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Abstract. Let −(n+ 1) < m 6 −(n+ 1)(1 − ̺) and let Ta ∈ L
m
̺,δ be pseudo-differential

operators with symbols a(x, ξ) ∈ R
n
×R

n, where 0 < ̺ 6 1, 0 6 δ < 1 and δ 6 ̺. Let µ, λ

be weights in Muckenhoupt classes Ap, ν = (µλ
−1)1/p for some 1 < p < ∞. We establish

a two-weight inequality for commutators generated by pseudo-differential operators Ta with
weighted BMO functions b ∈ BMOν , namely, the commutator [b, Ta] is bounded from Lp(µ)
into Lp(λ). Furthermore, the range of m can be extended to the whole m 6 −(n+1)(1−̺).

Keywords: pseudo-differential operator; reverse Hölder inequality; Ap weight; commu-
tator

MSC 2020 : 47G30, 35S05, 42B25

1. Introduction

Let m be a real number. Following Stein in [26], a symbol in Sm
̺,δ is a smooth

function a(x, ξ) defined on R
n × R

n such that

|∂αx ∂
β
ξ a(x, ξ)| 6 Cα,β(1 + |ξ|)m−̺|β|+δ|α|

holds for all multi-indices α and β, where Cα,β is independent of x and ξ. We now

assume that the symbol a(x, ξ) is smooth in both the spatial variable x and the

frequency variable ξ.

Given f ∈ C∞
0 (Rn), a pseudo-differential operator Ta, with symbol a(x, ξ) ∈ Sm

̺,δ,

is defined by

Taf(x) =

∫

Rn

a(x, ξ)e2πix·ξf̂(ξ) dξ,
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where f̂ denotes the Fourier transform of f . As usual, Lm
̺,δ denotes the pseudo-

differential operators Ta with symbols a(x, ξ) in S
m
̺,δ. Laptev in [17] proved that any

pseudo-differential operator Ta in L0
1,0 is a standard Calderón-Zygmund operator

and this result was extended to pseudo-differential operators in L0
1,δ with 0 < δ < 1.

The pseudo-differential operators play an important role in the theory of partial

differential equations. The study of them was initiated by Kohn and Nirenberg,

see [16] and Hörmander, see [13]. The Lp boundedness of these operators has been

extensively studied, for example, the work of Calderón and Vaillancourt (see [5])

focused on the L2 bounds of the operators Ta in L0
̺,̺ with 0 6 ̺ < 1. We also refer

to [9], [13], [26] for more details about the Lp bounds of the operators Ta in Lm
̺,δ.

Weighted Lp boundedness of the pseudo-differential operators Ta in Lm
̺,δ has also

been studied. A pioneering investigation work of Miller (see [22]) showed the bounds

of the operators Ta in L0
1,0 on weighted L

p spaces Lp(ω). Later on, Chanillo and

Torchinsky in [7] proved that the operators Ta in L
n(̺−1)/2
̺,δ are bounded on Lp(ω)

when 2 6 p <∞ and ω ∈ Ap/2. Alvarez and Hounie in [1] presented the weighted L
p

boundedness for p > 1 when Ta belongs to L
n(̺−1)
̺,δ with 0 6 δ 6 ̺ 6 1

2 . Recently,

Michalowski, Rule and Staubach in [21] improved this result to 0 6 δ < 1, 0 < ̺ 6 1.

Let b ∈ BMO and let T be a Calderón-Zygmund operator. A classical result

of Coifman-Rochberg-Weiss (see [8]) stated that the commutator operator [b, T ],

defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x),

is bounded on Lp for p > 1.

Analogously to the above conclusion, when b ∈ BMO, Ta ∈ Lm
̺,δ and under certain

conditions of m, ̺, δ, there are numerous papers dealing with the Lp boundedness

of the operators [b, Ta] for 1 < p < ∞. We refer to [2], [6], [15], [19], [29] and the

references therein. The weighted Lp norm inequalities for commutators generated by

pseudo-differential operators Ta with BMO functions b also attract a lot of interest

and we refer to [4], [25], [27], [28] for more details. Furthermore, Michalowski, Rule

and Staubach in [20] presented a weighted Lp norm inequality for the operators [b, Ta]

on the conditions of 0 6 δ < 1, 0 < ̺ 6 1 and m 6 −n(1− ̺).

In 1985, Bloom in [3] presented a two-weighted result for the commutator of Hilbert

transform H , i.e., [b,H ] is bounded from Lp(µ) into Lp(λ), where b ∈ BMOν . Here,

BMOν is the weighted BMO space of locally integrable functions b (see Definition 2.4

below). Very recently, Holmes, Lacey andWick in [12] extended Bloom’s result to Rn.

Let µ and λ be weights in Ap, and set ν = (µλ−1)1/p for some 1 < p. It is easy

to have ν ∈ A2 (see Proposition 2.1 below). Thus, in view of Definitions 2.1 and 2.2

below, there are constants C, η > 0 such that for all balls B and all measurable
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subsets E of B,

(1.1)
ν(E)

ν(B)
6 C

(
|E|

|B|

)η

.

The purpose of this paper focuses on the two-weighted norm inequality of the

commutators [b, Ta] when b ∈ BMOν and Ta ∈ Lm
̺,δ, and we have the following main

result.

Theorem 1.1. Let us consider pseudo-differential operator Ta ∈ Lm
̺,δ with

0 6 δ < ̺ 6 1, δ < 1 and ̺ > 0, and

−(n+ 1) < m 6 −(n+ 1)(1− ̺).

For fixed 1 < p < ∞ and given µ, λ ∈ Ap, we define ν = (µλ−1)1/p. Let c =

min{1, (1 +m+ n)/̺}. Assume that η > 1− c/n, where ν satisfies (1.1) for such η.

Then for all b ∈ BMOν , the commutator operator [b, Ta] is bounded from Lp(µ)

into Lp(λ) with

(1.2)

∫

Rn

|[b, Ta]f |
pλ 6 C

∫

Rn

|f |pµ.

Furthermore, one can extend the range of m to the whole m 6 −(n+ 1)(1− ̺) and

give a better range of admissible η as η > 1− 1/n.

The remainder of this paper is organized as follows. In Section 2, we present some

definitions, some notation and some well-known results we will need later. The aim

of Section 3 is to prove Theorem 1.1. Our methods are similar to those of Bloom

(see [3]) except that we deal with the estimation of the kernel in a different way. We

first establish an estimate of the commutator sharp function (see Lemma 3.1 below).

And then inspired by Hung and Ky (see [15]), we develop the method to handle

the kernel estimate for a class of pseudo-differential operators (see Proposition 3.1

below). Finally, we prove Theorem 1.1 in a fashion similar to Bloom’s, see [3]. It is

enough to show that Theorem 1.1 is valid for f ∈ C∞
0 (Rn). Once Theorem 1.1 holds

for such f , it implies the weighted Lp boundedness for 1 < p <∞ and ω ∈ Ap.

Throughout the whole paper, C denotes a constant that may change from line to

line and we write a . b as shorthand for a 6 Cb. If a . b and b . a, we mean

a ∼ b. For a measurable set A, |A| denotes the Lebesgue measure of A and χA

the characteristic function. An exponent with a prime will denote the conjugate

exponent, i.e., 1/p+ 1/p′ = 1.
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2. Auxiliary lemmas and well-known results

A weight is a locally integrable function on R
n which takes non-negative values

almost everywhere. For a weight ω and a measurable set E, we write ω(E) =
∫
E ω.

Let ω be a weight. We denote by Lp(ω) the weighted Lp-space of all Lebesgue

measurable functions f with norm

‖f‖Lp(ω) =

(∫

Rn

|f |pω

)1/p

.

We will use the notation

fB =
1

|B|

∫

B

f

for the average of a locally integrable function f over the ball B so that the standard

Hardy-Littlewood maximal function and the sharp maximal function are given by

M∗f(x) = sup
B∋x

|f |B and f#(x) = sup
B∋x

|f − fB|B ,

respectively, where the supremuma are taken over all balls B containing x. The pth

maximal function M∗
p f is defined by

M∗
pf(x) = sup

B∋x

(
1

|B|

∫

B

|f(y)|p dy

)1/p

,

where the supremum is taken over all balls B containing x.

Definition 2.1 (Muckenhoupt classes Ap). A weight ω is said to be of Muck-

enhoupt class Ap for 1 < p < ∞, if there exists C > 1 such that for all balls B we

have

(2.1)

(
1

|B|

∫

B

ω

)(
1

|B|

∫

B

ω−1/(p−1)

)p−1

6 C.

The infimum of C satisfying the inequality (2.1) is denoted by [ω]Ap
.

When p = 1, ω ∈ A1 if there exists C > 1 such that for almost every x we have

(2.2) M∗ω(x) 6 Cω(x).

The infimum of C satisfying the inequality (2.2) is denoted by [ω]A1
.
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Definition 2.2 (A∞ condition). A weight ω is said to be of class A∞ if there

exist constants 0 < C, η < ∞, depending only on the dimension n, and [ω]A∞
such

that for all balls B and all measurable subsets E of B,

ω(E)

ω(B)
6 C

(
|E|

|B|

)η

,

where we define [ω]A∞
= inf

16p<∞
[ω]Ap

.

Muckenhoupt in [23] and [24] showed that the A∞ condition is equivalent to the

reverse Hölder condition.

Definition 2.3 (Reverse Hölder condition). A weight ω is said to satisfy the

reverse Hölder condition if there exist constants 0 < C, η < ∞, depending only on

the dimension n, and [ω]A∞
such that for all balls B,

(
1

|B|

∫

B

ω1+ε

)1/(1+ε)

6
C

|B|

∫

B

ω.

For more details of Ap weights, we refer to Grafakos (see [11]) or Stein (see [26]),

and we also have the following proposition.

Proposition 2.1. Let λ, µ ∈ Ap and ν = (µλ−1)1/p for some p > 1, then ν ∈ A2.

P r o o f. Indeed, to get ν ∈ A2, we just need to show

(
1

|B|

∫

B

ν

)(
1

|B|

∫

B

ν−1

)
6 C

holds for all balls B. By Hölder’s inequality, we have

1

|B|

∫

B

ν =
1

|B|

∫

B

µ1/pλ−1/p 6

(
1

|B|

∫

B

µ

)1/p(
1

|B|

∫

B

λ−p′/p

)1/p′

,

and

1

|B|

∫

B

ν−1 =
1

|B|

∫

B

µ−1/pλ1/p 6

(
1

|B|

∫

B

µ−p′/p

)1/p′(
1

|B|

∫

B

λ

)1/p

.

Thus, the Ap weight condition of λ, µ ∈ Ap yields ν ∈ A2. �

It is worth pointing out that A∞ =
⋃

16p<∞

Ap, due to the following results.

Lemma 2.1. Suppose p > 1 and ω ∈ Ap. There is an exponent q < p which

depends only on p and [ω]Ap
, such that ω ∈ Aq.
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Lemma 2.2. For 1 < q < ∞, the Hardy-Littlewood maximal operator M∗

is bounded on Lq(ω) if and only if ω ∈ Aq. Consequently, for 1 6 p < q < ∞,

M∗
p is bounded on L

p(ω) if and only if ω ∈ Aq/p.

Lemmas 2.1 and 2.2 are classical results in the theory of Ap weights and we refer

to Stein, see [26]. The following lemma is known as Fefferman-Stein sharp function

theorem.

Lemma 2.3 (Sharp function theorem). Let f ∈ L1(ω) and f# ∈ Lp(ω) for some

1 < p <∞. If ω ∈ A∞, then we have

‖M∗f‖Lp(ω) 6 Cn,p,ω‖f
#‖Lp(ω).

An unweighted version of Lemma 2.3 was given by Fefferman and Stein (see [10],

Theorem 5) and the weighted version can be found in Lerner, see [18].

Let S(Rn) denote the Schwartz class of test functions and let S ′(Rn) be the dual

of S(Rn). The space of C∞-functions with compact support is denoted by C∞
0 (Rn).

Consider the pseudo-differential operators Ta ∈ Lm
̺,δ with 0 < ̺ 6 1, 0 6 δ < 1. It

is well known that Ta is bounded from S(Rn) to S(Rn) and as such possesses the

distribution kernel K(x, y) ∈ S ′(Rn × R
n) which is given by

K(x, y) = lim
ε→0

∫

Rn

e2πi(x−y)ξa(x, ξ)ψ(εξ) dξ,

where ψ ∈ C∞
0 (Rn) satisfies ψ(ξ) = 1 for |ξ| 6 1 and the limit is taken in S ′(Rn) and

independent of the choice of ψ (see Hounie and Kapp [14], Proposition 3.1). The

following kernel estimates of the pseudo-differential operator Ta due to Alvarez and

Hounie (see [1]) are useful.

Lemma 2.4. Let 0 < ̺ 6 1, 0 6 δ < 1 and Ta ∈ Lm
̺,δ. Then, the distribution

kernel K(x, y) of Ta is smooth away from the diagonal {(x, x) : x ∈ R
n}. Moreover:

(i) For any multi-index α, β, N > 0,

sup
|x−y|>1

|x− y|N |Dα
xD

β
yK(x, y)| 6 Cα,β,N .

(ii) Suppose M +m+n > 0 for some M ∈ Z+. Then there exists a constant C > 0

such that

sup
|α+β|=M

|Dα
xD

β
yK(x, y)| 6 CM

1

|x− y|(M+m+n)/̺
, x 6= y.
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Given f ∈ C∞
0 (Rn), in order to prove Theorem 1.1 we also need the Lp and

weighted Lp estimates of pseudo-differential operators Ta in Lm
̺,δ.

Lemma 2.5. Consider a pseudo-differential operator Ta ∈ Lm
̺,δ with 0 < ̺ 6 1,

δ 6 ̺ and δ < 1. If m 6 −n(1 − ̺)|1/p− 1/2|, then Ta is bounded on L
p for each

1 < p <∞, i.e., there exists a constant C > 0 such that

‖Taf‖Lp 6 C‖f‖Lp.

Lemma 2.5 involves the work of Fefferman and Stein. The full version can be

found in Stein, see [26], page 322. The result of Lemma 2.5 is sharp, it is well known

as Hardy-Littlewood-Hirschman-Wainger’s lemma.

Lemma 2.6 ([21], Theorem 3.4). Consider a pseudo-differential operator Ta ∈Lm
̺,δ

with 0 < ̺ 6 1, 0 6 δ < 1 and m 6 −n(1−̺). Then for each 1 < p <∞ and ω ∈ Ap

there exists a constant C > 0 such that

‖Taf‖Lp(ω) 6 C‖f‖Lp(ω).

Given locally integrable functions f and b, the following notation is useful. Let

q > 1 be a number near p but less than p, r > 1 and ω a weight. Define

Sr(b;ω,B) =

(
1

|B|

∫

B

|b− bB|
rωr

)1/r

, Λr(f ;ω,B) =

(
1

|B|

∫

B

|fω|r
)1/r

,

K∗
r (b, f, ω)(x) = sup

x∈B
Srq′(b;ω,B)Λrq(f ;ω

−1, B)

and write K∗ = K∗
1 , and let M

∗
ω be the weighted maximal function

M∗
ωf(x) = sup

B∋x

1

ω(B)

∫

B

|f(y)|ω(y) dy,

where the supremum is taken over all balls B containing x.

The following result is due to Bloom (see [3], Lemma 4.4 for more details; extending

his proof to Rn is straightforward).

Lemma 2.7. Let λ, µ be weights in Ap. Then for an appropriate choice of

1 < q < p and for r with 1 6 r < p/q there exists a weight ω depending on r such

that ωrq′ ∈ Aq′ and

∫
[K∗

r (b, f, ω)(x)]
pλ(x) dx 6 C

∫
|f |pµ(x) dx.

179



We will end this section by defining the weighted BMO class BMOω.

Definition 2.4. Let ω ∈ A∞. We define the class BMOω as the space of classes

of locally integrable functions b such that

‖b‖BMOω
= sup

B

1

ω(B)

∫

B

|b− bB| <∞,

where bB = 1/|B|
∫
B b and the supremum is taken over all balls B in R

n.

3. Proofs of Theorem 1.1

Recall that p′ is the conjugate exponent of p, λ, µ ∈ Ap and ν = (µλ−1)1/p. The

proof of Theorem 1.1 is mainly about an estimate of the sharp function ([b, Ta]f)
#,

which we set out in the lemma below:

Lemma 3.1. Let us consider a pseudo-differential operator Ta ∈ Lm
̺,δ with

0 6 δ < ̺ 6 1, δ < 1 and ̺ > 0. Let ω and ω̃ be weights with ωq′ , ω̃rq′ ∈ Aq′ and

c = min{1, (1 +m+ n)/̺}. Assume that η > 1 − c/n, where ν satisfies (1.1) for

such η. For an appropriate choice of 1 < q < p <∞ and for some r with 1 < r < p/q,

if −(n+ 1) < m 6 −(n+ 1)(1− ̺) and b ∈ BMOν , then

([b, Ta]f)
#(x)

6 C[K∗(b, f, ω)(x) +K∗(b, Taf, ω)(x) +K∗
r (b, f, ω̃)(x) + (M∗

λ(|fν|
q)(x))

1/q
],

where f ∈ C∞
0 (Rn).

P r o o f. Let g = [b, Ta]f , we shall estimate g
#. Fix x and a ball B containing x.

Let x0 be the center of B = B(x0, l) with the radius l. Decompose f = f1 + f2 with

f1 = fχ2B. Noting that for any constant c̃,

1

|B|

∫

B

|g − gB| .
1

|B|

∫

B

|g − c̃|,

we can take c̃ = Ta((b− bB)f2)(x0) without losing more than a factor of constant,

1

|B|

∫

B

|g − gB| .
1

|B|

∫

B

|g − Ta((b− bB)f2)(x0)|.

Now g = [b − bB, Ta]f = Ta((b − bB)f1) + Ta((b − bB)f2)− (b − bB)Taf , so we have

1

|B|

∫

B

|g − gB| .
1

|B|

∫

B

|b− bB| |Taf |+
1

|B|

∫

B

|Ta((b− bB)f1)|

+
1

|B|

∫

B

|Ta((b − bB)f2)(t)− Ta((b− bB)f2)(x0)| dt

= K1 +K2 +K3.
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For the first term K1,

K1 =
1

|B|

∫

B

|b− bB|ω|Taf |ω
−1

6

(
1

|B|

∫

B

|b− bB|
q′ωq′

)1/q′(
1

|B|

∫

B

|Taf |
qω−q

)1/q

(by Hölder)

= Sq′(b;ω,B)Λq(Taf ;ω
−1, B) 6 K∗(b, Taf, ω)(x).

For the second piece K2, by Hölder’s inequality, we have

K2 6

(
1

|B|

∫

B

|Ta((b− bB)f1)|
r

)1/r

. |B|−1/r

(∫
|b− bB|

r|f1|
r

)1/r

,

where Lemma 2.5 yields the second inequality with m 6 −n(1− ̺)|1/r− 1/2|. Here,

we have to point out that if m 6 −(n + 1)(1 − ̺), we indeed have that m satisfies

Lemma 2.5. This is the case because 1 < r <∞ and

−(n+ 1)(1− ̺) 6 −
n

2
(1 − ̺) 6 −n(1− ̺)

∣∣∣
1

r
−

1

2

∣∣∣.

Thus,

K2 6 C

(
1

|2B|

∫

2B

|b− bB|
r|f |r

)1/r

.

(
1

|2B|

∫

2B

|b− b2B|
r|f |r

)1/r

+ |bB − b2B|

(
1

|2B|

∫

2B

|f |r
)1/r

= K21 +K22.

Here, by Hölder’s inequality, we have

K21 =

(
1

|2B|

∫

2B

|b − b2B|
rω̃r|f |rω̃−r

)1/r

6

(
1

|2B|

∫

2B

|b − b2B|
rq′ ω̃rq′

)1/rq′(
1

|2B|

∫

2B

|f |rqω̃−rq

)1/rq

= Srq′(b; ω̃, 2B)Λrq(f ; ω̃
−1, 2B) 6 K∗

r (b, f, ω̃)(x).

To estimate K22, we note that

(
1

|2B|

∫

2B

|f |r
)1/r

6

(
1

|2B|

∫

2B

|f |rqω̃−rq

)1/rq(
1

|2B|

∫

2B

ω̃rq′
)1/rq′

(by Hölder)

= Λrq(f ; ω̃
−1, 2B)

(
1

|2B|

∫

2B

ω̃rq′
)1/rq′

.

181



and

|bB − b2B| 6
1

|B|

∫

B

|b− b2B| .
1

|2B|

∫

2B

|b− b2B|

6

(
1

|2B|

∫

2B

|b− b2B|
r

)1/r

(by Hölder)

6

(
1

|2B|

∫

2B

|b− b2B|
rq′ ω̃rq′

)1/rq′(
1

|2B|

∫

2B

ω̃−rq

)1/rq

(by Hölder)

= Srq′(b; ω̃, 2B)

(
1

|2B|

∫

2B

ω̃−rq

)1/rq

.

We then have K22 . K∗
r (b, f, ω̃)(x) since ω̃

rq′ ∈ Aq′ . Hence K2 . K∗
r (b, f, ω̃)(x).

Finally, to estimate K3, we express Ta by a smooth distribution kernel K(x, y) as

Taf(x) =

∫
K(x, y)f(y) dy.

Let t ∈ B(x0, l). Then

K3 =
1

|B|

∫

B

|Ta((b − bB)f2)(t)− Ta((b− bB)f2)(x0)| dt

6
1

|B|

∫

B

∫
|K(t, y)−K(x0, y)||b(y)− bB||f2(y)| dy dt

6
1

|B|

∫

B

∞∑

k=1

∫

2kl6|x0−y|<2k+1l

|K(t, y)−K(x0, y)||b(y)− bB||f(y)| dy dt.

The following proposition allows us to control the inner integral.

Proposition 3.1. Let m, ̺, δ be as in Lemma 3.1 and Ta ∈ Lm
̺,δ. Then for any

t ∈ B(x0, l) and 2kl 6 |x0 − y| < 2k+1l, or y ∈ 2k+1B \ 2kB, we have

(i) |t− y| ∼ |x0 − y| ∼ 2kl

(ii)

(3.1) |K(t, y)−K(x0, y)| .
2−ck

(2kl)n
,

where c = min{1, (1 +m+ n)/̺}.

P r o o f. (i) Obviously, |x0 − y| ∼ 2kl. To see |t − y| ∼ |x0 − y|, we note that

|x0 − y| > 2kl > 2l since k > 1, and on the one hand,

|t− y| 6 |t− x0|+ |x0 − y| 6
3

2
|x0 − y|,
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and on the other hand,

|t− y| > |x0 − y| − |t− x0| >
1

2
|x0 − y|.

So, |t− y| ∼ |x0 − y| ∼ 2kl holds.

(ii) To get the kernel estimate (3.1), we consider two cases about l.

Case 1 : Let l > 1. Recall (i) of Lemma 2.4. The kernel K(x, y) satisfies

(3.2) sup
|x−y|>1

|x− y|N |Dα
xD

β
yK(x, y)| 6 Cα,β,N

for any multi-index α, β and for N > 0.

Since |x0 − y| > 2l > 1 and |t − y| > 1
2 |x0 − y| > l > 1, statement (i) of

Proposition 3.1 and (3.2) yield

|K(t, y)−K(x0, y)| 6 |K(t, y)|+ |K(x0, y)| 6
C

|x0 − y|N

.
1

|x0 − y|n+1
.

1

(2kl)n+1
6

2−k

(2kl)n
6

2−ck

(2kl)n
,

where we take N = n+ 1.

Case 2 : Let 0 < l < 1. Lemma 2.4 says the distribution kernel K(x, y) of Ta is

smooth outside the diagonal {(x, x) : x ∈ R
n} and satisfies

(3.3) sup
|α+β|=M

|Dα
xD

β
yK(x, y)| 6 CM

1

|x− y|(M+m+n)/̺
, x 6= y,

if M +m+ n > 0.

Thus for every t ∈ B(x0, l) and y ∈ 2k+1B \ 2kB, from the mean value theorem

and 1 + n+m > 0, statement (i) of Proposition 3.1 and (3.3) imply

(3.4) |K(t, y)−K(x0, y)| = |DxK(ξ, y)||t− x0| 6 C
|t− x0|

|x0 − y|(1+m+n)/̺
,

where we choose M = 1 and use the fact that |ξ − y| ∼ |x0 − y| if ξ ∈ B(x0, l). Let

us now consider two subcases.

Subcase 2.1 : If (2k − 1)l > 1, then, for any t ∈ B(x0, l) and y ∈ 2k+1B \ 2kB,

|t− y| > |y − x0| − |t− x0| > (2k − 1)l > 1.

It is similar to the case l > 1. Noting that t 6= x0 and l > 0, we employ the mean

value theorem, statement (i) of Proposition 3.1 and (3.2) to obtain

|K(t, y)−K(x0, y)| 6
C|t− x0|

|x0 − y|N
.

l

|x0 − y|n+(1+m+n)/̺
.

l

(2kl)n+(1+m+n)/̺
,
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where we choose N = n+ (1 +m+ n)/̺. Meanwhile,

l

(2kl)(1+m+n)/̺
6





2−k(1+m+n)/̺,
1 +m+ n

̺
6 1,

2−k,
1 +m+ n

̺
> 1,

since l < 1 and 2kl > 1. Therefore, (3.1) holds if we let c = min{1, (1 +m+ n)/̺}.

Subcase 2.2 : If (2k − 1)l < 1, then

1

2
· 2kl 6 (2k − 1)l < 1.

Hence, statement (i) of Proposition 3.1 and (3.4) yield

|K(t, y)−K(x0, y)| 6 C
l

(2kl)(1+m+n)/̺
6 C

l

(2kl)n+1
.

2−k

(2kl)n
,

provided m 6 −(n+ 1)(1− ̺). Combining all the conditions on m, we require

−(n+ 1) < m 6 −(n+ 1)(1− ̺),

which ends the proof of (3.1) and Proposition 3.1. �

Let us continue to estimate K3. Equation (3.1) of Proposition 3.1 yields

K3 6
C

|B|

∫

B

∞∑

k=1

∫

2kl6|x0−y|<2k+1l

2−ck

(2kl)n
|b(y)− bB||f(y)| dy dt

6 C

∞∑

k=1

2−ck

(2kl)n

∫

2k+1B

|b(y)− bB||f(y)| dy

6 C
∞∑

k=1

2−ck 1

|2k+1B|

∫

2k+1B

|b− bB||f |.

Let Bk = 2kB. Then

K3 6 C

∞∑

k=1

2−ck 1

|Bk+1|

∫

Bk+1

|b− bB||f |

6 C
∑

k

2−ck

(
1

|Bk+1|

∫

Bk+1

|b− bBk+1
||f |+

1

|Bk+1|

∫

Bk+1

|bB − bBk+1
||f |

)

= C
∑

k

2−ck

(
1

|Bk+1|

∫

Bk+1

|b− bBk+1
||f |+ |bB − bBk+1

|
1

|Bk+1|

∫

Bk+1

|f |

)

= C
∑

k

2−ck(Lk+1 +Mk+1).
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However,

Lk+1 6 Sq′(b;ω,Bk+1)Λq(f ;ω
−1, Bk+1) 6 K∗(b, f, ω)(x), (by Hölder)

so that

K3 6 C

(
K∗(b, f, ω)(x) +

∑

k

2−ckMk+1

)
.

Now, we will show

(3.5)
∑

k

2−ckMk+1 6 C[M∗
λ(|fν|

q)(x)]1/q .

To prove (3.5), we will use the fact that

(3.6)

∫

B

|b− bB| 6 Cν(B)

for each ball B, since b ∈ BMOν . Meanwhile, we recall (1.1). Since ν ∈ A∞, there

exists a η > 0 such that

(3.7)
ν(E)

ν(B)
6 C

(
|E|

|B|

)η

holds for all measurable sets E ⊂ B. Thus,

|bB − bBk+1
| 6

k∑

j=0

|bBj
− bBj+1

| 6

k∑

j=0

1

|Bj |

∫

Bj

|b− bBj+1
|

6C

k∑

j=0

1

|Bj+1|

∫

Bj+1

|b− bBj+1
|

.

k∑

j=0

ν(Bj+1)

|Bj+1|
(by (3.6))

=νBk+1

k∑

j=0

ν(Bj+1)

ν(Bk+1)

|Bk+1|

|Bj+1|

6CνBk+1

k∑

j=0

(
|Bk+1|

|Bj+1|

)1−η

(by (3.7))

=CνBk+1

k∑

j=0

2(k−j)n(1−η) = CνBk+1

k∑

j=0

2jn(1−η)

:=CνBk+1
h(k).
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Hence, for k > 0 we have

∑

k>0

2−ckMk 6 C
∑

k>0

2−ckh(k)νBk

1

|Bk|

∫

Bk

|f |

= C
∑

k>0

2−ckh(k)νBk

1

|Bk|

∫

Bk

|f |νλ1/qν−1λ−1/q

.
∑

k>0

2−ckh(k)νBk

(
1

|Bk|

∫

Bk

|fν|qλ

)1/q(
1

|Bk|

∫

Bk

ν−q′λ−q′/q

)1/q′

6 [M∗
λ(|fν|

q)(x)]1/q
∑

k>0

2−ckh(k)νBk
(λBk

)1/q
(

1

|Bk|

∫

Bk

ν−q′λ−q′/q

)1/q′

,

since λBk
= 1/|Bk|

∫
Bk
λ. Now, we consider the series

∑
k>0

2−ckh(k). Changing the

order of summation, we have

∑

k>0

2−ckh(k) =
∑

j>0

2jn(1−η)
∑

k>j

2−ck .
∑

j>0

2−j(c−n(1−η)),

which is convergent only with the assumption that c−n(1− η) > 0. Therefore, (3.5)

will be proved if

(3.8) I = νB(λB)
1/q

(
1

|B|

∫

B

ν−q′λ−q′/q

)1/q′

6 C

holds for all balls B provided

η > 1−
c

n
,

where c = min{1, (1 +m+ n)/̺}. To show (3.8), we first note that

ν−q′λ−q′/q = µ−q′/pλ−q′(1/q−1/p).

Then choose s large enough such that sq′(1/q − 1/p) = p′/p. Applying the reverse

Hölder inequality to µ−q′/p with the exponent q′s′/p′ for q near p, we get

I = (µBλ
−1
B )1/p(λB)

1/q

(
1

|B|

∫

B

µ−q′/pλ−q′(1/q−1/p)

)1/q′

6 (λB)
1/q−1/p(µB)

1/p

(
1

|B|

∫

B

µ−q′s′/p

)1/s′q′(
1

|B|

∫

B

λ−p′/p

)1/sq′

(by Hölder)

6 (µB)
1/p(µ

−p′/p
B )1/p

′

(λ
p′/p
B )1/sq

′

(λ
−p′/p
B )1/sq

′

(by reverse Hölder)

which is bounded, since µ in Ap. This completes the proof of Lemma 3.1. �

186



P r o o f. We now will prove Theorem 1.1. By Lemma 3.1,

∫
([b, Ta]f)

#pλ 6

∫
K∗(b, f, ω)pλ+

∫
K∗(b, Taf, ω)

pλ

+

∫
K∗

r (b, f, ω̃)
pλ+

∫
(M∗

λ(|fν|
q))p/qλ

for ω and ω̃ satisfying ωq′ , ω̃rq′ ∈ Aq′ . By Lemma 2.7, we can choose an appropriate

r > 1 and such weights ω and ω̃ that

∫
K∗(b, f, ω)pλ 6 C

∫
|f |pµ and

∫
K∗

r (b, f, ω̃)
pλ 6 C

∫
|f |pµ.

Therefore,

∫
([b, Ta]f)

#pλ .

∫
|f |pµ+

∫
|Taf |

pµ+

∫
(M∗

λ(|fν|
q))p/qλ.

Noting our m 6 −(n+ 1)(1 − ̺) also satisfies the condition of Lemma 2.6 by using

Lemma 2.6 we have ∫
|Taf |

pµ 6 C

∫
|f |pµ.

Since λ ∈ Ap, by Lemma 2.1 there is some q < p such that ω ∈ Ap/q. Then by

Lemma 2.2 we obtain

∫
(M∗

λ(|fν|
q))p/qλ 6 C

∫
|fν|pλ = C

∫
|f |pµ.

Hence, we have the two-weighted estimate for the sharp function

(3.9)

∫
([b, Ta]f)

#pλ .

∫
|f |pµ.

Now, for any fixed ball B, let

k =
1

|B|

∫

B

[b, Ta](fχB)

be the average of [b, Ta](fχB) over B and let us estimate

∫

B

|[b, Ta]f |
pλ .

∫

B

|[b, Ta]f − k|pλ+ λ(B)|k|p.
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The first term can be bounded by bounding the inner term by the p-power of

the Hardy-Littlewood maximal function, then using the Fefferman-Stein result (see

Lemma 2.3), and the two-weighted estimate for the sharp function (3.9),

∫

B

|[b, Ta]f − k|pλ 6 C

∫

B

(M∗([b, Ta]f))
pλ .

∫
(M∗([b, Ta]f))

p

.

∫
([b, Ta]f)

#pλ .

∫
|f |pµ

with constants uniform on B. On the other hand, arguing as in the proof of

Lemma 3.1, we deduce

|k| 6
1

|B|

∫

B

|b − bB||Ta(fχB)|+
1

|B|

∫

B

|Ta((b− bB)fχB)|

6 K∗(b, Ta(fχB), ω)(x) +K∗
r (b, f, ω̃)(x).

Combining this estimate with the monotonicity of the integral, and the double-

weighted Lp boundedness of the operators K∗ and K∗
r for an appropriate choice

of ω, ω̃ and r > 1 (see Lemma 2.7), we have

λ(B)|k|p =

∫

B

|k|pλ 6

∫

B

(K∗(b, Ta(fχB), ω)(x) +K∗
r (b, f, ω̃)(x))

pλ

6 ‖K∗(b, Ta(fχB), ω)‖
p
Lp(λ) + ‖K∗

r (b, f, ω̃)‖
p
Lp(λ)

6 C‖Ta(fχB)‖
p
Lp(µ) + ‖f‖Lp(µ) . ‖f‖pLp(µ),

where all constants are independent of B. Here we use the double-weighted Lp

boundedness of the operators K∗
r (see Lemma 2.7), L

p(ω) boundedness of Ta (see

Lemma 2.6) and the monotonicity of the integral to get

∫
K∗(b, Ta(fχB), ω)(x)

pλ 6 C

∫
|Ta(fχB)|

pµ 6 C

∫

B

|f |pµ .

∫
|f |pµ

with constants independent of B. Putting these estimates together, we conclude that

for all balls B ∫

B

|[b, Ta]f |
pλ . ‖f‖pLp(µ)

with constants independent of B. And so, by the monotone convergence theorem,

as the constants are independent of B, this yields

‖[b, Ta]f‖Lp(λ) . ‖f‖Lp(µ).

Since the Hörmander classes Sm
̺,δ satisfy that if m1 6 m2 6 0, then

Sm1

̺,δ ⊂ Sm2

̺,δ ,
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we take directly the critical index of m as mc = −(n + 1)(1 − ̺). So, for every

a(x, ξ) ∈ Sm
̺,δ with m 6 −(n+ 1)(1 − ̺), it follows that for 1 > ̺ > 0,

−(n+ 1) < mc = −(n+ 1)(1− ̺),

and also

a(x, ξ) ∈ Sm
̺,δ ⊂ Smc

̺,δ .

Hence, applying the argument of the proof to mc and taking also

c = min
{
1,
mc + n+ 1

̺

}
= min{1, n+ 1} = 1,

we get a better range of admissible η as η > 1 − 1/n. Thus, we complete the proof

of Theorem 1.1. �
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