2
α2,q

γ2
α1,p−N

γ2
α2,q+Mγ2

α1,p

.

It is easy to see thatM0 is a reducing subspace of T . Next, we study the orthogonal

decomposition of zk1z
l
2 with respect to M, where M ⊂ Dα(D

2) and M ⊥ M0.

Lemma 3.2. Suppose M is a reducing subspace of T and M ⊥ M0. Let PM be

the orthogonal projection from Dα(D
2) to M. Then the following statements hold.

(1) If (k, l) ∈ E1 ∪ E2 ∪E′
2, then PMzk1z

l
2 = λzk1 z

l
2, where λ = 0 or 1.

(2) If (k, l) ∈ Ei,j , then PMzk1z
l
2 ∈ span{zn1 z

m
2 , (n,m) ∈ Ei,j}.

12



P r o o f. Note that T ∗hT h commutes with PM for positive integer h. If

〈PM(zk1z
l
2), z

p
1z

q
2〉 6= 0,

the same argument in Lemma 2.2 and equation (2.2) shows that for l > hM , q > hM

we get

(3.1)
(1 + l)α2(1 + p)α1

(1 + q)α2(1 + k)α1
=

(1 + l − hM)α2(1 + p+ hN)α1

(1 + q − hM)α2(1 + k + hN)α1
.

(1) If (k, l) ∈ E1 ∪ E2 ∪ E′
2, we only need to show that the equation (3.1) holds if

and only if p = k and q = l.

(i) If (k, l) ∈ E2, then l > βM with β = |α1| + |α2|. By the assumption,

T ∗hT h commutes with PM. Then the equation (3.1) implies

f(0) = f(1) = . . . = f(β),

where

f(x) =
( (1 + l)/M − x

(1 + q)/M − x

)α2
( (1 + p)/N + x

(1 + k)/N + x

)α1

with |α1| 6= |α2|. By Lemma 3.1, we get

1 + l

M
=

1 + q

M
,

1 + p

N
=

1 + k

N
,

which is equivalent to p = k and q = l.

(ii) If (k, l) ∈ E1, then k > βN with β = |α1| + |α2|. By the assumption,

T hT ∗h also commutes with PM. Then a detailed computation shows that

f(0) = f(−1) = . . . = f(−β),

which also leads to p = k and q = l by Lemma 3.1.

(iii) If (k, l) ∈ E′
2, then (k, l) will belong to some Ei,j = {(p, q) : (i − 1)N 6

p < iN, (j−1)M 6 q < jM} with j > i. We consider T ∗kT k and T lT ∗l for

1 6 k < i, 1 6 l < j all commute with PM. Then a detailed computation

shows that

f(−(j − 1)) = . . . = f(−1) = f(0) = f(1) = . . . = f(i− 1).

This also leads to p = k and q = l by Lemma 3.1 since i + j > β + 2.

Therefore, the statement (1) holds.
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(2) We only show the case of (k, l) ∈ E2,1 holds and the other case can be

proved by the same way. For statement (2), it is sufficient to show that

PMzk1 z
l
2 ⊥ span {zn1 z

m
2 : (n,m) /∈ E2,1}. For (n,m) ∈ E1 ∪ E2 ∪ E′

2, state-

ment (1) shows that PMzk1z
l
2 ⊥ span {zn1 z

m
2 : (n,m) ∈ E1∪E2 ∪E′

2}. Note that

for (n,m) ∈ Ei′,j′ with (i
′, j′) 6= (i, j), there exists some integer h satisfying one

of the following:

(a) T ∗hT hzn1 z
m
2 6= 0 and T ∗hT hzk1z

l
2 = 0;

(b) T hT ∗hzn1 z
m
2 6= 0 and T hT ∗hzk1z

l
2 = 0.

Without loss of generality, we assume (a) holds. Then

〈PM(zk1z
l
2), T

∗hT hzn1 z
m
2 〉 = 〈T ∗hT hPM(zk1z

l
2), z

n
1 z

m
2 〉 = 〈PMT ∗hT h(zk1 z

l
2), z

n
1 z

m
2 〉 = 0.

However, a direct computation shows

〈PM(zk1 z
l
2), T

∗hT hzn1 z
m
2 〉 =

γ2
α2,m

γ2
α1,n+hN

γ2
α2,m−hMγ2

α1,n

〈PMzk1z
l
2, z

n
1 z

m
2 〉.

Thus

〈PMzk1z
l
2, z

n
1 z

m
2 〉 = 0.

That is, PMzk1z
l
2 ⊥ zn1 z

m
2 . This completes the proof. �

Besides the above lemma, we need further study of the structure of the reducing

subspaces on Mi,j . Given (n,m) ∈ Ei,j , we can define the orthogonal projection

P i,j
n,m : Dα(D

2) → span{zp1z
q
2 : (p, q) ∼i,j (n,m), (p, q) ∈ Ei,j}.

For f ∈ Dα(D
2) and P i,j

n,mf 6= 0, the minimal reducing subspace of T contain-

ing P 1,j
n,mf can be represented as

[P 1,j
n,mf ] = span{T ∗j1T j2P 1,j

n,mf, j1, j2 = 0, 1 . . .} = span{T j2−j1P 1,j
n,mf, j1, j2 = 0, 1 . . .}

= span{P 1,j
n,mf, TP 1,j

n,mf, . . . , T j−1P 1,j
n,mf},

since T ∗P 1,j
n,mf = 0 and T jP 1,j

n,mf = 0. Moreover, we have

[P 2,j
n,mf ] = span{T ∗P 2,j

n,mf, P 2,j
n,mf, TP 2,j

n,mf, . . . , T j−1P 2,j
n,mf}

and inductively

(3.2) [P i,j
n,mf ] = span{T ∗kP i,j

n,mf, T lP i,j
n,mf, 1 6 k 6 i− 1, 0 6 l 6 j − 1}.
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Lemma 3.3. Let M ⊥ M0 be the reducing subspace of T and (n,m) ∈ Ei,j .

Then the following statements hold.

(1) If f ∈ M, then [P i,j
n,mf ] ⊆ M.

(2) If f1, f2 ∈ P i,j
n,mM and f1 ⊥ f2, then [f1] ⊥ [f2].

(3) If f ∈ M, then P i,j
n,mT ∗f = T ∗P i+1,j−1

n+N,m−Mf and TP i,j
n,mf = P i+1,j−1

n+N,m−MTf.

(4) If f ∈ M, then [P i,j
n,mf ] = [P i+1,j−1

n+N,m−MTf ] and [P i+1,j−1
n+N,m−Mf ] = [P i,j

n,mT ∗f ].

(5)
i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M ⊆ M is a reducing subspace of T .

P r o o f. (1) By Lemma 3.2, we have

PMzk1z
l
2 ∈ span{zp1z

q
2 , (p, q) ∈ Ei,j} for (k, l) ∈ Ei,j

and

PMzk1z
l
2 ⊥ span{zp1z

q
2 , (p, q) ∈ Ei,j} for (k, l) /∈ Ei,j .

It means that PMP i,j
n,m = P i,j

n,mPM, which implies statement (1).

(2) Note that T ∗Tf = cf for some nonzero constant c. By the assumption for

k1, k2 ∈ N we have

〈T k1f1, T
∗k2f2〉 = 0, 〈T k1f1, T

k2f2〉 = 0, 〈T ∗k1f1, T
k2f2〉 = 0.

By equation (3.2), statement (2) holds.

(3) Write f =
∑

(p,q)∈N2

ap,qz
p
1z

q
2 ∈ M. Recall that since

Tzp1z
q
2 =

γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

zp+N
1 zq−M

2 ,

then TP i,j
n,mf = Qi+1,j−1

n+N,m−MTf holds since

TP i,j
n,mf = T

∑

(p,q)∼i,j(n,m)

ap,qz
p
1z

q
2 =

∑

(p,q)∼i,j(n,m)

ap,q
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

zp+N
1 zq−M

2

and

Qi+1,j−1
n+N,m−MTf = Qi+1,j−1

n+N,m−M

∑

(p,q)∈N2

ap,q
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

zp+N
1 zq−M

2

=
∑

(p+N,q−M)∼i+1,j−1(n+N,m−M)

ap,q
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

zp+N
1 zq−M

2

=
∑

(p,q)∼i,j(n,m)

ap,q
γ2
α2,q

γ2
α1,p+N

γ2
α2,q−Mγ2

α1,p

zp+N
1 zq−M

2 .
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We may prove the second half of the statement (3) in a similar way.

(4) By (3.2), statement (3) and T ∗TP i,j
n,mf = cPn,mf for some nonzero constant c,

we have

[P i+1,j−1
n+N,m−MTf ]

= span{T ∗kP i+1,j−1
n+N,m−MTf, T lP i+1,j−1

n+N,m−MTf, 1 6 k 6 i, 0 6 l 6 j − 2}

= span{T ∗kTP i,j
n,mf, T l+1P i,j

n,mf, 1 6 k 6 i, 0 6 l 6 j − 2}

= span{T ∗(k−1)P i,j
n,mf, T l+1P i,j

n,mf, 1 6 k 6 i, 0 6 l 6 j − 2}

= span{T ∗kP i,j
n,mf, T lP i,j

n,mf, 1 6 k 6 i− 1, 0 6 l 6 j − 1} = [P i,j
n,mf ].

A similar argument shows that

[P i,j
n,mT ∗f ]

= span{T ∗kP i,j
n,mT ∗f, T lP i,j

n,mT ∗f, 0 6 k 6 i− 1, 1 6 l 6 j − 1}

= span{T ∗(k+1)P i+1,j−1
n+N,m−Mf, T lT ∗P i+1,j−1

n+N,m−Mf, 0 6 k 6 i− 1, 1 6 l 6 j − 1}

= span{T ∗(k+1)P i+1,j−1
n+N,m−Mf, T l−1P i+1,j−1

n+N,m−Mf, 0 6 k 6 i− 1, 1 6 l 6 j − 1}

= span{T ∗kP i+1,j−1
n+N,m−Mf, T lP i+1,j−1

n+N,m−Mf, 1 6 k 6 i, 0 6 l 6 j − 2} = [P i+1,j−1
n+N,m−Mf ].

Thus, statement (4) holds.

(5) By statement (1), we obtain
i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M ⊆ M. Notice that

TP i+j−1,1
n,m M = {0} and T ∗P 1,i+j−1

n,m M = {0}, by statements (3) and (4), it fol-

lows that statement (5) holds since

T

(i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M

)

⊆

i+j−3
⊕

k=0

P k+2,i+j−k−2
n+(k+1)N,m−(k+1)MM

⊆

i+j−3
⊕

k=−1

P k+2,i+j−k−2
n+(k+1)N,m−(k+1)MM =

i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M

and

T ∗

(i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M

)

⊆

i+j−2
⊕

k=1

P k,i+j−k

n+(k−1)N,m−(k−1)MM

⊆

i+j−1
⊕

k=1

P k,i+j−k

n+(k−1)N,m−(k−1)MM =

i+j−2
⊕

k=0

P k+1,i+j−k−1
n+kN,m−kM M.

�
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Remark. In the proof of statement (5) in Lemma 3.3, we also get

(3.3) [P k+1,i+j−k−1
n+kN,m−kM M] = [P l+1,i+j−l−1

n+lN,m−lM M], 0 6 k, l 6 i+ j − 2.

Next we describe the structure of the reducing subspace of T .

Theorem 3.4. Let M ⊥ M0 be the reducing subspace of T on the bidisk. Then

M = M1 ⊕M2, where

(1) M1 =
⊕

(p,q)∈Λ

[zp1z
q
2 ] with Λ = {(p, q) ∈ E1 ∪ E2 ∪E′

2 : zp1z
q
2 ∈ M},

(2) M2 is a direct sum of minimal reducing subspace [f ] with f ∈ P i,j
n,mM for some

(n,m) ∈ Ei,j .

P r o o f. Firstly, we claim that M = M1 ⊕
⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM.

By Lemma 3.2, statement (1), for each (p, q) ∈ Λ we have that zp1z
q
2 ∈ M and that

[zp1z
q
2 ] ⊆ M is a minimal reducing subspace of T . Noting that

⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM ⊆ M

by Lemma 3.3, statement (5), it follows that M1 ⊕
⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM ⊆ M.

For each g ∈ M, write g = g1 + g2 with

g1 =
∑

(p,q)∈E1∪E2∪E′

2

ap,qz
p
1z

q
2 and g2 =

∑

(p,q)∈Ei,j

ap,qz
p
1z

q
2 .

Lemma 3.2, statement (1) shows that g1 ∈ M, which implies that g2 = g−g1 ∈ M.

It follows that

g2 =
⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mg2 ∈

⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM.

Therefore,M ⊆ M1 ⊕
⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM. So we haveM = M1 ⊕

⊕

(n,m)∈Ei,j

36i+j6β+1

P i,j
n,mM.

To complete the proof, we only need to show that each
⊕

(n,m)∈Ei,j

i+j=t

P i,j
n,mM is the

direct sum of minimal reducing subspaces as [f ] with f ∈ P i,j
n,mM.

Suppose P i,j
n,mM 6= ∅ with 3 6 i + j 6 β + 1 and (n,m) ∈ Ei,j . Take 0 6= f1 ∈

P i,j
n,mM. Then by equation (3.2)

[f1] = span{T ∗(i−1)f1, . . . , f1, T f1, . . . , T
j−1f1} ⊆

⊕

(n,m)∈Ei,j

i+j=t

P i,j
n,mM.
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If P i,j
n,mM⊖ Cf1 6= ∅, take 0 6= f2 ∈ P i,j

n,mM⊖ Cf1. Then

[f2] = span{T ∗(i−1)f1, . . . , f1, T f1, . . . , T
j−1f1} ⊆

⊕

(n,m)∈Ei,j

i+j=t

P i,j
n,mM⊖ [f1].

If P i,j
n,mM⊖Cf1 ⊖Cf2 6= ∅, we continue this process. This process will stop in finite

steps, since the dimension of every P i,j
n,mM is finite. The proof is complete. �

At the end of the paper, we will give an example of the reducing subspaces of

T = TzN
1
zM
2
on Dirichlet type spaces Dα(D

2) with |α1| 6= |α2|.

Example 3.5. Suppose α = (α1, α2) = (2, 1). Let

f = 1 + z41z
5
2 + z41z

15
2 + z91z

11
2 + z111 z122 + z401 z502 + z501 z402 ,

and [f ] be the reducing subspace of Tz10
1

z10
2
generated by f on Dα(D

2). Then

[f ] = [f1]⊕ [f2]⊕ [f3]⊕ [f4],

where

[f1] = [1 + z41z
5
2 ] = C(1 + z41z

5
2);

[f2] = [z41z
15
2 + z91z

11
2 ] = span{z41z

15
2 + z91z

11
2 , 8

3z
14
1 z52 + 6z191 z2};

[f3] = [z111 z122 ] = span{z1z
22
2 , z111 z122 , z211 z22};

[f4] = [z401 z502 ]

= span{z902 , z101 z802 , z201 z702 , z301 z602 , z401 z502 , z501 z402 , z601 z302 , z701 z202 , z801 z102 , z901 }.

P r o o f. Since f1 = 1+z41z
5
2 ∈ M0, [f1] = C(1+z41z

5
2) ⊆ [f ] is a minimal reducing

subspace of Tz10
1

z10
2
. Thus [f ] ⊖ [f1] ⊥ M0 and [f ] ⊖ [f1] is a reducing subspace

of Tz10
1

z10
2
. Noting that (40, 50), (50, 40) ∈ E1 ∪ E2 ∪ E′

2, Theorem 3.4 shows that

[f4], [f5] ⊆ [f ], where f5 = z501 z402 . Since Tf4 = f5, it follows that

[f4] = [f5] = [z401 z502 ]

= span{z902 , z101 z802 , z201 z702 , z301 z602 , z401 z502 , z501 z402 , z601 z302 , z701 z202 , z801 z102 , z901 }.

Noting that (4, 15), (9, 11) ∈ E1,2 and (11, 12) ∈ E2,2 . A direct computation shows

that (4, 15) ∼1,2 (9, 11) and Tf2 = 8
3z

14
1 z52 + 6z191 z2. Lemma 3.3, statement (1)

implies that f2 = P 1,2
4,15f and z111 z122 = P 2,2

11,12f are in [f ]. By equation (3.2), [f2] =

span{f2, T f2} and

[f3] = span{T ∗z111 z122 , z111 z122 , T z111 z122 } = span{z1z
22
2 , z111 z122 , z211 z22}.

Therefore, we get the desired result by Theorem 3.4. �
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