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Abstract. The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and
a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let K
be a unital commutative ring, not necessarily a field. Given a unital K-algebra S, where
K is contained in the center of S, n ∈ N, the goal of this paper is to study the question:
when can a homomorphism ϕ : Mn(K) → Mn(S) be extended to an inner automorphism
of Mn(S)? As an application of main results presented in the paper, it is proved that if S
is a semilocal algebra with a central separable subalgebra R, then any homomorphism from
R into S can be extended to an inner automorphism of S.

Keywords: Skolem-Noether algebra; (inner) automorphism; matrix algebra; central sim-
ple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD);
stably finite ring; Dedekind-finite ring
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1. Introduction

Throughout, rings or algebras are always associative and unital. All algebras are

assumed to be algebras over a commutative ring K (not necessarily a field), any

subalgebra has the unit of the whole algebra, and all homomorphisms are linear and

send 1 to 1. Given a ring S, let Z(S) denote the center of S and, given n ∈ N,

let Mn(S) denote the ring of n × n matrices over the ring S. For x, y ∈ S, let

[x, y] := xy−yx, the additive commutator of x and y. Given additive subgroups A, B

of S, let [A,B] denote the additive subgroup of S generated by all [a, b] for a ∈ A

and b ∈ B.

Our study of this paper was motivated by Kovacs’ paper (see [6]), Isaacs’ paper

(see [4]) and a recent paper (see [1]) concerning Skolem-Noether algebras due to
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Brešar et al. Let K be a commutative ring. In [4] Isaacs studied automorphisms

of the K-algebra Mn(K). Although an automorphism of Mn(K) is not in general

inner (see [4], Example 6), its nth power and the commutator of two automorphisms

are always inner (see [2], [4], Theorems 5 and 11, and [10]). Another viewpoint

was given in [6], Kovacs proved that, given any endomorphism ϕ of Mn(K), there

exists a commutative ring U containing K such that ϕ can be extended to an inner

automorphism of Mn(U). Therefore, it seems natural to study the following:

Question I. Given a K-algebra S, where K ⊆ Z(S), n ∈ N, when can a homo-

morphism ϕ : Mn(K) → Mn(S) be extended to an inner automorphism of Mn(S)?

Question I is also rather related to a recent paper due to Brešar et al., see [1].

Motivated by the celebrated Skolem-Noether theorem (see [3], Theorem 4.3.1), in [1]

Brešar et al. initiated the study of Skolem-Noether algebras (SN algebras for short).

An algebra S over a field F is called an SN algebra if, given any finite-dimensional

central simple F -algebra R, every homomorphism ϕ : R → R⊗F S can be extended

to an inner automorphism of R⊗F S. SN algebras can be also characterized by homo-

morphisms of matrix algebras. To be precise, an algebra S over a field F is an SN al-

gebra if and only if, for every n ∈ N and a homomorphism ϕ : Mn(F ) → Mn(S),

there exists a unit c ∈ Mn(S) such that ϕ(x) = cxc−1 for every x ∈ Mn(F ) (see [1],

Proposition 2.1). As pointed out by Brešar et al., although the characterization

seems to facilitate the process of showing that a certain algebra S is an SN algebra,

it does not simplify their proofs of results in [1]. However, the viewpoint from matrix

algebras over a field is indeed more concrete and basic properties concerning matrix

algebras over a field are also more familiar to the reader. Another point of view is

that any ring can be considered as an algebra over its center, but its center maybe

contains no subfield. Therefore, following both [1], Proposition 2.1 and Kovacs’ view-

point [6] to study Question I we define SN algebras over a commutative ring, not

necessarily a field, as follows.

Definition. An algebra S over a commutative ring K, where K is a subring

of Z(S), is called an SN algebra if, for every n ∈ N, any homomorphism ϕ : Mn(K) →
Mn(S) can be extended to an inner automorphism of Mn(S).

As observed, a K-algebra algebra S being SN does not really depend onK ⊆ Z(S)

since the homomorphisms are considered to be linear. For a concrete algebra S it

suffices to test the SN property on the smallest possible K, i.e., the subring generated

by the identity. It is also clear that an algebra S over a commutative ring K,

where K is contained in Z(S), is an SN algebra if and only if S is an SN-algebra over

its center Z(S). Therefore, it will be no confusion when we only say an algebra S to

be an SN algebra without mentioning its coefficient ring. Also, a commutative ringK
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is an SN algebra if and only if, given any n ∈ N, every endomorphism of Mn(K) is

an inner automorphism. Moreover, if S is an algebra over a field K, then in view

of [1], Proposition 2.1 S is an SN algebra if and only if S is an SN algebra in the

sense of [1].

The celebrated Skolem-Noether theorem asserts that any field is an SN algebra.

A ring is called subdirectly irreducible if the intersection of its proper ideals is nonzero

(see [8]). Kovacs proved that any commutative Noetherian subdirectly irreducible

ring is an SN algebra (see [6], Theorem 2). However, Z[
√
−5] is not an SN algebra

(see [4], Example 6). In this paper we want to study Question I, which means also

to study SN algebras from the viewpoints of [1], Proposition 2.1, Kovacs’ paper [6]

and Isaacs’s paper [4].

2. Results

Let B be a ring with a subring A. A map ϕ : A → B is said to be defined by

a linear generalized polynomial (LGP for short) if there exist finitely many ai, bi ∈ B

such that ϕ(x) =
∑
i

aixbi for all x ∈ A. In this case, we say that ϕ is defined by

the LGP
∑
i

aiXbi. Since all main results of [1] are derived from the technical basic

lemma (see [1], Lemma 4.1), this its key part is worth mentioning. It is proved in [1],

Lemma 4.1, that if R is a finite-dimensional central simple F -algebra and if S is

an arbitrary F -algebra, then every homomorphism ϕ : R → R ⊗F S is defined by

an LGP. The result depends on the fact that R is a finite-dimensional central simple

F -algebra and S can be considered as a vector space over the field F . Therefore, to

study SN algebras over a commutative ring, we need the following main proposition

(see Proposition 2.1 below), which is parallel to [1], Lemma 4.1.

A ring R is called Dedekind-finite if xy = 1 implies yx = 1 in R, and R is called

stably finite if Mn(R) is Dedekind-finite for any n ∈ N. Dedekind-finite rings include

the following: reversible rings (that is, rings satisfying ab = 0 if and only if ba = 0),

reduced rings, left or right Noetherian rings, semiprime Artinian rings, PI-rings (in

particular, finite-dimensional algebras over a field), algebraic algebras over a field,

rings with only finitely many nilpotents, group algebrasK[G] of an arbitrary groupG

over any field K of characteristic 0 (see [5]).

We list the set {Eij : 1 6 i, j 6 n} of the standard matrix units of a given matrix
algebra Mn(S) as E1, E2, . . . , En2 . Let In :=

n∑
i=1

Eii.

Proposition 2.1. Let S be an algebra over K, where K is a subring of Z(S),

n ∈ N. Suppose that ϕ : Mn(K) → Mn(S) is a homomorphism. Then there exist
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Aks, Bsk, Cj ∈ Mn(S), 1 6 k, s 6 n and 1 6 j 6 n2, such that the following

statements hold:

(i) xAks = Aksϕ(x) for all x ∈ Mn(K).

(ii) AksBsk = ws,kkIn, where ϕ(Ess) :=
∑

16i,j6n

ws,ijEij with ws,ij ∈ S for all i, j.

(iii) ϕ(x) =
n2∑
j=1

EjxCj for all x ∈ Mn(K).

(iv) xCj = Cjϕ(x) for all x ∈ Mn(K).

(v)
n2∑
k=1

EjCj = In.

(vi) Write Cj =
n2∑
i=1

Eisji, where sji ∈ S for 1 6 i, j 6 n2. Then, given j, i, there

exists Dji ∈ Mn(S) such that CjDji = sjiIn.

Consequently, if S is a stably finite ring and if there exist j, i such that sji is

invertible in S, then Cj is invertible inMn(S) and ϕ(x) = C−1
j xCj for all x ∈ Mn(K).

We first say a few words about the proof. One of the most important things is to

prove that ϕ is defined by an LGP with some specific properties. The corresponding

LGP for ϕ in our situation is proved by some arguments from [4] and [6]. Essentially,

our proof below follows the arguments from [1], Lemma 4.1, [4], Theorem 2 and [6],

Theorem 2.

P r o o f of Proposition 2.1. Let Fij := ϕ(Eij) for 1 6 i, j 6 n and, given

1 6 s, k 6 n, let

(1) Aks :=

n∑

ν=1

EνkFsν , Bsk :=

n∑

ν=1

FνsEkν , and ϕ(Ess) :=
∑

16i, j6n

ws,ijEij

where ws,ij ∈ S, 1 6 s, i, j 6 n. Then FijFjt = Fit and FijFlt = 0 if j 6= l and so

EijAks =

n∑

ν=1

EijEνkFsν = EikFsj and AksFij =

n∑

ν=1

EνkFsνFij = EikFsj ,

implying that

(2) EijAks = AksFij = Aksϕ(Eij)

for all 1 6 i, j 6 n. Therefore, it follows from (2) that

(3) xAks = Aksϕ(x)

for all x ∈ Mn(K) and 1 6 k, s 6 n. This proves (i). Moreover,

(4) AksBsk =
∑

16ν, µ6n

EνkFsνFµsEkµ =
n∑

ν=1

EνkFssEkν = ws,kkIn.
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This proves (ii). Furthermore,

(5)

n∑

k=1

BskAks =

n∑

k=1

∑

16ν, µ6n

FµsEkµEνkFsν =

n∑

k=1

n∑

ν=1

FνsEkkFsν = ϕ(In) = In.

Given x ∈ Mn(K), it follows from (5) and (3) that

ϕ(x) =
n∑

k=1

BskAksϕ(x) =
n∑

k=1

BskxAks.

Recall that the set {Eij : 1 6 i, j 6 n} is listed as E1, E2, . . . , En2 . Write Bsk =
n2∑
j=1

Ejzj,sk, where zj,sk ∈ S. Then, by the fact that [S,Mn(K)] = 0, we have

ϕ(x) =

n∑

k=1

BskxAks =

n∑

k=1

n2∑

j=1

Ejzj,skxAks =

n2∑

j=1

Ejx

( n∑

k=1

zj,skAks

)
=

n2∑

j=1

EjxCj

for all x ∈ Mn(K), where Cj :=
n∑

k=1

zj,skAks. This proves (iii). By (3) and the fact

that [S,Mn(K)] = 0, we get

(6) xCj = Cjϕ(x)

for all x ∈ Mn(K) and j = 1, . . . , n2. This proves (iv). Moreover, by (5), we have
n2∑
j=1

EjCj = In, implying (v). Write

(7) Cj =

n2∑

i=1

Eisji,

where sji ∈ S for i, j = 1, . . . , n2. For sji, we claim that there exists Dji ∈ Mn(S)

such that

(8) CjDji = sjiIn.

Given i ∈ {1, 2, . . . , n2}, there exist k, l such that Ei = Ekl. By (7) we have

EskCjEls = Esk

( n2∑

t=1

Etsjt

)
Els = Esssji

for s = 1, . . . , n. This implies

(9)

n∑

s=1

EskCjEls =

n∑

s=1

Esssji = sjiIn.
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However, by (6) we have

(10)

n∑

s=1

EskCjEls =

n∑

s=1

(
EskCj

)
Els =

n∑

s=1

Cjϕ(Esk)Els = CjDji,

whereDji :=
n∑

s=1

ϕ(Esk)Els ∈Mn(S). It follows from (9) and (10) that CjDji = sjiIn,

implying (vi).

Finally, assume that S is a stably finite ring and that there exist j, i such that sji
is invertible in S. Therefore, Mn(S) is Dedekind-finite, implying CjDjis

−1
ji = In

and Djis
−1
ji Cj = In. Hence, Cj is invertible in Mn(S) and ϕ(x) = C−1

j xCj for all

x ∈ Mn(K), as asserted. �

Let R be a ring with idempotents e, f . It is known that eR ∼= fR as right

R-modules if and only if there exist u, v ∈ R such that uv = e and vu = f .

Theorem 2.2. Let K be a commutative ring, n ∈ N, and let A := Mn(K).

Suppose that ϕ is an endomorphism of the K-algebra A. If E11A ∼= ϕ(E11)A as
right A-modules, then ϕ is an inner automorphism of A.

P r o o f. Given 1 6 i 6 n, E1iEi1 = E11 and Ei1E1i = Eii, implying E11A ∼= EiiA
as right A-modules. Similarly, ϕ(E11)A ∼= ϕ(Eii)A as right A-modules. Therefore,
EiiA ∼= ϕ(Eii)A as right A-modules for i = 1, . . . , n. In view of [7], Exercises 15,

page 334, there exists a unit w ∈ A such that wϕ(Eii)w
−1 = Eii for i = 1, . . . , n.

Since ϕ is inner if and only if the homomorphism x 7→ wϕ(x)w−1 for x ∈ A is, we
may assume from the start that ϕ(Eii) = Eii for i = 1, . . . , n. Assume that ϕ is of

the form given in Proposition 2.1. Then, by Proposition 2.1 (i) and (ii), we have

w1,11 = 1, A11B11 = In, and xA11 = A11ϕ(x) for all x ∈ A.

Note that A is Dedekind-finite since it is a PI-algebra. Therefore, B11A11 = In,

implying that A11 is invertible in A. Hence, ϕ(x) = A−1
11 xA11 for all x ∈ A. It

means that ϕ is inner, as desired. �

It is known that, in a simple Artinian ring R, any two minimal right ideals of R

are isomorphic as right R-modules and, moreover, any automorphism of R sends any

minimal right ideal to a minimal right ideal. Therefore, the following is an immediate

consequence of Theorem 2.2.

Corollary 2.3 (Skolem-Noether). Let K be a field, n ∈ N. Then every automor-

phism of the K-algebra Mn(K) is inner. That is, any field is an SN algebra.
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Since Proposition 2.1 in this paper is parallel to the key lemma (see [1], Lemma 4.1),

many main results are indeed derived from it. We will illustrate Proposition 2.1 in

studying SN algebras (over a commutative ring) by focusing only on proving the

following: UFDs and semilocal algebras are SN algebras. We also give an application.

It is proved that if S is a semilocal algebra over a field F , then every homomorphism

from a finite-dimensional central simple subalgebra of S into S can be extended to

an inner automorphism of S (see Corollary 2.9 below). This gives a generalization

of [1], Theorem 6.1, where S is required to be a finite-dimensional algebra. In fact,

we get a more generalized result proved in Theorem 2.8 below.

We begin with the following (see [1], Proposition 7.1).

Theorem 2.4. Let S be an algebra over K, where K is a subring of Z(S), n ∈ N,

and let ϕ : Mn(K) → Mn(S) be a homomorphism. If S is embedded in a division

ring ∆ with K ⊆ Z(∆), then there exists C ∈ Mn(S), which is invertible in Mn(∆),

such that

C−1 = Ds−1 for some s ∈ S, D ∈ Mn(S),

and ϕ(x) = C−1xC for all x ∈ Mn(K). Moreover, if D =
n2∑
k=1

Eksk and C =
n2∑
l=1

Eltl,

where sk, tl ∈ S, then sks
−1tl ∈ S for all l, k.

P r o o f. Since ϕ : Mn(K) → Mn(S) is a homomorphism, we may assume that ϕ

is of the form as given in Proposition 2.1. There exist C := Ck 6= 0 in Mn(S) and

s := skl 6= 0 in S such that CD = sIn, where D := Dkl ∈ Mn(S), and xC = Cϕ(x)

for all x ∈ Mn(K). Note that s is invertible in ∆ and that Mn(∆) is Dedekind-finite.

Therefore, C−1 = Ds−1 in Mn(∆) and so ϕ(x) = C−1xC for all x ∈ Mn(K).

Since C−1 = Ds−1 =
n2∑
k=1

Eksks
−1 and C =

n2∑
l=1

Eltl, we get

(11) ϕ(x) =
∑

16k, l6n2

Eksks
−1xEltl =

∑

16k, l6n2

EkxElsks
−1tl

for all x ∈ Mn(K), where we have used the fact that [S,Mn(K)] = 0. Then, for

1 6 m, p 6 n, given x ∈ Mn(K) we have
n∑

q=1

Eqmϕ(Epqx) ∈ Mn(S) and, by (11),

n∑

q=1

Eqmϕ(Epqx) =

n∑

q=1

Eqm

∑

16k, l6n2

Ek(Epqx)Elsks
−1tl =

n∑

q=1

∑

16l6n2

EqqxElsjs
−1tl

=
∑

16l6n2

xElsjs
−1tl ∈ Mn(S),

where Ej = Emp. This implies sjs
−1tl ∈ S. �
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Corollary 2.5. Every UFD is an SN algebra.

P r o o f. Let K be a UFD, n ∈ N, and let ϕ : Mn(K) → Mn(K) be a homomor-

phism. We claim that ϕ is an inner automorphism. We set S = K in Theorem 2.4

and ϕ satisfies the conclusion of Theorem 2.4. Let t0 be the greatest common divisor

of t1, . . . , tn2 . Replacing C by Ct−1
0 we may assume that t1, . . . , tn2 are coprime.

It suffices to claim that C−1 = Ds−1 ∈ Mn(K), that is, s is a divisor of sk for

all k. Since sks
−1tl ∈ K for all l, k, this means that s is a divisor of sktl for all k, l.

Note that K is a UFD and t1, . . . , tn2 are coprime. Therefore, s is a divisor of sk for

all k, as desired. �

We remark that Corollary 2.5 is not new. Indeed, by [2], Proposition 6.1, every

endomorphism of a central separable algebra is an automorphism. Therefore, it

follows from [4], Corollary 15 that every endomorphism of a matrix algebra over

a UFD is an inner automorphism. This proves that every UFD is an SN algebra.

We next turn to prove the theorem: every semilocal algebra is an SN algebra.

Recall that a ring S is called local (or semilocal) if S/J(S) is a division ring (or

semisimple Artinian ring), where J(S) is the Jacobson radical of S. It is easy to

check that every local ring is stably finite and the set of its nonunits forms an ideal.

Proposition 2.6. Every local algebra is an SN algebra.

P r o o f. Let S be a local algebra. Given n ∈ N, let ϕ : Mn(K) → Mn(S) be

a homomorphism, where K is a commutative ring contained in Z(S). We claim

that ϕ can be extended to an inner automorphism of Mn(S). We keep all notations

of the proof of Proposition 2.1. Write ϕ(Ess) =
∑

16i,j6n

ws,ijEij , where ws,ij ∈ S for

1 6 s, i, j 6 n. Since
n∑

s=1

ϕ(Ess) = In, we get

n∑

s=1

ws,ii = 1

for i = 1, . . . , n. Fix an s, 1 6 s 6 n. Since the set of all nonunits of S is an

additive subgroup, ws,rr is a unit in S for some r. In view of Proposition 2.1 (ii),

ArsBsrw
−1
s,rr = In and so Bsrw

−1
s,rrArs = In, implying that Ars is invertible inMn(S).

In view of Proposition 2.1 (i), ϕ(x) = A−1
rs xArs for all x ∈ Mn(K), as asserted. �

In Proposition 2.6, where we consider a commutative local algebra over itself, it

is known that any endomorphism of matrix algebra over a commutative local ring is

inner (see [1] and [6], page 163 for local algebras over a field).

Let B be a K-algebra with a subalgebra A. Given a homomorphism ϕ : A → B,

which is defined by the LGP
∑
i

aiXbi, and any ideal I of B, ϕ induces a canonical
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homomorphism ϕ̄ : A/A ∩ I → B/I, which is defined by ϕ̄(x̄) =
∑
i

āix̄b̄i for x̄ ∈
A/A∩ I. In view of Proposition 2.1, given an algebra S over K with K ⊆ Z(S), any

homomorphism from Mn(K) to Mn(S) is defined by an LGP. We are now ready to

prove the following.

Theorem 2.7. Every semilocal algebra is an SN algebra.

P r o o f. We separate the proof into several steps.

Step 1 : If S and T are SN algebras, then S⊕T is an SN algebra. Given n ∈ N, let

ϕ : Mn(Z(S)⊕ Z(T )) → Mn(S ⊕ T )

be a homomorphism over Z(S)⊕ Z(T ). Clearly, we have

ϕ(Mn(Z(S)) ⊆ Mn(S) and ϕ(Mn(Z(T )) ⊆ Mn(T ).

Since S and T are SN algebras, there exist units u ∈ Mn(S) and v ∈ Mn(T ) such

that ϕ(x) = uxu−1 for all x ∈ Mn(Z(S)) and ϕ(y) = vyv−1 for all y ∈ Mn(Z(T )).

These imply that

ϕ((x, y)) = (u, v)(x, y)(u−1, v−1) = (u, v)(x, y)(u, v)−1

for all (x, y) ∈ Mn(S)⊕Mn(T ) = Mn(S ⊕ T ).

Step 2 : Every semisimple Artinian algebra is an SN algebra. Let S be a semisim-

ple Artinian algebra. By the Wedderburn-Artin theorem and Step 1, it suffices

to assume that S is a simple Artinian algebra with center K. Given n ∈ N, let

ϕ : Mn(K) → Mn(S) be a K-algebra homomorphism. Since Mn(S) is still a simple

Artinian algebra with the center K, it follows from the Skolem-Noether theorem

(see [3], Theorem 4.3.1) that there exists a unit u ∈ Mn(S) such that ϕ(x) = uxu−1

for x ∈ Mn(K), as asserted.

Step 3 : If an algebra S is stably finite and S/J(S) is an SN algebra, then S is also

an SN algebra. Let K denote the center of S, n ∈ N, and let

ϕ : Mn(K) → Mn(S)

be a homomorphism as K-algebras. In view of Proposition 2.1, ϕ is defined by

an LGP. Therefore, ϕ induces a canonical homomorphism

ϕ̄ : Mn(K) → Mn(S/J(S)),

which is defined by ϕ̄(x̄) = ϕ(x) for x̄ ∈ Mn(K), where K := K + J(S)/J(S).

Note that K ⊆ Z(S/J(S)). Since S/J(S) is an SN algebra, there exists a unit

145



ū ∈ Mn(S) = Mn(S)/J(Mn(S)), where u ∈ Mn(S), such that ϕ̄(x̄) = ūx̄ū−1 for

x̄ ∈ Mn(K). Note that u is also a unit of Mn(S). Therefore,

u−1ϕ(x)u − x ∈ J(Mn(S))

for all x ∈ Mn(K). Replacing ϕ by the homomorphism x 7→ u−1ϕ(x)u for x ∈
Mn(K), we may assume from the start that

ϕ(x)− x ∈ J(Mn(S))

for all x ∈ Mn(K). Since ϕ is a homomorphism, we may assume that ϕ is of the

form as given in Proposition 2.1. We now follow the argument in the proof of [1],

Theorem 5.4. By Proposition 2.1 (iii) and (vi),

ϕ(x) =

n2∑

j=1

EjxCj =
∑

16j,i6n2

EjxEisji

for all x ∈ Mn(K). The goal is to show that at least one sji is invertible in S (see

Proposition 2.1 (vi) and (iv)). Write 1 =
n2∑
k=1

λkEk, where λk = 1 if Ek is one of

E11, . . . , Enn and is zero otherwise. Note that

x = InxIn =
∑

16j,i6n2

λjλiEjxEi

for all x ∈ Mn(K). Therefore,

(12) ϕ(x) − x =
∑

16j,i6n2

EjxEi(sji − λjλi) ∈ J(Mn(S))

for all x ∈ Mn(K). We may list Ej = Ejj for j = 1, . . . , n. Therefore, for x ∈ Mn(K),

by (12) we have

n∑

k=1

Ek1

∑

16j,i6n2

Ej(E1kx)Ei(sji − λjλi) ∈ J(Mn(S)).

That is, ∑

16i6n2

xEi(s1i − λ1λi) ∈ J(Mn(S)) = Mn(J(S))

for all x ∈ Mn(K). Since λ1 = 1, this implies that s11 − 1 ∈ J(S) and so s11 is

invertible in S, as asserted.

Since S is stably finite [7], Theorem 2.13 and the algebra S/J(S) is semisimple

Artinian, the theorem follows from Steps 2 and 3. �
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Therefore, every right Artinian algebra is an SN algebra since it is semilocal. In

particular, any finite ring is an SN algebra even if its center contains no subfield.

Applying the fact that every finite-dimensional algebra is an SN algebra, Brešar et al.

proved the theorem: Let A be a finite-dimensional algebra and let R be a finite-

dimensional central simple subalgebra of A. Then every homomorphism from R

into A can be extended to an inner automorphism of A. Our next aim is to prove

a generalization of the theorem above.

Theorem 2.8. Let S be a semilocal algebra over K, where K ⊆ Z(S), and let R

be a central separable K-subalgebra of S. Then any homomorphism from R into S

can be extended to an inner automorphism of S.

Since every finite-dimensional central simple algebra is a central separable algebra,

the following is an immediate consequence of Theorem 2.8.

Corollary 2.9. Let S be a semilocal algebra over a field F . Then every homo-

morphism from a finite-dimensional central simple subalgebra of S into S can be

extended to an inner automorphism of S.

We now turn to the proof of Theorem 2.8. It is known that, given a commutative

ring K, Mn(K) is a central separable K-algebra free of rank n2 over K. Given

a ring T and n ∈ N, T is semisimple (or right Artinian) if and only if Mn(T ) is

semisimple (or right Artinian). Thus, T is semilocal if and only ifMn(T ) is semilocal.

We begin with the following preliminary result.

Lemma 2.10. Let S be a semilocal algebra overK, whereK is a subring of Z(S).

If Mn(K) ⊆ S, then any homomorphism from Mn(K) into S can be extended to an

inner automorphism of S.

P r o o f. Let ϕ : Mn(K) → S be a homomorphism as K-algebras. Since we

have Mn(K) ⊆ S, the semilocal algebra S contains the usual matrix units Eij ’s,

1 6 i, j 6 n. Let T := {x ∈ S : [x,Eij ] = 0 ∀i, j}. Then K ⊆ Z(T ) and S = Mn(T ).

Since S is semilocal, so is T . In view of Theorem 2.7, T is an SN algebra. Thus, ϕ can

be extended to an inner automorphism of S. �

We need the following result in our proof.

Theorem 2.11 (Srivastava and Shah, [12], Theorem 1). Let S be a semilocal ring

and let R be a unital subring of S. Suppose that R is a direct summand of S as

a left R-module. Then R is a semilocal ring.
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Proposition 2.12. Let S be an algebra over a commutative ring K and let R be

a central separable K-algebra. If S ⊗K R is a semilocal algebra, then so is S.

P r o o f. In view of [2], Lemma 3.1,K is a direct summand ofR, that is, R = B⊕K

for some K-submodule B of R. Therefore,

S ⊗K R = S ⊗K (B ⊕K) ∼= (S ⊗K B)⊕ (S ⊗K K) ∼= (S ⊗K B)⊕ S.

This implies that S is a direct summand of S ⊗K R as a left S-module. It follows

from Theorem 2.11 that S is itself a semilocal algebra. �

Lemma 2.13. Let S be a semilocal algebra over a commutative ring K and let R

be a central separable K-algebra, which is a free module over K. Then S ⊗K R is

also a semilocal algebra.

P r o o f. It is known that R is finitely generated K-module. Therefore, R has

a finite free rank, say s, over K and so R⊗K Rop ∼= Ms(K). Then

(S ⊗K R)⊗K Rop ∼= S ⊗K (R⊗K Rop) ∼= S ⊗K Ms(K) ∼= Ms(S),

which is a semilocal algebra since S is. Note that Rop is also a central separable

K-algebra. In view of Proposition 2.12, S ⊗K R is a semilocal algebra. �

We need two more basic facts.

Fact 1. Let R be a central separable K-algebra. It is known that there exists

a canonical isomorphism η : R⊗K Rop → HomK(R,R), which is defined by

η

(∑

i

ai ⊗ bi

)
(x) =

∑

i

aixbi

for all x ∈ R and
∑
i

ai⊗bi ∈ R⊗K Rop. In addition, suppose that R is a free module

over K of rank q. Therefore, if r1, . . . , rq form a basis of R over K, given z ∈ R,

there exist finitely many ai, bi ∈ R such that

∑

i

airjbi = 0 for j = 2, . . . , q and
∑

i

air1bi = z.

Fact 2. Let S be a K-algebra with a subalgebra R. If
∑
i

ai ⊗ bi = 0 in S ⊗K R,

then
∑
i

aixbi = 0 for all x ∈ S.
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Proposition 2.14. In Theorem 2.8, if R is a free K-module, then every homo-

morphism from R into S can be extended to an inner automorphism of S.

P r o o f. Since R is a central separableK-subalgebra of S, R is a finitely generated

module over its center K. By the fact that R is a free K-module, R has a finite free

rank, say q. Let ϕ : R → S be a homomorphism. Let

ϕ⊗ 1: R⊗K Rop → S ⊗K Rop

be the homomorphism defined by (ϕ⊗ 1)(x⊗ y) = ϕ(x)⊗ y for x ∈ R and y ∈ Rop.

Note that R⊗K Rop ∼= Mq(K). In view of Lemma 2.13, S ⊗K Rop is also semilocal.

By Lemma 2.10, there exists a unit u ∈ S ⊗K Rop such that

(13) ϕ(x) ⊗ y = (ϕ⊗ 1)(x⊗ y) = u(x⊗ y)u−1

for all x ∈ R and y ∈ Rop. Choose r1, . . . , rq to be a basis of the free K-module R.

Write u =
q∑

i=1

si ⊗ ri, where si ∈ S, 1 6 i 6 q. Let x ∈ R and y ∈ Rop. By (13) we

get

(ϕ(x) ⊗ y)

q∑

i=1

si ⊗ ri =

( q∑

i=1

si ⊗ ri

)
(x⊗ y),

that is,

(14)

q∑

i=1

ϕ(x)si ⊗ riy =

q∑

i=1

six⊗ yri.

Replacing y by 1 in (14), we get

(15)

q∑

i=1

(
ϕ(x)si − six

)
⊗ ri = 0

for all x ∈ R.

To apply Fact 2, we need to notice that
∑
i

yi ⊗ zi = 0 in S ⊗F Rop if and only if
∑
i

yi ⊗ zi = 0 in S ⊗F R. Applying Fact 2 to (15) with the remark above, we have

(16)

q∑

i=1

(ϕ(x)si − six)yri = 0

for all x, y ∈ R. By Fact 1, there exist finitely many aj , bj ∈ R such that

∑

j

ajrkbi = 0 for k = 2, . . . , q, but
∑

j

ajr1bj = 1.
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By (16) we have

0 =
∑

j

( q∑

i=1

(ϕ(x)si − six)ajri

)
bj =

q∑

i=1

(
(ϕ(x)si − six)

∑

j

ajribj

)
= ϕ(x)s1 − s1x

for all x ∈ R. That is, ϕ(x)s1 = s1x for all x ∈ R. Analogously, ϕ(x)si = six for all

x ∈ R, where i = 2, . . . , q. We now rewrite (14) as

(17)

q∑

i=1

six⊗ riy =

q∑

i=1

six⊗ yri

for all x, y ∈ R. By Fact 2, we get

(18) wxy =

q∑

i=1

(six)yri,

where wx :=
q∑

i=1

sixri for all x, y ∈ R. Write 1 = β1r1 + . . .+ βqrq, where βi ∈ K. It

follows from (18) that

(19)

q∑

j=1

(
βjwx − sjx

)
yrj = 0.

Applying the same argument as above, we get βjwx−sjx = 0 for all x ∈ R and all j.

That is,

(20)

q∑

i=1

βjsixri = βjwx = sjx =

q∑

i=1

βisjxri

for all x ∈ R and all j. Applying the same argument to (20), we get βjsi = βisj for

1 6 i, j 6 q. Therefore, for j ∈ {1, . . . , q}, we have

u(rjβj ⊗ 1) =

q∑

i=1

sirjβj ⊗ ri =

q∑

i=1

siβjrj ⊗ ri =

q∑

i=1

sjβirj ⊗ ri

=

q∑

i=1

sjrj ⊗ βiri = sjrj ⊗ 1.

Hence,

u = u

( q∑

j=1

rjβj ⊗ 1

)
=

q∑

j=1

u(rjβj ⊗ 1) =

q∑

j=1

(sjrj ⊗ 1) =

( q∑

j=1

sjrj

)
⊗ 1,
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implying u ∈ S. The last step is to show u−1 ∈ S. Write u−1 =
q∑

j=1

tj ⊗ rj , where

tj ∈ S for j = 1, . . . , q. Then

1 = uu−1 =

q∑

j=1

(utj)⊗ rj =

q∑

j=1

βj ⊗ rj ,

implying that utj = βj for j = 1, . . . , q. Therefore,

u

q∑

j=1

tjrj =

q∑

j=1

(utj)rj =

q∑

j=1

βjrj = 1.

This implies that u−1 =
q∑

j=1

tjrj ∈ S, as desired. �

Lemma 2.15. Let R be a central separable K-algebra and let S be an algebra

over K, where K ⊆ Z(S). If ϕ : R → S is a homomorphism, then there exist finitely

many ai ∈ R, si ∈ S, 1 6 i 6 m, such that ϕ(x) =
m∑
i=1

aixsi for all x ∈ R.

P r o o f. Since R is a finitely generated projective module over K, there exist

finitely many mi ∈ R and K-module maps fi : R → K such that x =
∑
i

fi(x)mi for

all x ∈ R. Since fi ∈ HomK(R,R), by Fact 1 there exist finitely many aij , bij ∈ R

such that

fi(x) =
∑

j

aijxbij

for all x ∈ R. Therefore,

ϕ(x) = ϕ

(∑

i

fi(x)mi

)
=

∑

i

fi(x)ϕ(mi) =
∑

i

∑

j

aijxbijϕ(mi)

for all x ∈ R. Note that aij ∈ R and bijϕ(mi) ∈ S for all i, j. �

We are now ready to give the proof of Theorem 2.8.

P r o o f of Theorem 2.8. Suppose first that S is a simple Artinian algebra.

Since Z(S) is a field and K ⊆ Z(S), K is an integral domain. Denote by K̃ the

quotient field of K. Therefore, K̃ ⊆ Z(S). By the fact that K is an integral do-

main, R is a prime ring (see [2], Corollary 3.2). Moreover, R is a PI-ring since R

is a finitely generated K-module. In view of the Posner-Rowen theorem (see [11]),

RK̃ is a finite-dimensional central simple K̃-algebra. Clearly, ϕ can be extended to

a K̃-algebra homomorphism from RK̃ into S. In view of Proposition 2.14, ϕ can be

extended to an inner automorphism of S.
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We now consider the general case. Since S is a semilocal algebra, S/J(S) is

a semisimple Artinian algebra. It follows from the Wedderburn-Artin theorem that

S/J(S) = T1 ⊕ . . .⊕ Tn,

where all Ti are simple Artinian algebras. Note that Ti
∼= S/Mi for some maximal

ideal of S with J(S) ⊆ Mi, i = 1, . . . , n. In view of Lemma 2.15, ϕ(R ∩Mi) ⊆ Mi

for all i. Consider the map

ϕi : R/Mi ∩R → S/Mi,

which is defined by ϕi(x̄) = ϕ(x) := ϕ(x) +Mi for x ∈ R. In view of [2], Proposi-

tion 1.11, R/R ∩Mi is a central separable algebra over K + (R ∩Mi)/R ∩Mi. We

identify R/Mi ∩ R with the subalgebra R +Mi/Mi of S/Mi. In view of the case in

the first paragraph, ϕi can be extended to an inner automorphism of S/Mi, say

x̄ 7→ ūix̄ū
−1
i for x̄ ∈ R/R ∩Mi,

where ūi is a unit of S/Mi. Note that ϕ(R ∩ J(S)) ⊆ J(S) (see Lemma 2.15). This

implies that the following canonical K-algebra homomorphism

ϕ̄ : R/R ∩ J(S) → S/J(S)

can be extended to an inner automorphism of S/J(S). Note that an element u ∈ S

is invertible if and only if u+ J(S) is invertible in S/J(S). Hence there exists a unit

w ∈ S such that

ϕ(x) − wxw−1 ∈ J(S)

for all x ∈ R. Equivalently,

(21) w−1ϕ(x)w − x ∈ J(S)

for all x ∈ R. Since the map x 7→ w−1ϕ(x)w for x ∈ R is aK-algebra homomorphism,

it follows from Lemma 2.15 that there are finitely many ri ∈ R, si ∈ S, i = 1, . . . , q,

such that

(22) w−1ϕ(x)w =

q∑

i=1

rixsi

for all x ∈ R. By [2], Lemma 3.1, there exists a K-submodule B of R such that

R = K ⊕ B as K-modules. Therefore, we may assume further that r1 = 1 and

ri ∈ B for i = 2, . . . , q. We claim that s1 is a unit of S.
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Consider the K-module map g : R → R defined by g(β) = β for β ∈ K and

g(b) = 0 for b ∈ B. By Fact 1, there exist finitely many cj , dj ∈ R such that

g(x) =
∑
j

cjxdj for all x ∈ R. Therefore,
∑
j

cjr1dj = 1 but
∑
j

cjrkdj = 0 for

k = 2, . . . , q. By (21) and (22), we have
q∑

i=1

rixsi − x ∈ J(S) for all x ∈ R and so

∑

j

cj

( q∑

i=1

ri(djx)si−(djx)

)
=

q∑

i=1

(∑

j

cjridj

)
xsi−

(∑

j

cjdj

)
x = x(s1−1) ∈ J(S)

for all x ∈ R. In particular, s1 − 1 ∈ J(S), implying that s1 is a unit of S.

Set ϕ̃(x) := w−1ϕ(x)w for x ∈ R. Let x, y ∈ R. We have

ϕ̃(xy) = ϕ̃(x)ϕ̃(y) =

q∑

i=1

rixsiϕ̃(y).

On the other hand, ϕ̃(xy) =
q∑

i=1

rixysi. Comparing the two equalities, we get

q∑

i=1

rix(ysi − siϕ̃(y)) = 0.

Therefore,

0 =
∑

j

cj

q∑

i=1

ri(djx)(ys1 − s1ϕ̃(y)) = x(ysi − siϕ̃(y))

for all x, y ∈ R. That is,

ys1 = s1ϕ̃(y)

for all y ∈ R. Since s1 is a unit of S, we get

ϕ(y) = wϕ̃(y)w−1 = ws−1
1 ϕ(y)s1w

−1 = (ws−1
1 )x(ws−1

1 )−1

for all y ∈ R. �

We end this paper with a generalization of Theorem 2.8.

Theorem 2.16. LetR be a central separable algebra overK and let S be a semilo-

cal algebra overK, whereK ⊆ Z(S). If f, g : R → S areK-algebra homomorphisms,

then there exists a unit u of S such that g(x) = uf(x)u−1 for all x ∈ R.
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P r o o f. Since f : R → S is a K-algebra homomorphism and R is a central sep-

arable algebra over K, f is a monomorphism (see [2], Corollary 3.7). Therefore,

R ∼= f(R) as K-algebras. This means that f(R) is a central separable K-subalgebra

of S. Let ϕ : f(R) → S be the map defined by ϕ(f(x)) = g(x) for all x ∈ R.

Clearly, ϕ is well-defined and is a homomorphism. In view of Theorem 2.8, ϕ can

be extended to an inner automorphism of S; that is, there exists a unit u of S such

that g(x) = uf(x)u−1 for all x ∈ R, as desired. �

We remark that the theorem above gives a generalization of [9], Theorem 1.
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