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Abstract. The paper investigates the interaction between the notions of expansiveness
and admissibility. We consider a polynomially bounded discrete evolution family and define
an admissibility notion via the solvability of an associated difference equation. Using the
admissibility of weighted Lebesgue spaces of sequences, we give a characterization of discrete
evolution families which are polynomially expansive and also those which are expansive in
the ordinary sense. Thereafter, we apply the main results in order to infer continuous-time
characterizations for the notions of expansiveness through the solvability of an associated
integral equation.
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1. Introduction

Throughout this paper, we denote by X a complex Banach space, and by L(X)

the algebra of all bounded linear operators on X. The norm on X and L(X) will be

denoted as ‖·‖. Let Z, R denote the sets of integer, real numbers, respectively. For

A ⊆ R we write A>δ = {x ∈ A : x > δ}. Denote ∆ = {(t, s) : t > s > 0}.

Consider the homogeneous equation

(1.1) x′(t) = A(t)y(t), t > 0

and the inhomogeneous equation

(1.2) y′(t) = A(t)y(t) + h(t), t > 0,

where A(t) is in general an unbounded linear operator on X for all fixed t > 0. Equa-

tion (1.1) is called well-posed if we assume the existence, uniqueness and continuous
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dependence of solutions on initial condition. Note that if A(t) is a bounded linear

operator for all fixed t > 0, then the well-posedness is always ensured.

In the qualitative theory of differential equations and dynamical systems, a central

problem is to study the interaction between the solvability of equation (1.2) and the

asymptotic behaviors of solutions of equation (1.1). Historically, this problem has

the origin in the pioneering work of Perron in 1930, see [13].

Theorem 1.1 ([13]). Let X = R
d. If equation (1.2) admits at least one bounded

solution for each bounded continuous function h(·), then each bounded solution of

equation (1.1) goes to zero as t → ∞.

Many results related to differential equations can carry over quite easily to corre-

sponding results for difference equations. Similarities between differential equations

and difference equations have been recognized and exploited very regularly. Thus,

shortly after the publication of the work [13], a corresponding study for the case

of discrete time was undertaken by Ta Li (see [8]) in which a similar method was

done to obtain analogous results for difference equations. In both papers, a cen-

tral interest is the relationship, for linear equations, between the solvability of the

inhomogeneous equation for every bounded perturbation and a certain form of be-

havior of the solutions of the homogeneous equation. The assumption in Perron’s

theorem is known as the admissibility of function spaces in which we take h(·) and

look for y(·). Note that the admissibility can be considered as an operator-theoretic

property of the differential operator Dy(t) = y′(t) − A(t)y(t) in suitable function

spaces.

Thanks to the contributions of many research groups, the study of Perron’s the-

orem reached far-reaching extensions and generalizations. A more systematic study

was done by Massera and Schäffer, whose results are presented in their book, see [9].

Daleckij and Krein showed in [4] that exponential asymptotic behaviors of equa-

tion (1.1) can be characterized in terms of the subjectiveness of the operator D.

Obtained in [7] is an extension to the infinite-dimensional setting for equations de-

fined on the whole line. We also refer the reader to paper [3] extending Ta Li’s

theorem to infinite-dimensional Banach spaces. Some different characterizations can

be found in papers [2], [10], [16].

It should be noted that the well-posedness is equivalent to the existence of an

evolution family solving equation (1.1). Therefore, the admissibility is often known

in more general context such as the existence of mild-solutions. For the purpose of

the present work, it is necessary to recall these terminologies.

Definition 1.2. A family {U(t, s)}(t,s)∈∆ is called an evolution family if the

following conditions hold for every t > r > s > 0:
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(1) U(t, t) = I, U(t, s) = U(t, r)U(r, s);

(2) for each x ∈ X, the mapping (t, s) 7→ U(t, s)x is continuous.

Definition 1.3. An evolution family {U(t, s)}(t,s)∈∆ is called

(1) exponentially bounded if there exist constants M , ω such that

‖U(t, s)‖ 6 Meω(t−s), t > s > 0;

(2) exponentially stable if it is exponentially bounded with ω < 0;

(3) exponentially unstable if there exist constants K,α > 0 such that

‖U(t, s)x‖ > Keα(t−s)‖x‖, t > s > 0;

(4) exponentially expansive if it is exponentially unstable and the operator U(t, s)

is surjective for all fixed t > s > 0.

If there exists an evolution family {U(t, s)}(t,s)∈∆ associated with equation (1.1),

then the mild-solution of equation (1.2) is defined by

(1.3) y(t) = U(t, s)y(s) +

∫ t

s

U(t, τ)h(τ) dτ, t > s > 0.

In recent years, homogeneous equations were investigated in the unified setting

of evolution families and instead of using the differential operator D, one started

to study the associated integral equation (1.3). A significant contribution in this

direction was made by Minh et al. in [12] who obtained the following characterization

for the exponential expansiveness.

Theorem 1.4 ([12]). Let {U(t, s)}(t,s)∈∆ be an exponentially bounded evolution

family and denote C(R>r) = {f : R>r → X is continuous with lim
t→∞

f(t) = 0}. Then

{U(t, s)}(t,s)∈∆ is exponentially expansive if and only if the pair (C(R>0), C(R>0)) is

admissible to equation (1.3); meaning for every r > 0 and every h ∈ C(R>r) there is

a unique u ∈ C(R>r) such that the pair (h, u) verifies equation (1.3).

Using discrete-time arguments, Megan et al. in [11] gave another proof for Theo-

rem 1.4. A version of Theorem 1.4 in terms of unweighted Lebesgue spaces ℓp(Z>0)

was carried out in [17]. Recall that

ℓ∞(Z>δ) = {x : Z>δ → X is bounded},

ℓp(Z>δ) =

{
x : Z>δ → X :

∑

j>δ

‖x(j)‖p < ∞

}
.
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In recent years, there has been a growing concern in the polynomial asymptotic

behaviors of solutions of evolution equations in Banach spaces. The interesting part

of a polynomial behavior lies in the fact that it is a weaker requirement than the

corresponding exponential behavior. Alternatively speaking, an exponentially stable

evolution family is always polynomially stable, but the converse implication fails to

hold. We refer the reader to paper [6] for some examples that are polynomially stable

but that are not exponentially stable. In addition, paper [6] detects a relationship

between polynomial stability and weighted Lebesgue spaces

ℓpw(Z>δ) =

{
x : Z>δ → X :

∑

j>δ

j−1‖x(j)‖p < ∞

}
, p ∈ [1,∞), δ > 0.

This relationship can be stated as follows: a polynomially bounded evolution family

{U(t, s)}(t,s)∈∆ is polynomially stable if and only if there exists p > 1 such that for

each x ∈ X the mapping j 7→ U(js, s)x lies in the weighted Lebesgue space ℓpw(Z>1)

in a uniform way.

Although the study of Perron’s theorem for exponential behaviors continued to

develop rapidly, what deals with polynomial behaviors, as far as we know, seems not

to have received proper concern. In [5], Hai presented versions of Perron’s theorem

for polynomial stability or polynomial expansiveness. It turns out that polynomial

behaviors are related to the existence of solutions of the integral equation

(1.4) u(t) = U(t, s)u(s) +

∫ t

s

τ−1U(t, τ)f(τ) dτ, t > s > 0.

It is clear that the equation above can be obtained from equation (1.3) by taking

h(t) = t−1f(t); in other words, it refers to the mild-solution of equation (1.2) when

h(t) = t−1f(t).

In this paper, we investigate a similar problem for the admissibility of weighted

Lebesgue spaces with the expected conclusion that the weighted space setting is more

delicate to delineate. Namely, we consider a polynomially bounded discrete evolution

family and define an admissibility concept with respect to an associated difference

equation such that the input and output spaces are weighted Lebesgue spaces

ℓpwt(Z>δ) :=

{
ℓpw(Z>δ) if 1 6 p < ∞,

ℓ∞(Z>δ) if p = ∞.

We give a criterion for the existence of a polynomial expansiveness through the

admissibility of (ℓpwt(Z>1), ℓ
q
wt(Z>1)) with the exponents satisfying 1 6 p 6

q 6 ∞ and (p, q) 6= (1,∞) (see Theorem 3.8). Meanwhile, the admissibility
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of (ℓ1w(Z>1), ℓ
∞(Z>1)) is equivalent to the expansiveness in the ordinary sense

(see Theorem 3.10). For p > q, we indicate in Example 3.9 that the polynomial

expansiveness cannot imply the admissibility of (ℓpwt(Z>1), ℓ
q
wt(Z>1)).

Thereafter, we develop continuous-time versions of Theorems 3.8 and 3.10. It

should be emphasised that our proofs do not rely completely on the traditional

method of constructing input and output functions. Namely, we apply Theorems 3.8

and 3.10 in order to infer continuous-time characterizations for expansiveness of con-

tinuous evolution families via the solvability of equation (1.4). This helps to avoid

repeating analogous arguments twice, once for discrete time and once for continuous

time. In Theorem 4.3, we employ the admissibility in continuous time to charac-

terize polynomially bounded continuous evolution families which are polynomially

expansive. Meanwhile, Theorem 4.5 is a characterization for the expansiveness in

the ordinary sense.

2. Preparation

2.1. Polynomial expansiveness. Denote Ω>κ := {(m,n) ∈ Z×Z : m > n > κ}.

To simplify notation we only write Ω in the case, where κ = 0. We get a closer look

at the concepts used in the entire paper.

Definition 2.1. A family {A(m,n)}(m,n)∈Ω of bounded linear operators is called

a discrete evolution family if for every (m,n), (n, r) ∈ Ω it satisfies

(1) A(r, r) = I;

(2) A(m, r) = A(m,n)A(n, r).

Definition 2.2. A discrete evolution family {A(m,n)}(m,n)∈Ω is called

(1) polynomially bounded if there exist positive constants M,ω such that

(2.1) ‖A(m,n)‖ 6 Mmωn−ω, (m,n) ∈ Ω>1;

(2) polynomially unstable if there exist positive constants K, α such that

‖A(m,n)x‖ > Kmαn−α‖x‖, (m,n) ∈ Ω>1;

(3) polynomially expansive if it is polynomially unstable and the operator A(m,n)

is surjective for all fixed (m,n) ∈ Ω>1;

(4) expansive in the ordinary sense if it is polynomially expansive with α = 0.

Definition 2.3. An evolution family {U(t, s)}(t,s)∈∆ is called

(1) polynomially unstable if there exist constants K,α > 0 such that

‖U(t, s)x‖ > Ktαs−α‖x‖, t > s > 1, x ∈ X \ {0};
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(2) polynomially expansive if it is polynomially unstable and the operator U(t, s) is

surjective for all fixed t > s > 1;

(3) expansive in the ordinary sense if it is polynomially expansive with α = 0.

Note that paper [1] gives necessary and sufficient conditions in terms of generalized

exponents for the existence of polynomial behavior.

Remark 2.4. It turns out that a polynomial behavior is a weaker requirement

than the corresponding exponential behavior.

(1) The relations between polynomial and exponential stability are given in the

following diagram

polynomial stability +3 polynomial boundedness

��
exponential stability

KS

+3 exponential boundedness.

(2) Exponential expansiveness =⇒ polynomial expansiveness.

It should be noted that the converse implications fail to hold.

Remark 2.5. If {U(t, s)}(t,s)∈∆ is a continuous evolution family, then

A : Ω → L(X), A(m,n) = U(m,n), (m,n) ∈ Ω

is a discrete evolution family.

2.2. Banach spaces of sequences or functions and admissibility. It is well-

known that ℓpw(Z>δ), ℓ
∞(Z>δ), ℓ

p(Z>δ) are Banach sequence spaces endowed with

the norms

‖x‖w,p :=

(∑

j>δ

j−1‖x(j)‖p
)1/p

,

‖x‖∞ := sup{‖x(m)‖ : m ∈ Z>δ}, ‖x‖u,p :=

(∑

j>δ

‖x(j)‖p
)1/p

,

respectively.

Lemma 2.6. If u ∈ ℓpw(Z>δ) ∩ ℓ∞(Z>δ), then u ∈ ℓqw(Z>δ) for all fixed q > p.

P r o o f.

∑

j>δ

j−1‖u(j)‖q 6 ‖u‖q−p
∞

∑

j>δ

j−1‖u(j)‖p = ‖u‖q−p
∞

‖u‖pw,p < ∞.

�
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Obtained in the lemma below are elementary inequalities that will be used to

estimate the norm of sequences in ℓpw(Z>δ).

Lemma 2.7. The following inequalities hold for every α > 0, m ∈ Z>1 and

(n, κ) ∈ Ω.

(1) mα
∞∑

j=m

j−α−1 6 2α+1α−1;

(2)
j∑

n=κ
nα−1 6 2α−1jα;

(3) λ−1(λ− 1) 6
λm∑
j=m

j−1 6 2 lnλ.

P r o o f. We prove the first item and the remaining items are left to the reader.

Since ⌊τ⌋ = j for j 6 τ < j + 1, we have

mα
∞∑

j=m

j−α−1 = mα
∞∑

j=m

∫ j+1

j

⌊τ⌋−α−1 dτ 6 mα
∞∑

j=m

∫ j+1

j

2α+1τ−α−1 dτ

= mα

∫
∞

m

2α+1τ−α−1 dτ = 2α+1α−1.

�

For δ ∈ Z>1, we consider the difference equation

(2.2) u(m)−A(m,n)u(n) =

m−1∑

j=n

1

j
A(m, j)f(j), (m,n) ∈ Ω>δ.

Definition 2.8. The pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is called admissible to equa-

tion (2.2) if for each k ∈ Z>1 and each f ∈ ℓpwt(Z>k) there exists a unique

u ∈ ℓqwt(Z>k) such that equation (2.2) holds for all (m,n) ∈ Ω>1.

Remark 2.9. Similarly, we also can define the admissibility of unweighted

Lebesgue spaces.

Obtained in the example below is the negative conclusion that the admissibility

of unweighted Lebesgue spaces cannot imply the polynomial expansiveness.

Example 2.10. Let X = R and A(m,n) = 1. It is clear that {A(m,n)}(m,n)∈Ω

is not polynomially expansive. We will prove that the pair (ℓp(Z>1), ℓ
∞(Z>1)) is

admissible for any p ∈ (1,∞). It is enough to prove that for every f ∈ ℓp(Z>κ) the

sequence

u : Z>κ → X, u(n) = −

∞∑

j=n

j−1
f(j)
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belongs to ℓ∞(Z>κ). Indeed, we can choose r ∈ (1,∞) with 1/r + 1/p = 1. By

Hölder’s inequality, we estimate

‖u(n)‖ 6

( ∞∑

j=n

j−r

)1/r

‖f‖u,p 6

( ∞∑

j=1

j−r

)1/r

‖f‖u,p < ∞,

as wanted.

The following observation is useful for finding solutions of equation (2.2).

Lemma 2.11. Let β ∈ Z>1 and x ∈ X. For every ζ ∈ ℓ1(Z>β), the pair (fζ ,uζ)

given by

(2.3) fζ ,uζ : Z>β → X, fζ(n) = −nζ(n)A(n, β)x, uζ(n) =

∞∑

j=n

ζ(j)A(n, β)x

verifies equation (2.2) for every (m,n) ∈ Ω>β.

Remark 2.12. If the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible, then we consider

the operator

Op,q
δ : ℓpwt(Z>1) → ℓqwt(Z>1), Op,q

δ (f) = u,

where the pair (f ,u) satisfies the difference equation (2.2). An elementary proof

shows that the operator Op,q
δ is closed, and so it must be bounded.

To develop continuous-time versions, we need weighted Lebesgue spaces of func-

tions and they are defined as follows:

Lp
w(R>δ) =

{
f : R>δ → X, t−1/pf(t) is measurable with

∫
∞

δ

t−1‖f(t)‖p dt < ∞

}

for p ∈ [1,∞), δ > 0 and

L∞(R>δ) =
{
f : R>δ → X is measurable with ess sup

t>δ
‖f(t)‖ < ∞

}
.

To simplify the presentation, we denote

Lp
wt(R>δ) =

{
Lp
w(R>δ) if p ∈ [1,∞),

L∞(R>δ) if p = ∞.

Definition 2.13. The pair (Lp
wt(R>1), L

q
wt(R>1)) is called admissible to equa-

tion (1.4) if for each δ ∈ R>1 and each f ∈ Lp
wt(R>δ) there exists a unique

u ∈ Lq
wt(R>δ) such that the pair (f, u) verifies equation (1.4) for all t > s > δ.
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We end this section with a continuous version of Lemma 2.11.

Lemma 2.14. Let β > 0 and x ∈ X. For every ζ ∈ L1(R>β), the pair (fζ , uζ)

given by

(2.4) fζ , uζ : R>β → X, fζ(t) = −tζ(t)U(t, β)x, uζ(t) =

∫
∞

t

ζ(τ) dτU(t, β)x

verifies equation (1.4) for every t > s > β.

3. Discrete time

3.1. Outputs in ℓ∞(Z>1). Obtained in this section is the interesting conclusion

that outputs always lie in ℓ∞(Z>1) for any admissibility.

Proposition 3.1. Let {A(m,n)}(m,n)∈Ω be a discrete evolution family, which

is polynomially bounded (that is (2.1) holds). Let p, q ∈ [1,∞]. If the pair

(ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible, then so is (ℓ

p
wt(Z>1), ℓ

∞(Z>1)).

P r o o f. Let m,κ ∈ Z>1, n ∈ {m, . . . , 2m} and f ∈ ℓpwt(Z>κ). Then there exists

a unique u ∈ ℓqwt(Z>κ) such that the pair (f ,u) verifies equation (2.2). In particular,

we have

u(2m) = A(2m,n)u(n) +

2m−1∑

j=n

j−1A(2m, j)f(j),

which implies, by (2.1), that

(3.1) ‖u(2m)‖ 6 M2ω‖u(n)‖+M2ω
2m−1∑

j=n

j−1‖f(j)‖.

If p = 1, then the above gives

‖u(2m)‖ 6 M2ω‖u(n)‖+M2ω‖f‖w,1.

If p = ∞, then it follows from (3.1) that

‖u(2m)‖ 6 M2ω‖u(n)‖+M2ω
2m−1∑

j=n

j−1‖f‖∞ 6 M2ω‖u(n)‖+M2ω+1 ln 2‖f‖∞,
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where the last inequality uses Lemma 2.7, statement (3). If 1 < p < ∞, then we can

find r > 1 with 1/r + 1/p = 1. This r can be used to rewrite (3.1) as

‖u(2m)‖ 6 M2ω‖u(n)‖+M2ω
2m−1∑

j=n

j−1/rj−1/p‖f(j)‖

6 M2ω‖u(n)‖+M2ω
(2m−1∑

j=n

j−1

)1/r(2m−1∑

j=n

j−1‖f(j)‖p
)1/p

6 M2ω‖u(n)‖+M2ω(2 ln 2)1/r‖f‖w,p.

In the three cases, there always exist constants A,B > 0 such that

‖u(2m)‖ 6 A‖u(n)‖+B.

Then

‖u(2m)‖

2m∑

n=m

n−1
6 A

2m∑

n=m

n−1‖u(n)‖+B

2m∑

n=m

n−1.

We again use Lemma 2.7, statement (3) to obtain that

(3.2) ‖u(2m)‖ 6 2A

2m∑

n=m

n−1‖u(n)‖+ 4B ln 2.

There are two cases of the exponent q. If q = 1, then from (3.2) we immediately

have

‖u(2m)‖ 6 2A‖u‖w,1 + 4B ln 2.

If q > 1, then we can find s > 1 with 1/s+ 1/q = 1. It results from (3.2) that

‖u(2m)‖ 6 2A

2m∑

n=m

n−1/sn−1/q‖u(n)‖+ 4B ln 2

6 2A

( 2m∑

n=m

n−1

)1/s( 2m∑

n=m

n−1‖u(n)‖q
)1/q

+ 4B ln 2

6 2A(2 ln 2)1/s‖u‖w,q + 4B ln 2.

These reveal that sup{‖u(2m)‖ : m ∈ Z>κ} < ∞. Note that

u(2m+ 1) = A(2m+ 1, 2m)u(2m) + (2m)−1A(2m+ 1, 2m)f(2m),
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which implies, by (2.1), that

‖u(2m+ 1)‖ 6 M2ω(‖u(2m)‖+ (2m)−1‖f(2m)‖)

= M2ω(‖u(2m)‖+ (2m)−1+1/p(2m)−1/p‖f(2m)‖)

6 M2ω(‖u(2m)‖+ 2−1+1/p‖f‖w,p)

and so the supremum sup{‖u(2m+1)‖ : m ∈ Z>κ} < ∞. The proof is complete. �

3.2. Necessary conditions. The following result isolates necessary conditions

for discrete evolution families to be polynomially expansive and for those to be

expansive in the ordinary sense.

Proposition 3.2. Let {A(m,n)}(m,n)∈Ω be a discrete evolution family, which is

polynomially bounded (that is (2.1) holds). Let 1 6 p 6 q 6 ∞. Then the following

assertions hold.

(1) If {A(m,n)}(m,n)∈Ω is expansive in the ordinary sense, then the pair (ℓ
1
w(Z>1),

ℓ∞(Z>1)) is admissible to equation (2.2).

(2) If {A(m,n)}(m,n)∈Ω is polynomially expansive, then the pair (ℓpwt(Z>1),

ℓqwt(Z>1)) is admissible to equation (2.2).

P r o o f. The proof of the first item is left to the reader. The second item is proved

as follows. Let κ ∈ Z>1 and f ∈ ℓpwt(Z>κ). We define the sequence

(3.3) u : Z>κ → X, u(n) := −

∞∑

j=n

j−1A(j, n)−1
f(j).

A direct computation shows that the pair (f ,u) verifies equation (2.2) and

(3.4) ‖u(n)‖ 6 Knα
∞∑

j=n

j−α−1‖f(j)‖.

To show that u ∈ ℓqwt(Z>κ) we make use of Lemma 2.6. To that aim, we consider

three cases of the exponent p.

Case 1 : If p = ∞, then it follows from (3.4) that

‖u(n)‖ 6 K‖f‖∞nα
∞∑

j=n

j−α−1 6 2α+1α−1K‖f‖∞ (by Lemma 2.7 (1)).

Case 2 : If p = 1, then it follows from (3.4) that

‖u(n)‖ 6 K

∞∑

j=n

j−1‖f(j)‖ 6 K‖f‖w,1,
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which gives u ∈ ℓ∞(Z>κ). Also by (3.4), we have

∞∑

n=κ

n−1‖u(n)‖ 6 K

∞∑

n=κ

nα−1
∞∑

j=n

j−α−1‖f(j)‖ = K

∞∑

j=κ

j−α−1‖f(j)‖

j∑

n=κ

nα−1

6 2α−1K‖f‖w,1 (by Lemma 2.7 (2))

and consequently u ∈ ℓ1w(Z>κ).

Case 3 : If 1 < p < ∞, then we can choose r > 1 with 1/r+1/p = 1. For choosing

a, b > 0 with a+ b = 1, inequality (3.4) is equivalent to

‖u(n)‖ 6 Knα
∞∑

j=n

j−bα−1/rj−aα−1/p‖f(j)‖

6 Knα

( ∞∑

j=n

j−rbα−1

)1/r( ∞∑

j=n

j−paα−1‖f(j)‖p
)1/p

6 Knaα2bα+1/r(rbα)−1/r

( ∞∑

j=n

j−paα−1‖f(j)‖p
)1/p

(by Lemma 2.7 (1)),

which implies that

∞∑

n=κ

n−1‖u(n)‖p 6 Kp2pbα+p/r(rbα)−p/r
∞∑

n=κ

npaα−1
∞∑

j=n

j−paα−1‖f(j)‖p

= Kp2pbα+p/r(rbα)−p/r
∞∑

j=κ

j−paα−1‖f(j)‖p
j∑

n=κ

npaα−1

6 Kp2pbα+p/r+1(rbα)−p/r(paα)−1
∞∑

j=κ

j−1‖f(j)‖p

(by Lemma 2.7 (2)),

which in turns gives u ∈ ℓpwt(Z>κ).

The remaining task is to prove the uniqueness. Suppose that we can take

v ∈ ℓqwt(Z>κ) such that (f ,v) also verifies equation (2.2). Then u(m) − v(m) =

A(m,κ)(u(κ) − v(κ)). It follows from the polynomial expansiveness that

‖u(m)− v(m)‖ > Kmακ−α‖u(κ)− v(κ)‖.

From the above inequality and the condition u,v ∈ ℓqwt(Z>κ), we must have

u(κ)− v(κ) = 0, which gives u ≡ v. �
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3.3. Steps toward sufficient conditions. The natural question arises whether,

in the polynomial setting, the converse statement of Proposition 3.2 holds. To give

the answer to this question, we need the auxiliary results below. Each result isolates

a certain form of behavior of discrete evolution families.

3.3.1. Bijectivity. It turns out that the admissibility of the pair (ℓpwt(Z>1),

ℓqwt(Z>1)) can imply the bijectivity of discrete evolution operators.

Proposition 3.3. If the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible, then for every

β ∈ Z>1 the operator A(β, 1) is bijective.

P r o o f. Let β ∈ Z>1. The conclusion is trivial if β = 1. In the rest, we only

consider β > 1.

Injectivity. Let x ∈ X with the property that A(β, 1)x = 0. We must show that

x = 0. Indeed, let us define the sequences u1,u2 : Z>1 → X by setting

u1(j) := 0, u2(j) := A(j, 1)x, j ∈ Z>1.

It is clear that u1,u2 ∈ ℓpwt(Z>1), and furthermore both (0,u1) and (0,u2) verify

equation (2.2). It follows from the uniqueness of admissibility that u1 = u2, and so

x = u2(1) = u1(1) = 0.

Surjectivity. Take an arbitrary y ∈ X. We must show that there exists x ∈ X such

that A(β, 1)x = y. We also consider the sequences

f1(j) :=

{
−y if j = β,

0 if j > β,
u(j) :=

{
β−1y if j = β,

0 if j > β.

A direct computation shows that the pair (f1,u) ∈ (ℓpwt(Z>β), ℓ
q
wt(Z>β)) verifies

equation (2.2) for every (m,n) ∈ Ω>β . The sequence f1 can be extended to Z>1

by setting f1(j) = 0 for j ∈ {1, . . . , β − 1}. Since the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is

admissible, we can find a unique v ∈ ℓqwt(Z>1) such that the pair (f1,v) satisfies

equation (2.2). Due to the uniqueness of the output, u must be the restriction

of v on Z>β , that is u ≡ v
∣∣
Z>β
. In particular, we have y = βu(β) = βv(β) =

βA(β, 1)v(1) = A(β, 1)[βv(1)], which completes the proof. �

Thus, we can prove the result below, whose proof makes use of the property that

A(α, 1) = A(α, β)A(β, 1).

Proposition 3.4. If the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible, then the opera-

tor A(α, β) is bijective for all fixed (α, β) ∈ Ω>1.
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3.3.2. Below boundedness. It turns out that discrete evolution operators are

bounded from below if the pair (ℓpwt(Z>1), ℓ
∞(Z>1)) is admissible and moreover, the

boundedness is uniform.

Proposition 3.5. Let {A(m,n)}(m,n)∈Ω be a discrete evolution family, which

is polynomially bounded (that is (2.1) holds) and let p ∈ [1,∞]. If the pair

(ℓpwt(Z>1), ℓ
∞(Z>1)) is admissible, then there exists a constant L > 0 such that

‖A(α, β)x‖ > L‖x‖, x ∈ X, (α, β) ∈ Ω>1.

P r o o f. Let x ∈ X and α, β ∈ Z>1 such that α>β. Consider the map ζ : Z>1→R

given by

ζ(n) =

{
n−1 if n ∈ {α+ 1, . . . , 2α},

0, otherwise.

Let fζ , uζ : Z>β → X be the sequences given by (2.3), that is

fζ(n) =

{
−A(n, β)x, n ∈ {α+ 1, . . . , 2α},

0, otherwise,

uζ(n) =





2α∑

j=α+1

j−1A(n, β)x, β 6 n 6 α,

2α∑

j=n

j−1A(n, β)x, α < n 6 2α,

0, otherwise.

By (2.1), we estimate

(3.5) ‖A(n, β)x‖ 6 Mnωα−ω‖A(α, β)x‖ 6 M2ω‖A(α, β)x‖, n ∈ {α+1, . . . , 2α},

which implies, by the first inequality in (3.5), that

(3.6)

2α∑

n=α+1

n−1‖A(n, β)x‖p 6 Mp‖A(α, β)x‖p
2α∑

n=α+1

n−1+pωα−pω

6 Mp‖A(α, β)x‖p(pω)−12pω+1,

where the last inequality uses Lemma 2.7, statement (2). From (3.5) and (3.6), the

function fζ ∈ ℓpwt(Z>β) with the norm

(3.7) ‖fζ‖w,p 6

{
M2ω‖A(α, β)x‖ if p = ∞,

M(pω)−1/p2ω+1/p‖A(α, β)x‖ if p < ∞.
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Let us define the function f̂ ∈ ℓpwt(Z>1) by setting

f̂(j) =

{
fζ(j), j ∈ Z>α,

0, j ∈ {1, 2, . . . , α}.

Since the pair (ℓpwt(Z>1), ℓ
∞(Z>1)) is admissible, there exists û ∈ ℓ∞(Z>1) such that

the pair (f̂ , û) verifies equation (2.2), and consequently

û(α) −A(α, β)û(β) =

α−1∑

j=β

j−1A(α, j)f̂ (j) = 0.

The last equality is equivalent to the fact that

A(α, β)û(β) = û(α) = uζ(α) =
2α∑

j=α+1

j−1A(α, β)x,

which implies, as A(α, β) is injective, that

û(β) =
2α∑

j=α+1

j−1x.

Thus, we can write

(3.8) ‖û‖∞ > ‖û(β)‖ > ‖x‖

2α∑

j=α+1

1

2α
=

1

2
‖x‖.

It was discussed in Remark 2.12 that the operator Op,∞
δ is bounded, and so we can

write

(3.9) ‖û‖∞ 6 ‖Op,∞
δ ‖ ‖f̂‖w,p.

From (3.7), (3.8), (3.9), we obtain the desired conclusion. �

3.3.3. Contraction. We show that the inverse of a discrete evolution operator is a

contraction operator provided that either (ℓpwt(Z>1), ℓ
∞(Z>1)) or (ℓ

1
w(Z>1), ℓ

q
w(Z>1))

is admissible.

For the admissibility of the pair (ℓpwt(Z>1), ℓ
∞(Z>1)), we obtain the following

result.

Proposition 3.6. Let 1 < p 6 ∞. Let {A(m,n)}(m,n)∈Ω be a discrete evo-

lution family which is polynomially bounded (that is (2.1) holds). If the pair

(ℓpwt(Z>1), ℓ
∞(Z>1)) is admissible, then there exists λ ∈ Z>1 such that

(3.10) ‖A(λβ, β)x‖ > 2‖x‖, β ∈ Z>1, x ∈ X.

125



P r o o f. Let x ∈ X, β ∈ Z>1 and λ ∈ Z>1. Consider the map ζ : Z>β → R given

by

ζ(n) =

{
n−1 if β + 1 6 n 6 λβ,

0, otherwise.

Let fζ , uζ : Z>β → X be the sequences given by (2.3), that is

fζ(n) =

{
−A(n, β)x if β + 1 6 n 6 λβ,

0, otherwise,

uζ(n) =





( λβ∑

j=β+1

j−1

)
x if n = β,

0 if n > λβ + 1,
( λβ∑

j=n

j−1

)
A(n, β)x if β + 1 6 n 6 λβ.

It results from Proposition 3.5 that

(3.11) ‖A(n, β)x‖ 6 L−1‖A(λβ, β)x‖, β + 1 6 n 6 λβ,

which gives

(3.12)

λβ∑

n=β+1

n−1‖A(n, β)x‖p 6 L−p‖A(λβ, β)x‖p
λβ∑

n=β+1

n−1

6 L−p‖A(λβ, β)x‖p2 lnλ,

where the last inequality uses Lemma 2.7, (3). Inequalities (3.11) and (3.12) reveal

that the function fζ ∈ ℓpwt(Z>β) with

(3.13) ‖fζ‖w,p 6

{
L−1‖A(λβ, β)x‖ if p = ∞,

L−1‖A(λβ, β)x‖21/p(ln λ)1/p if p < ∞.

Let us define the sequence f̂ ∈ ℓpwt(Z>1) by setting

f̂(j) =

{
fζ(j), j ∈ Z>β ,

0, otherwise.

Since the pair (ℓpwt(Z>1), ℓ
∞(Z>1)) is admissible, there exists û ∈ ℓ∞(Z>1) such that

the pair (f̂ , û) verifies equation (2.2), and furthermore û(β) = uζ(β). These allow

us to write

‖û‖∞ > ‖û(β)‖ =

λβ∑

j=β+1

j−1‖x‖ > ln
(λ
2

)
‖x‖,
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where the last inequality uses the fact that j−1 > ln(1 + j−1). It was discussed in

Remark 2.12 that the operator Op,∞
δ is bounded, and so

ln
(λ
2

)
‖x‖ 6 ‖Op,∞

δ ‖ ‖f̂‖w,p 6

{
‖Op,∞

δ ‖L−1‖A(λβ, β)x‖ if p = ∞,

‖Op,∞
δ ‖L−1‖A(λβ, β)x‖21/p(ln λ)1/p if p < ∞.

As p > 1, the constant λ can be chosen so that inequality (3.10) holds. �

For the admissibility of the pair (ℓ1w(Z>1), ℓ
q
w(Z>1)), we also obtain the same

conclusion.

Proposition 3.7. Let 1 6 q < ∞. Let {A(m,n)}(m,n)∈Ω be a discrete evo-

lution family, which is polynomially bounded (that is (2.1) holds). If the pair

(ℓ1w(Z>1), ℓ
q
w(Z>1)) is admissible, then there exists λ ∈ Z>1 such that (3.10) holds.

P r o o f. Let x ∈ X \ {0} and λ2 > λ1 > 2. Note that Proposition 3.4 reveals that

there always exists the operator A(·, ·)−1. Thus, we can consider the sequences

f : Z>1 → X, f(n) =

{
‖A(n, λ1)x‖

−1A(n, λ1)x if n ∈ {λ1, . . . , λ2},

0, otherwise,

u : Z>1 → X,

u(n) =





−

λ2∑

j=λ1

j−1‖A(j, λ1)x‖
−1A(λ1, n)

−1x if n ∈ {1, . . . , λ1 − 1},

−

λ2∑

j=n

j−1‖A(j, λ1)x‖
−1A(n, λ1)x, if n ∈ {λ1, . . . , λ2},

0, otherwise.

It can be proved that the pair (f ,u) ∈ (ℓ1w(Z>1), ℓ
q
w(Z>1)) and furthermore

‖f‖w,1 =

λ2∑

n=λ1

n−1

‖u‖w,q >

(λ1−1∑

n=1

n−1‖u(n)‖q
)1/q

>

λ2∑

j=λ1

j−1‖A(j, λ1)x‖
−1

(λ1−1∑

n=1

n−1‖A(λ1, n)
−1x‖q

)1/q

.

It was discussed in Remark 2.12 that the operator O1,q
δ is bounded, and so we can

write

λ2∑

j=λ1

j−1‖A(j, λ1)x‖
−1

(λ1−1∑

n=1

n−1‖A(λ1, n)
−1x‖q

)1/q

6 ‖O1,q
δ ‖

λ2∑

n=λ1

n−1.
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In particular, with λ2 = 2λ1 we have

2λ1∑

j=λ1

j−1‖A(j, λ1)x‖
−1

(λ1−1∑

n=1

n−1‖A(λ1, n)
−1x‖q

)1/q

6 ‖O1,q
δ ‖

2λ1∑

n=λ1

n−1

6 ‖O1,q
δ ‖2 ln 2 (by Lemma 2.7 (3)),

which implies, as ‖A(j, λ1)x‖ 6 M2ω‖x‖ for j ∈ {λ1, . . . , 2λ1}, that

‖O1,q
δ ‖2 ln 2 > M−12−ω‖x‖−1

2λ1∑

j=λ1

j−1

(λ1−1∑

n=1

n−1‖A(λ1, n)
−1x‖q

)1/q

> M−12−ω−1‖x‖−1

(λ1−1∑

n=1

n−1‖A(λ1, n)
−1x‖q

)1/q

(by Lemma 2.7 (3)).

The last inequality can be used to show that there exists a constant C such that

rλ3∑

n=λ3

n−1‖A(rλ3, n)
−1x‖q 6 C‖x‖q, r, λ3 ∈ Z>1, x ∈ X \ {0}.

Since A(n, λ3)A(rλ3, λ3)
−1 = A(rλ3, n)

−1, by Propositions 3.4 and 3.5 we estimate

L‖A(rλ3, λ3)
−1x‖ 6 ‖A(rλ3, n)

−1x‖,

and so

C‖x‖q >

rλ3∑

n=λ3

n−1‖A(rλ3, n)
−1x‖q > Lq‖A(rλ3, λ3)

−1x‖q
rλ3∑

n=λ3

n−1

> Lq‖A(rλ3, λ3)
−1x‖q ln r,

where the last inequality uses the fact that n−1 > ln(1 +n−1). Thus, the constant r

can be chosen so that inequality (3.10) holds. �

With all preparation in place, we can now state and prove discrete characteriza-

tions of discrete evolution families which are polynomially expansive and also those

which are expansive in the ordinary sense.

3.4. Polynomial expansiveness. We start with the polynomial expansiveness.

Theorem 3.8. Let {A(m,n)}(m,n)∈Ω be a discrete evolution family which is

polynomially bounded (that is (2.1) holds). Let 1 6 p 6 q 6 ∞ with (p, q) 6=

(1,∞). Then {A(m,n)}(m,n)∈Ω is polynomially expansive if and only if the pair

(ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible to equation (2.2).
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P r o o f. The necessity follows from Proposition 3.2, statement (2). The remaining

task is to prove the sufficiency. By Propositions 3.6, 3.7, and 3.1, there exists λ ∈ Z>1

such that

‖A(λβ, β)x‖ > 2‖x‖, β ∈ Z>1, x ∈ X.

Let t ∈ Z>1, β ∈ Z>1 and x ∈ X. Set Y := {j ∈ Z>0 : tλ−j > 1}. Denoting

k := maxY , we have

λk 6 t < λk+1.

Since A(λk+1β, β)x = A(λk+1β, tβ)A(tβ, β)x, we estimate

‖A(λk+1β, β)x‖ 6 M

(
λk+1

t

)ω

‖A(tβ, β)x‖ 6 Mλω‖A(tβ, β)x‖.

The last inequality gives

‖A(tβ, β)x‖ > M−1λ−ω‖A(λk+1β, β)x‖ > M−1λ−ω2k+1‖x‖

> M−1λ−ω2ln t/ lnλ‖x‖,

as wanted. �

The polynomial expansiveness cannot ensure the admissibility of the pair (ℓpw(Z>1),

ℓqw(Z>1)) for all exponents p, q ∈ [1,∞], as shows the example below.

Example 3.9. Let X = R. The evolution family

A(m,n)x =
m+ 1

n+ 1
x, x ∈ R, (m,n) ∈ Ω

is polynomially bounded and moreover, it is polynomially expansive. For further de-

tails about examples that reach this property, i.e. being exponentially/polynomially

bounded and unstable or expansive as an equivalent form, the reader can refer to the

papers [14], [15]. The pair (ℓ2w(Z>1), ℓ
1
w(Z>1)) is not admissible since the sequence

f(n) = 1/ ln(n+ 1) belongs to ℓ2w(Z>1) and there is no u ∈ ℓ1w(Z>1) such that the

pair (f ,u) verifies equation (2.2).

3.5. Ordinary expansiveness.

Theorem 3.10. Let {A(m,n)}(m,n)∈Ω be a discrete evolution family which is

polynomially bounded (that is (2.1) holds). Then {A(m,n)}(m,n)∈Ω is expansive

in the ordinary sense if and only if the pair (ℓ1w(Z>1), ℓ
∞(Z>1)) is admissible to

equation (2.2).
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P r o o f. The necessity uses Proposition 3.2, statement (1), while the sufficiency

follows from Propositions 3.4 and 3.5. �

Note that there are different characterizations of instability in the papers due to

Minh et al., see [12], and Slyusarchuk, see [18].

4. Continuous time

In this section, we characterize continuous evolution families which are expansive

in terms of the solvability of equation (1.4). Our proof makes use of discrete char-

acterizations proved in the previous section. This use is motivated by Remark 2.5

which says that if {U(t, s)}(t,s)∈∆ is a continuous evolution family, then the operators

A(m,n) = U(m,n), where (m,n) ∈ Ω, form a discrete evolution family.

4.1. Necessary conditions. This section establishes necessary conditions for the

concepts of expansiveness.

Proposition 4.1. Let {U(t, s)}(t,s)∈∆ be a polynomially bounded evolution fam-

ily (that is (2.1) holds). Let 1 6 p 6 q 6 ∞. Then the following assertions hold.

(1) If {U(t, s)}(t,s)∈∆ is expansive in the ordinary sense, then the pair (L
1
w(R>1),

L∞(R>1)) is admissible to equation (1.4).

(2) If {U(t, s)}(t,s)∈∆ is polynomially expansive, then the pair (L
p
wt(R>1),L

q
wt(R>1))

is admissible to equation (1.4).

P r o o f. Let r ∈ R>1. For f ∈ Lp
wt(R>r), we define the function

(4.1) u : R>r → X, f(t) = −

∫
∞

t

τ−1U(τ, t)−1f(τ) dτ.

Using the same arguments as in the proof of Proposition 3.2, we obtain the desired

conclusion. �

4.2. Admissibility in continuous time. In what follows, the symbol ⌊t⌋ stands

for the greatest integer less than or equal to t. We isolate a necessary condition for

the admissibility in continuous time.

Proposition 4.2. Let {U(t, s)}(t,s)∈∆ be a polynomially bounded evolution fam-

ily (that is (2.1) holds). Let 1 6 p 6 q 6 ∞. If the pair (Lp
wt(R>1), L

q
wt(R>1)) is

admissible to equation (1.4), then (i) the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible to

equation (2.2) and (ii) the operator U(t, s) is surjective for all fixed t > s > 1.
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P r o o f. Consider the function

ϕ : R>0 → [0, 2], ϕ(t) =





4t if t ∈ [0, 1/2],

4− 4t if t ∈ [1/2, 1],

0, otherwise.

To show that the operator U(t, s) is surjective for all fixed t > s > 1, it is enough

to prove that the operator U(β, 1) is surjective for all fixed β > 1. Indeed, take an

arbitrary β > 1 and x ∈ X. Consider the function

ζ : R>1 → X, ζ(t) =

{
ϕ(t− β) if β 6 t 6 β + 1,

0, otherwise.

Let fζ , uζ be the functions given by (2.4). We can use Lemma 2.14 to show that

the pair (fζ , uζ) verifies equation (1.4) for every t > s > β. Note that fζ can be

extended to R>1 by setting fζ(t) = 0 for t ∈ [1, β] and then fζ ∈ Lp
wt(R>1). Since

the pair (Lp
wt(R>1), L

q
wt(R>1)) is admissible, there is v ∈ Lq

wt(R>1) such that the

pair (fζ , v) satisfies equation (1.4) for every t > s > 1. In particular,

v(β) − U(β, 1)v(1) =

∫ β

1

τ−1U(β, τ)fζ(τ) dτ = 0,

which gives v(β) = U(β, 1)v(1). On the other hand, a simple computation shows

that uζ ∈ Lq
wt(R>1). Due to the admissibility of (L

p
wt(R>1), L

q
wt(R>1)), the equality

uζ(t) = v(t) holds for t ∈ R>β . Thus, we can write x = uζ(β) = v(β) = U(β, 1)v(1)

and so U(β, 1) is surjective.

We prove that the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible. Indeed, take an arbi-

trary κ ∈ Z>1 and f ∈ ℓpwt(Z>κ). We define the function

g : R>κ → X, g(t) = t⌊t⌋−1ϕ(t− ⌊t⌋)U(t, ⌊t⌋)f(⌊t⌋).

First, we state the following.

Claim: The function g ∈ Lp
wt(R>κ).

Indeed, since t < ⌊t⌋+ 1, we have

‖g(t)‖ 6 2ϕ(t− ⌊t⌋)‖U(t, ⌊t⌋)f(⌊t⌋)‖ 6 4‖U(t, ⌊t⌋)f(⌊t⌋)‖ 6 M2ω+2‖f(⌊t⌋)‖.

There are two cases of the exponent p. If p = ∞, it follows immediately from above

that g ∈ L∞(R>1). If p < ∞, then

∫
∞

κ

t−1‖g(t)‖p dt 6 Mp2pω+2p
∞∑

j=κ

∫ j+1

j

t−1‖f(⌊t⌋)‖p dt

= Mp2pω+2p
∞∑

j=κ

‖f(j)‖p ln(1 + j−1) 6 Mp2pω+2p‖f‖pw,p < ∞,

which completes the claim.

131



Since the pair (Lp
wt(R>1), L

q
wt(R>1)) is admissible, there exists a unique v ∈

Lq
wt(R>κ) such that the pair (g, v) verifies equation (1.4) for every t > s > κ. In

particular, with (m,n) ∈ Ω>κ, this equation reduces to

v(m)− U(m,n)v(n) =

m−1∑

j=n

∫ j+1

j

⌊τ⌋−1ϕ(τ − ⌊τ⌋)U(m, ⌊τ⌋)f(⌊τ⌋) dτ

=

m−1∑

j=n

j−1U(m, j)f(j)

∫ j+1

j

ϕ(τ − j) dτ =

m−1∑

j=n

j−1U(m, j)f(j).

The last equality above prompts to set the sequence

u : Z>κ → X, u(n) = v(n).

We have demonstrated that the pair (f ,u) verifies equation (2.2) for every (m,n) ∈

Ω>κ. The remaining task is to show that u ∈ ℓqwt(Z>κ). To that aim, we still use

the fact that the pair (g, v) verifies equation (1.4) for every t > s > κ. In particular,

for s ∈ [n, n+ 1], where n ∈ Z>κ, we have

v(n+ 1) = U(n+ 1, s)v(s) +

∫ n+1

s

τ−1U(n+ 1, τ)g(τ) dτ

= U(n+ 1, s)v(s) +

∫ n+1

s

⌊τ⌋−1ϕ(τ − ⌊τ⌋)U(n+ 1, ⌊τ⌋)f(⌊τ⌋) dτ,

which infers, by (2.1), that

‖v(n+ 1)‖ 6 M2ω
(
‖v(s)‖+

∫ n+1

n

⌊τ⌋−1ϕ(τ − ⌊τ⌋)‖f(⌊τ⌋)‖ dτ

)

= M2ω(‖v(s)‖ + n−1‖f(n)‖).

If q = ∞, then we obtain the desired assertion. If q < ∞, then we can use the fact

that (a+ b)q 6 2q−1(aq + bq) to get

‖v(n+ 1)‖q 6 M q2qω+q−1(‖v(s)‖q + n−q‖f(n)‖q).

Multiplying both sides by s−1 and then integrating with respect to s over the closed

interval [n, n+ 1], we get

‖v(n+1)‖q ln(1+n−1) 6 M q2qω+q−1

(∫ n+1

n

s−1‖v(s)‖q ds+n−q‖f(n)‖q ln(1+n−1)

)
.
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Hence,

‖v(n+ 1)‖q

n+ 1
6 M q2qω+q−1

([
ln
(
1 +

1

n

)n+1]−1
∫ n+1

n

s−1‖v(s)‖q ds+
‖f(n)‖q

(1 + n)nq

)
.

Note that as lim
n→∞

ln(1 + 1/n)n+1 = 1 for n large enough the inequality

ln(1 + 1/n)n+1 > 2−1

holds. Meanwhile,

n−1−q‖f(n)‖q 6 n−1‖f(n)‖p‖f‖q−p
w,p .

We continue

‖v(n+ 1)‖q

n+ 1
6 M q2qω+q−1

(
2

∫ n+1

n

s−1‖v(s)‖q ds+ n−1‖f(n)‖p‖f‖q−p
w,p

)
.

As such, there exist constants A, B such that

(n+ 1)−1‖v(n+ 1)‖q 6 A

∫ n+1

n

s−1‖v(s)‖q ds+Bn−1‖f(n)‖p

and so

∑

n>κ

(n+ 1)−1‖v(n+ 1)‖q 6 A
∑

n>κ

∫ n+1

n

s−1‖v(s)‖q ds+B
∑

n>κ

n−1‖f(n)‖p

6 A‖v‖w,q +B‖f‖w,p < ∞.

These reveal that u ∈ ℓqwt(Z>κ).

To prove the uniqueness, it is enough to show that if the sequence w ∈ ℓqwt(Z>κ)

satisfies

w(m)− U(m,n)w(n) = 0, (m,n) ∈ Ω>κ,

then w = 0. Indeed, for such sequence w, let us define the function

ϕ : R>κ → X, ϕ(t) = U(t, ⌊t⌋)w(⌊t⌋).

It can be checked that ϕ ∈ Lq
wt(R>κ). We have

U(t, s)ϕ(s) = U(t, ⌊s⌋)w(⌊s⌋) = U(t, ⌊t⌋)U(⌊t⌋, ⌊s⌋)w(⌊s⌋) = U(t, ⌋t⌋)w(⌊t⌋) = ϕ(t),

which means that the pair (0, ϕ) verifies equation (1.4) for every t > s > κ. Due to

the uniqueness, we must have ϕ = 0 and so w = 0. �
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Now we are ready to state and prove continuous-time versions of Theorems 3.8

and 3.10.

4.3. Polynomial expansiveness. For the polynomial expansiveness, we obtain

a continuous-time version of Theorem 3.8.

Theorem 4.3. Let {U(t, s)}(t,s)∈∆ be a polynomially bounded evolution family

(that is (2.1) holds). Let 1 6 p 6 q 6 ∞ with (p, q) 6= (1,∞). Then the following

assertions are equivalent.

(1) {U(t, s)}(t,s)∈∆ is polynomially expansive.

(2) The pair (Lp
wt(R>1), L

q
wt(R>1)) is admissible to equation (1.4).

(3) The pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible to equation (2.2) and the operator

U(t, s) is surjective for all fixed t > s > 1.

P r o o f. The implication (1) ⇒ (2) follows from Proposition 4.1, while the impli-

cation (2) ⇒ (3) derives from Proposition 4.2.

(3) ⇒ (1). Let t > s > 1. Since the pair (ℓpwt(Z>1), ℓ
q
wt(Z>1)) is admissible, there

exist constants K,α > 0 such that

‖U(m,n)x‖ > Kmαn−α‖x‖, (m,n) ∈ Ω>1, x ∈ X \ {0}.

By (2.1), we have

M2ω‖U(t, 1)x‖ > ‖U(⌊t⌋+ 1, 1)x‖ > K(⌊t⌋+ 1)α‖x‖ > Ktα‖x‖.

Hence, the operator U(t, 1) is injective and using the hypothesis it must be invertible

for all t > 1. Since U(t, 1) = U(t, s)U(s, 1), we deduce that the operator U(t, s) is

also invertible for all t > s > 1. Thus, there is y ∈ X with x = U(s, ⌊s⌋)y, which

infers, by (2.1), that

(4.2) ‖x‖ 6 M2ω‖y‖.

There are two cases of t. If t 6 ⌊s⌋+ 1, then also by (2.1) we have

M2ω‖U(t, s)x‖ > ‖U(⌊s⌋+ 1, s)x‖ = ‖U(⌊s⌋+ 1, ⌊s⌋)y‖

> K(⌊s⌋+ 1)α⌊s⌋−α‖y‖ > Ktαs−α‖y‖

> Ktαs−αM−12−ω‖x‖ (by (4.2)).

If t > ⌊s⌋+ 1, then also by (2.1) we have

M2ω‖U(t, s)x‖ > ‖U(⌊t⌋+ 1, s)x‖ = ‖U(⌊t⌋+ 1, ⌊s⌋)y‖

> K(⌊t⌋+ 1)α⌊s⌋−α‖y‖ > Ktαs−α‖y‖

> Ktαs−αM−12−ω‖x‖ (by (4.2)).

Both cases show that {U(t, s)}(t,s)∈∆ is polynomially expansive. �
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The polynomial expansiveness cannot ensure the admissibility of the pair

(Lp
w(R>1), L

q
w(R>1)) for all exponents p, q ∈ [1,∞] as shows the example below.

Example 4.4. Let X = R. It is clear to see that the evolution family

U(t, s)x =
t+ 1

s+ 1
x, x ∈ R, (t, s) ∈ ∆

is polynomially bounded and moreover it is polynomially expansive. The pair

(L2
w(R>1), L

1
w(R>1)) is not admissible since the function f(t) = 1/ ln(t+ 1) be-

longs to L2
w(R>1) and there is no u ∈ L1

w(R>1) such that the pair (f, u) verifies

equation (1.4).

4.4. Ordinary expansiveness. We end this paper by a continuous-time version

of Theorem 3.10.

Theorem 4.5. Let {U(t, s)}(t,s)∈∆ be a polynomially bounded evolution family

(that is (2.1) holds). Then the following assertions are equivalent.

(1) {U(t, s)}(t,s)∈∆ is expansive in the ordinary sense.

(2) The pair (L1
w(R>1), L

∞(R>1)) is admissible to equation (1.4).

(3) The pair (ℓ1w(Z>1), ℓ
∞(Z>1)) is admissible to equation (2.2) and the operator

U(t, s) is surjective for all fixed t > s > 1.

P r o o f. The implication (1) ⇒ (2) follows from Proposition 4.1, while the impli-

cation (2) ⇒ (3) derives from Proposition 4.2. The implication (3) ⇒ (1) is proved

similarly as Theorem 4.3. �
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