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Abstract. We study Carleson measures and Toeplitz operators on the class of so-called
small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson
measures is obtained which extends Seip’s results from the unit disk of C to the unit ball
of Cn. We use this characterization to give necessary and sufficient conditions for the
boundedness and compactness of Toeplitz operators. Finally, we study the Schatten p

classes membership of Toeplitz operators for 1 < p < ∞.
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1. Introduction

Let Cn denote the n-dimensional complex Euclidean space, Bn={z ∈ Cn : |z| < 1}
be the unit ball and Sn = {z ∈ Cn : |z| = 1} be the unit sphere in Cn. Denote

by H(Bn) the space of all holomorphic functions on the unit ball Bn. Let dv be

the normalized volume measure on Bn. The normalized surface measure on Sn is
denoted by dσ.

Let ̺ be a positive continuous and integrable function on [0, 1). We extend it

to Bn by ̺(z) = ̺(|z|) and call such ̺ a weight function. The weighted Bergman

space A2
̺ is the space of functions f in H(Bn) such that

‖f‖2̺ =

∫

Bn

|f(z)|2̺(z) dv(z) < ∞.

Note that A2
̺ is a closed subspace of L

2(Bn, ̺ dv) and hence it is a Hilbert space

endowed with the inner product

〈f, g〉̺ =

∫

Bn

f(z)g(z)̺(z) dv(z), f, g ∈ A2
̺.
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When ̺(r) = (1− r2)α, α > −1, we obtain the standard Bergman spaces A2
α.

We impose a normalization condition on ̺:

∫ 1

0

x2n−1̺(x) dx = 1.

Consider the points rk ∈ [0, 1) determined by the relation

∫ 1

rk

̺(x) dx = 2−k.

Denote by S the class of weights ̺ such that

(1.1) inf
k

1− rk
1− rk+1

> 1.

Since the function

Φf (r) =

∫

Sn
|f(rξ)|2 dσ(ξ)

is non-decreasing, we also have the equivalent norm

(1.2) ‖f‖2̺ ≍
∞∑

k=1

2−k

∫

Sn
|f(rkξ)|2 dσ(ξ), f ∈ A2

̺.

The class S was introduced by Kristian Seip in [13]. It is easy to see that the

functions

̺(x) = (1− x)−β , 0 < β < 1,

and

̺(x) = (1 − x)−1
(
log

1

1− x

)−α

, 1 < α < ∞,

belong to S.

In this paper we prove a characterization of the Carleson measure for weighted

Bergman spaces A2
̺ with ̺ ∈ S. This result is then used to study spectral properties

of Toeplitz operators on these spaces.

Let µ be a finite positive Borel measure on Bn. We say that µ is a Carleson

measure for a Hilbert space X of analytic functions in Bn if there exists a positive

constant C such that
∫

Bn

|f(z)|2 dµ(z) 6 C‖f‖2X , f ∈ X.

It is clear that µ is a Carleson measure for A2
̺ if and only if A

2
̺ ⊂ L2(Bn, dµ) and

the identity operator Id : A2
̺ → L2(Bn, dµ) is bounded. The Carleson constant of µ,
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denoted by Cµ(A2
̺), is the norm of this identity operator Id. Suppose that µ is

a Carleson measure for A2
̺. We say that µ is a vanishing Carleson measure for A

2
̺ if

the above identity operator Id is compact. That is,

lim
k→∞

∫

Bn

|fk(z)|2 dµ(z) = 0

whenever {fk} is a bounded sequence in A2
̺ which converges to 0 uniformly on

compact subsets of Bn.

The concept of Carleson measure was first introduced by Carleson (see [2], [3]) in

order to study interpolating sequences and the corona problem on the algebraH∞ of

all bounded analytic functions on the unit disk. It has quickly become a powerful tool

for the study of function spaces and operators acting on them. Carleson measures on

Bergman spaces were studied by Hastings (see [4]), and later on by Luecking (see [6])

and many others. Recently, Pau and Zhao in [8] gave a characterization for Carleson

measures and vanishing Carleson measures on the unit ball by using the products of

functions in weighted Bergman spaces. In [9], Peláez and Rättyä gave a description

of Carleson measures for A2
̺ on the unit disk when ̺ is such that

1

(1− r)̺(r)

∫ 1

r

̺(t) dt

is either equivalent to 1 or tends to ∞, and in [10] they then got a criterion for A2
̺

on the unit disk when ̺ ∈ D̂, which means

∫ 1

r

̺(s) ds .

∫ 1

(r+1)/2

̺(s) ds.

In [13], Seip gave a characterization of Carleson measures for A2
̺ with ̺ ∈ S in

the case n = 1. One of our main results, Theorem 2.1, extends this result to the

case n > 1.

Given a function ϕ ∈ L∞(Bn), the Toeplitz operator Tϕ on A2
̺ with symbol ϕ is

defined by

Tϕf = P (ϕf), f ∈ A2
̺,

where P : L2(Bn, ̺ dv) → A2
̺ is the orthogonal projection onto A

2
̺. Using the integral

representation of P , we can write Tϕ as

Tϕf(z) =

∫

Bn

K̺(z, w)f(w)ϕ(w)̺(w) dv(w), z ∈ Bn,
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where K̺(z, w) is the reproducing kernel for A
2
̺. The Toeplitz operators can also be

defined for unbounded symbols or for finite measures on Bn. In fact, given a finite

positive Borel measure µ on Bn, the Toeplitz operator Tµ : A2
̺ → A2

̺ is defined as

Tµf(z) =

∫

Bn

K̺(z, w)f(w) dµ(w), z ∈ Bn.

Note that

〈Tµf, g〉̺ =

∫

Bn

f(z)g(z) dµ(z), f, g ∈ A2
̺.

The Toeplitz operators acting on various spaces of holomorphic functions have been

extensively studied by many authors, and the theory is especially well understood in

the case of Hardy spaces or standard Bergman spaces (see [14], [15] and the references

therein). Luecking in [7] was the first to study Toeplitz operators on Bergman spaces

with measures as symbols and some interesting results about Toeplitz operators

acting on large Bergman spaces were obtained by Lin and Rochberg, see [5]. In this

paper, we study the boundedness and compactness of Tµ on A2
̺ with ̺ ∈ S.

Next we study when our Toeplitz operators belong to the Schatten class. We

refer to [15], Chapter 1 for a brief account on the Schatten classes. A description

of the standard Bergman spaces on the unit disk was given (see [15], Chapter 7),

and a description for the case of large Bergman spaces on the disk was obtained by

Arroussi, Park, and Pau in 2015, see [1]. In 2016, Peláez and Rättyä in [11] gave an

interesting characterization for the case of small Bergman spaces on the unit disk,

where the weight ̺ ∈ D̂. Note that S $ D̂, but {A2
̺ : ̺ ∈ S} = {A2

̺ : ̺ ∈ D̂}. In
fact, for ̺ ∈ S ∪ D̂, we can find ˜̺ ∈ S ∩ D̂ such that A2

̺ = A2
˜̺
. Indeed, by the

monotonicity of the functions Φf , we obtain that if h̺1
& h̺2

, then A2
̺1

⊂ A2
̺2
,

where h̺(x) =
∫ 1

1−x
̺(t) dt. Correspondingly, if h̺1

≍ h̺2
, then A2

̺1
= A2

̺2
. Now, if

̺ ∈ S, then we can interpolate h̺ linearly between the points 1− rk, k > 1, to get h ˜̺

such that A2
̺ = A2

˜̺ and h ˜̺(cx) 6 2h ˜̺(x) for some c > 1. Hence, h ˜̺(2x) 6 dh ˜̺(x) for

some d > 1 and thus ˜̺ ∈ D̂. On the other hand, if ̺ ∈ D̂, then we can interpolate
log h̺ linearly between the points 2

−k, k > 1, to get h ˜̺ such that A
2
̺ = A2

˜̺ and

h ˜̺(dx) 6 2h ˜̺(x) for some d > 1. Hence, ˜̺∈ S.

We introduce a subclass S∗ of weights in S determined by the condition that

̺∗(r) . ̺(r) for r ∈ (0, 1), where

̺∗(r) =
1

1− r

∫ 1

r

̺(t) dt.

For example, the weights

̺(x) = (1− x)−β
(
log

1

1− x

)α
, 0 < β < 1, α ∈ R,
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belong to S∗, but the weights

̺(x) = (1− x)−1
(
log

1

1− x

)α
, α < −1,

̺(x) = (1 − x)−1
(
log

1

1− x

)−1(
log log

1

1− x

)α
, α < −1,

do not belong to S∗.

For weights ̺ in S∗, we obtain a characterization of the symbols of the Toeplitz

operators in the Schatten classes Sp. In [12], Peláez, Rättyä and Sierra gave a char-

acterization for the case of dimension n = 1 when the weight is regular, that is

̺∗(r) ≍ ̺(r). As an easy observation, our result is equivalent to their result when

n = 1. We point out that our approach is completely different from that of [12],

which does not seem to work in higher dimensions. On the other hand, for regular

weights ̺ in S \ S∗, this characterization fails. A counterexample was given in [12].

In this paper, we restrict ourselves to the case 1 < p < ∞. For the case 0 < p 6 1,

the techniques we use should be modified.

The paper is organized as follows: The main results are stated in Section 2 and

their proofs are given in Sections 3–5.

2. Main results

Throughout this text, we use the following notation. For every nonnegative inte-

ger k, set

Ωk = {z ∈ Bn : rk 6 |z| < rk+1}
and let µk be the measure defined by µk = χΩk

µ whenever a nonnegative Borel

measure µ on Bn is given. The notation U(z) . V (z) (or equivalently V (z) & U(z))

means that there is a positive constant C such that U(z) 6 CV (z) holds for all z in

the set in question, which may be a space of functions or a set of numbers. If both

U(z) . V (z) and V (z) . U(z), then we write U(z) ≍ V (z).

Our results are following:

Theorem 2.1. Let ̺ ∈ S and let µ be a finite positive Borel measure on Bn.

Then:

(i) µ is a Carleson measure for A2
̺ if and only if each µk is a Carleson measure for

the Hardy space H2 with the Carleson constant Cµk
(H2) . 2−k, k > 0.

(ii) µ is a vanishing Carleson measure for A2
̺ if and only if

lim
k→∞

2kCµk
(H2) = 0.

Theorem 2.1 (i) for the case n = 1 was obtained by Seip in [13].

215



Theorem 2.2. Let ̺ ∈ S and let µ be a finite positive Borel measure on Bn.

Then:

(i) The Toeplitz operator Tµ is bounded on A
2
̺ if and only if µ is a Carleson measure

for A2
̺.

(ii) The Toeplitz operator Tµ is compact on A2
̺ if and only if µ is a vanishing

Carleson measure for A2
̺.

Given z ∈ Bn and 0 < α < 1, we consider the Bergman metric ball

E(z, α) = {w ∈ Bn : β(z, w) < α},

where β(z, w) is the Bergman metric given by

β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ Bn.

Here, ϕz is the Möbius transformation on Bn that interchanges 0 and z.

We know that E(0, α) is actually a Euclidean ball of radius R = tanhα, centered

at the origin, and

E(z, α) = ϕz(E(0, α)).

Moreover, for fixed α, v(E(z, α)) ≍ (1−|z|)n+1. See [14], Chapter 1 for more details.

For a measure µ on Bn and α > 0, we define the function µ̂α by

µ̂α(z) =
2kµ(E(z, α))

(1− |z|)n , z ∈ Ωk.

Let T̃µ be the Berezin transform of Tµ, defined by

T̃µ(z) = 〈Tµkz, kz〉̺, z ∈ Bn,

where kz is the normalized reproducing kernel of A
2
̺. Set

dλ̺(z) =
2k̺(z) dv(z)

(1− |z|)n , z ∈ Ωk.

Theorem 2.3. Let ̺ be in S∗, µ be a finite positive Borel measure and 1 < p < ∞.
The following conditions are equivalent:

(a) The Toeplitz operator Tµ is in the Schatten class Sp.

(b) The function T̃µ is in Lp(Bn, dλ̺).

(c) The function µ̂α is in Lp(Bn, dλ̺) for a sufficiently small α > 0.
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3. Proof of Theorem 2.1

Given a ∈ Bn \ {0} and r > 0. Let δ(a) =
√
2(1− |a|). Define Q(a, r) ⊂ Bn and

O(a, r) ⊂ Sn as follows:

Q(a, r) =
{
z ∈ Bn :

√
|1− 〈a/|a|, z〉| < r

}
,

O(a, r) =
{
ζ ∈ Sn :

√
|1− 〈a/|a|, ζ〉| < r

}
.

For simplicity of notation, we write Qa instead ofQ(a, δ(a)), Oa instead of O(a, δ(a)).

We recall a well known characterization of Carleson measures for the Hardy space

(see [14]): A positive Borel measure µ on Bn is a Carleson measure for H
2 if and

only if µ(Qa) . (1− |a|)n for all a ∈ Bn \ {0}. Furthermore,

Cµ(H2) ≍ sup
a∈Bn\{0}

µ(Qa)(1 − |a|)−n.

We use the following covering lemma from [14], Lemma 4.7.

Lemma 3.1. Suppose N is a natural number, al ∈ Bn \ {0}, 1 6 l 6 N ,

E =

N⋃

l=1

Oal
.

There exists a subsequence {li}, 1 6 i 6 M , such that

(a) Oali
, 1 6 i 6 M , are disjoint.

(b) O(ali , 3δ(ali)), 1 6 i 6 M , cover E.

Lemma 3.2. Let µ be a finite positive measure on Bn. Then µk is a Carleson

measure for H2 if and only if µk(Qa) . (1 − |a|)n for all a ∈ Ωk. Furthermore,

Cµk
(H2) ≍ sup

a∈Ωk

(1− |a|)−nµk(Qa).

P r o o f. Let a ∈ Bn \ {0}. Then a ∈ Ωl for some l > 1. If l > k, then

µk(Qa) = 0 and there is nothing to prove. When a ∈ Ωl, l 6 k, we can cover

Qa \ rkBn by a finite family {Qal
: l ∈ Λ} with al ∈ Ωk−1, where Λ is a finite index

set. Applying Lemma 3.1 to the set {Oal
: l ∈ Λ}, we get a subset Λ0 of Λ such

that Oal
, l ∈ Λ0, are disjoint and O(al, 3δ(al)), l ∈ Λ0, cover Oa. Moreover, it is

easy to see that

Qa \ rkBn ⊂
⋃

l∈Λ0

Q(al, 3δ(al)).

Then

µk(Qa) = µk(Qa \ rkBn) 6
∑

l∈Λ0

µk(Q(al, 3δ(al))).
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Since al ∈ Ωk−1, we have µk(Q(al, 3δ(al))) . (1− |al|)n ≍ σ(Oal
). Hence

µk(Qa) .
∑

l∈Λ0

σ(Oal
) = σ

( ⋃

l∈Λ0

Oal

)
.

Finally,

σ
( ⋃

l∈Λ0

Oal

)
. σ(Oa) ≍ (1− |a|)n.

Therefore µk(Qa) . (1 − |a|)n. This completes the proof. �

P r o o f of part (i). (⇐) Since µk are Carleson measures for H
2 with Carleson

constants . 2−k, the same holds for H2 on the smaller ball rk+2Bn. Indeed, we

just use the characterization of Carleson measures and the fact that if Q(a, δ(a)) ∩
r−1
k+2Ωk 6= ∅, then 1 − |a| & 1 − rk+2 and, hence, rk+2Q(a, δ(a)) ⊂ Q(a,Mδ(a)) for

some M < ∞ independent of a and k.

Therefore, ∫

Ωk

|f(z)|2 dµ(z) . 2−k

∫

Sn
|f(rk+2ξ)|2 dσ(ξ)

for an arbitrary function f in A2
̺ and for all k. Summing this estimate over all k > 1,

we get ∫

Bn

|f(z)|2 dµ(z) .
∞∑

k=1

2−k

∫

Sn
|f(rk+2ξ)|2 dσ(ξ) ≍ ‖f‖2̺.

(⇒) We just need to check that µk(Qa) . 2−k(1 − |a|)n when a is in Ωk, k > 0.

We use the test function

(3.1) fa(z) = (1 − 〈a, z〉)−γ

with large γ. By (1.2), we have

‖fa‖2̺ ≍
∞∑

j=1

2−j

∫

Sn

1

|1− 〈a, rjξ〉|2γ
dσ(ξ) ≍

∞∑

j=1

2−j

(1 − rj |a|)2γ−n
.

Since a ∈ Ωk, relation (1.1) yields that

(3.2) ‖fa‖2̺ ≍ 2−k(1− |a|)−2γ+n.

Indeed,

∞∑

j=1

2−j

(1 − rj |a|)2γ−n
=

∑

j6k

2−j

(1 − rj |a|)2γ−n
+
∑

j>k

2−j

(1− rj |a|)2γ−n

≍
∑

j6k

2−j

(1− rj)2γ−n
+
∑

j>k

2−j

(1− |a|)2γ−n
≍ 2−k

(1 − rk)2γ−n
+

2−k

(1 − |a|)2γ−n

≍ 2−k(1 − |a|)−2γ+n.

218



On the other hand, for every z in Qa we have

|1− 〈a, z〉| = |(1− |a|) + |a|(1− 〈a/|a|, z〉)| 6 (1 − |a|) + |a||1− 〈a/|a|, z〉|
< (1− |a|) + 2|a|(1− |a|) 6 3(1− |a|).

Hence,

(3.3) |fa(z)| & (1− |a|)−γ , z ∈ Qa.

Thus, ∫

Bn

|fa(z)|2 dµ(z) & (1 − |a|)−2γµ(Qa ∩ Ωk).

Since µ is a Carleson measure for A2
̺, we get

µ(Qa ∩Ωk) . 2−k(1 − |a|)n.

This implies that µk is a Carleson measure for the Hardy space H
2 with the Carleson

constant Cµk
(H2) . 2−k. �

P r o o f of part (ii). Suppose that µ is a vanishing Carleson measure for A2
̺.

Given a in Ωk, consider the function fa defined by (3.1). By (3.2),

‖fa‖2̺ ≍ 2−k(1− |a|)−2γ+n.

Set

(3.4) ha(z) =
(1 − 〈a, z〉)−γ

2−k/2(1 − |a|)−γ+n/2
.

Then ‖ha‖2̺ ≍ 1 and, by (3.3),

|ha(z)|2 &
2k

(1− |a|)n , z ∈ Qa.

Since µ is a vanishing Carleson measure for A2
̺ and ha tends to 0 uniformly on

compact subsets of the unit ball as |a| → 1, we have

lim
|a|→1

∫

Bn

|ha(z)|2 dµ(z) = 0.

Thus,

sup
a∈Ωk

2kµk(Qa ∩ Ωk)

(1 − |a|)n → 0

as k → ∞. Hence, lim
k→∞

2kCµk
(H2) = 0.
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Conversely, let µr = µ|Bn\rBn
, where rBn = {z ∈ Bn : |z| < r}. Then (µr)k 6 µk,

k > 1, and (µr)k = 0 if rk+1 6 r. Therefore, part (i) of Theorem 2.1 implies that

∫

Bn

|h(z)|2 dµr(z) 6 Cr‖h‖2̺, h ∈ A2
̺,

where

(3.5) Cr = sup
k : rk+1>r

2kCµk
(H2) and lim

r→1
Cr = 0.

Let {fk} be a bounded sequence in A2
̺ converging uniformly to 0 on compact subsets

of Bn. Let ε > 0. By (3.5), there exists a r0 ∈ (0, 1) such that Cr < ε for all r > r0.

Moreover, by the uniform convergence on compact subsets, we may choose k0 ∈ N
such that |fk(z)|2 < ε for all k > k0 and z ∈ r0Bn. It follows that

∫

Bn

|fk(z)|2 dµ(z) =
∫

r0Bn

|fk(z)|2 dµ(z) +
∫

Bn\r0Bn

|fk(z)|2 dµ(z)

< εµ(r0Bn) +

∫

Bn

|fk(z)|2 dµr0(z)

6 εµ(r0Bn) + Cr0‖fk‖2̺ 6 εC, k > k0,

for some positive constant C. Hence, µ is a vanishing Carleson measure for A2
̺. �

4. Proof of Theorem 2.2

P r o o f of part (i). (⇒) Given a in Ωk, we define ha by (3.4). Then

‖ha‖2̺ ≍ 1 and |ha(z)|2 & 2k(1− |a|)−n, z ∈ Qa.

Consider the function

(4.1) T#
µ (a) = 〈Tµha, ha〉̺ =

∫

Bn

|ha|2 dµ(z).

Since Tµ is bounded, A := sup
a∈Bn

T#
µ (a) < ∞. Then

(4.2) A >

∫

Bn

|ha(z)|2 dµ(z) >
∫

Bn

|ha(z)|2 dµk(z)

>

∫

Qa

|ha(z)|2 dµk(z) & 2k(1− |a|)−nµk(Qa).
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Hence, µk(Qa) . 2−k(1 − |a|)n for every a ∈ Ωk. By Theorem 2.1 and Lemma 3.2,

µ is a Carleson measure for A2
̺.

(⇐) For every f, g ∈ A2
̺ we have

〈Tµf, g〉̺ =

∫

Bn

f(z)g(z) dµ(z).

Then by Cauchy-Schwarz inequality, we get

|〈Tµf, g〉̺| 6
∫

Bn

|f(z)||g(z)| dµ(z) 6
(∫

Bn

|f(z)|2 dµ(z)
)1/2(∫

Bn

|g(z)|2 dµ(z)
)1/2

.

Since µ is a Carleson measure for A2
̺, there exists a positive constant C such that

∫

Bn

|f(z)|2 dµ(z) 6 C‖f‖2̺ and

∫

Bn

|g(z)|2 dµ(z) 6 C‖g‖2̺.

Hence,

|〈Tµf, g〉̺| 6 C‖f‖̺‖g‖̺ ∀ f, g ∈ A2
̺.

Thus, Tµ is bounded on A2
̺. �

P r o o f of part (ii). We need the following auxiliary results. �

Proposition 4.1. Suppose that f ∈ A2
̺ with ̺ ∈ S. Then

(4.3) |f(z)|2 6 C2k

(1− |z|)n ‖f‖
2
̺, z ∈ Ωk, k > 0,

where C is a positive constant independent of k and z.

P r o o f. Let z ∈ Ωk. Applying [14], Corollary 4.5 to the function g(z) = f(rk+2z)

at the point z/(rk+2), we obtain

|f(z)|2 6

∫

Sn
|f(rk+2ζ)|2

(1− |z/rk+2|2)n
|1− 〈z/rk+2, ζ〉|2n

dσ(ζ).

By (1.1), |1−〈z/rk+2, ζ〉| > 1−|〈z/rk+2, ζ〉| > 1−|z||ζ|/rk+2 = 1−|z|/rk+2 & 1−|z|
for z ∈ Ωk, ζ ∈ Sn. Thus,

|f(z)|2 .

∫

Sn
|f(rk+2ζ)|2

(1− |z|2)n
(1− |z|)2n dσ(ζ) 6

(1 + |z|)n
(1− |z|)n

∫

Sn
|f(rk+2ζ)|2 dσ(ζ)

.
2k

(1 − |z|)n 2
−k

∫

Sn
|f(rk+2ζ)|2 dσ(ζ)

6
2k

(1 − |z|)n
∞∑

j=1

2−j

∫

Sn
|f(rj+2ζ)|2 dσ(ζ) .

2k

(1− |z|)n ‖f‖
2
̺

with constants independent of k and z. �
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Corollary 4.2. A sequence of functions {fk} ⊂ A2
̺ converges to 0 weakly in A2

̺

if and only if it is bounded in A2
̺ and converges to 0 uniformly on each compact

subset of Bn.

P r o o f of part (ii) of Theorem 2.2. Suppose that Tµ is compact on A2
̺. We

define ha, a ∈ Bn by (3.4) and T#
µ by (4.1). Then ‖ha‖2̺ ≍ 1 and ha converges

uniformly to 0 on compact subsets of Bn as |a| → 1. Since Tµ is compact, T
#
µ (a) → 0

as |a| → 1. By (4.2) this implies that

sup
a∈Ωk

2kµk(Qa)

(1 − |a|)n → 0 as k → ∞.

Hence,

lim
k→∞

2kCµk
(H2) = 0.

By part (ii) of Theorem 2.1, µ is a vanishing Carleson measure for A2
̺.

Conversely, assume that µ is a vanishing Carleson measure for A2
̺. For every

h ∈ A2
̺ we have

‖Tµh‖̺ = sup
g∈A2

̺

‖g‖̺61

|〈Tµh, g〉̺|.

Furthermore,

|〈Tµh, g〉̺| =
∣∣∣∣
∫

Bn

h(z)g(z) dµ(z)

∣∣∣∣ 6
∫

Bn

|h(z)||g(z)| dµ(z)

6

(∫

Bn

|h(z)|2 dµ(z)
)1/2(∫

Bn

|g(z)|2 dµ(z)
)1/2

.

(∫

Bn

|h(z)|2 dµ(z)
)1/2

‖g‖̺.

The last inequality follows from the fact that µ is a Carleson measure for A2
̺. There-

fore,

‖Tµh‖̺ .

(∫

Bn

|h(z)|2 dµ(z)
)1/2

, h ∈ A2
̺.

Now, let {fk} ⊂ A2
̺ be bounded and converge uniformly to 0 on compact subsets

of Bn. Since µ is a vanishing Carleson measure for A
2
̺,

lim
k→∞

∫

Bn

|fk(z)|2 dµ(z) = 0.

It follows that ‖Tµfk‖̺ → 0 and hence Tµ is compact. �
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5. Proof of Theorem 2.3

Proposition 5.1. Let K̺(z, w) be the reproducing kernel of A
2
̺.

(a) Let k > 1, z ∈ Ωk. Then

(5.1) K̺(z, z) ≍
2k

(1− |z|)n .

(b) There exists α = α(̺) > 0 such that for every z ∈ Bn,

(5.2) |K̺(z, w)|2 ≍ K̺(z, z)K̺(w,w)

whenever w ∈ E(z, α).

P r o o f. (a) Fix k > 1. Given z ∈ Ωk, let Lz be the point evaluation at z on A
2
̺.

It is well known that

K̺(z, z) = ‖Lz‖2.

By Proposition 4.1,

‖Lz‖2 .
2k

(1− |z|)n .

Furthermore, choosing hz by (3.4), we have ‖hz‖̺ ≍ 1 and

|hz(z)|2 &
2k

(1 − |z|)n .

Hence,

‖Lz‖2 &
2k

(1− |z|)n .

Thus

K̺(z, z) ≍
2k

(1− |z|)n , z ∈ Ωk.

(b) In this proof, we use an argument of Lin and Rochberg, see [5]. It is well

known that

|K̺(z, w)|2 6 K̺(z, z)K̺(w,w)

for all z, w ∈ Bn. For any fixed z0 ∈ Ωk, consider the subspace A
2
̺(z0) defined as

A2
̺(z0) = {f ∈ A2

̺ : f(z0) = 0}.

Denote by Lz0 the one-dimensional subspace spanned by the function

k̺,z0(z) =
K̺(z, z0)√
K̺(z0, z0)

.

223



Then we have the orthogonal decomposition

A2
̺ = A2

̺(z0)⊕ Lz0 .

Hence K̺(z, w) = K̺,z0(z, w) + k̺,z0(w)k̺,z0(z), where K̺,z0 is the reproducing

kernel of A2
̺(z0). Therefore,

K̺(z0, w) = k̺,z0(w)k̺,z0(z0)

and

(5.3) K̺(w,w) = K̺,z0(w,w) + |k̺,z0(w)|2.

We are going to prove that there exists α > 0 such that

(5.4) K̺,z0(w,w) <
1

2
K̺(w,w), w ∈ E(z0, α).

By (1.1), there exists α1 > 0 such that E(z0, α) ⊂ Ωk−1 ∪ Ωk ∪ Ωk+1, 0 < α < α1.

Hence, for every f ∈ A2
̺(z0) such that ‖f‖̺ = 1, by Proposition 4.1 we have

(5.5) |f(w)|2 .
2k

(1− |w|)n ≍ 2k

(1− |z0|)n

whenever w ∈ E(z0, α). Since E(z0, α) = ϕz0(E(0, α)), we can rewrite (5.5) as

(5.6) |f(ϕz0(η))|2 .
2k

(1 − |z0|)n

whenever η ∈ E(0, α). Note that f(z0) = f(ϕz0(0)) = 0. Therefore, by the Schwarz

lemma, we get

|f(ϕz0(η))|2 . |η|2 2k

(1− |z0|)n
≍ |η|2 2k

(1− |ϕz0(η)|)n

whenever η ∈ E(0, α). This implies that there is a constant C > 0 such that

|f(ϕz0(η))|2 6 C|η|2 2k

(1− |ϕz0(η)|)n
, η ∈ E(0, α).

Therefore, we can choose α so small that

|f(ϕz0(η))|2 <
1

2
K̺(ϕz0(η), ϕz0 (η)), η ∈ E(0, α).

This proves (5.4).
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Now, from (5.3) and (5.4), we obtain that |k̺,z0(w)|2 > 1
2K̺(w,w) whenever

w ∈ E(z0, α). This means that

|K̺(w, z0)|2 >
1

2
K̺(z0, z0)K̺(w,w)

whenever w ∈ E(z0, α), which completes the proof. �

Lemma 5.2. Let T be a positive operator on A2
̺ and let T̃ be the Berezin trans-

form of T , defined by

T̃ (z) = 〈Tkz, kz〉̺, z ∈ Bn.

(a) Let 0 < p 6 1. If T̃ ∈ Lp(Bn, dλ̺), then T is in Sp.

(b) Let p > 1. If T is in Sp, then T̃ ∈ Lp(Bn, dλ̺). Here,

dλ̺(z) =
2k̺(z) dv(z)

(1− |z|)n

if z ∈ Ωk.

P r o o f. Note that dλ̺(z) ≍ K(z, z)̺(z) dv(z) = ‖Kz‖2̺(z) dv(z).
The proof is similar to the proof of [1], Lemma 4.2. The positive operator T is

in Sp if and only if T
p is in the trace class S1. Fix an orthonormal basis {ek} of A2

̺.

Since T p is positive, it is in S1 if and only if
∑
k

〈T pek, ek〉̺ < ∞. Let U =
√
T p. By

Fubini’s theorem, the reproducing property of Kz, and Parseval’s identity, we have

∑

k

〈T pek, ek〉̺ =
∑

k

‖Uek‖2̺ =
∑

k

∫

Bn

|Uek(z)|2̺(z) dv(z)

=

∫

Bn

(∑

k

|Uek(z)|2
)
̺(z) dv(z) =

∫

Bn

(∑

k

|〈Uek,Kz〉̺|2
)
̺(z) dv(z)

=

∫

Bn

(∑

k

|〈ek, UKz〉̺|2
)
̺(z) dv(z) =

∫

Bn

‖UKz‖2̺̺(z) dv(z)

=

∫

Bn

〈T pKz,Kz〉̺̺(z) dv(z) =
∫

Bn

〈T pkz, kz〉̺‖Kz‖2̺̺(z) dv(z)

≍
∫

Bn

〈T pkz , kz〉̺ dλ̺(z).

Hence, both (a) and (b) are the consequences of the well known inequalities (see [15],

Proposition 1.31)

〈T pkz , kz〉̺ 6 〈Tkz, kz〉p̺ = (T̃ (z))p, 0 < p 6 1,

〈T pkz , kz〉̺ > 〈Tkz, kz〉p̺ = (T̃ (z))p, p > 1.

�
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Lemma 5.3. Let ̺ ∈ S∗ and z ∈ Ωk. Then there exists α0 > 0 such that for

every α ∈ (0, α0) we have

|f(z)|2 .
2k

(1 − |z|)n
∫

E(z,α)

|f(w)|2̺(w) dv(w)

for all f ∈ H(Bn).

P r o o f. Let z ∈ Ωk. For each f ∈ H(Bn), by the subharmonicity of the function

w 7→ |f(w)|2 and the estimate v(E(z, α)) ≍ (1 − |z|)n+1, we have

|f(z)|2 .
1

(1 − |z|)n+1

∫

E(z,α)

|f(w)|2 dv(w).

It is easy to see that 1− |z| ≍ 1− |w| for w ∈ E(z, α). Hence,

(5.7) |f(z)|2 . 1

(1− |z|)n
∫

E(z,α)

|f(w)|2 1

1− |w| dv(w)

=
2k

(1− |z|)n
∫

E(z,α)

|f(w)|2 2−k

1− |w| dv(w).

By (1.1), for small α0 we have E(z, α0) ⊂ Ωk−1 ∪ Ωk ∪ Ωk+1. Therefore, for every

α ∈ (0, α0), we have rk−1 < |w| < rk+2 for w ∈ E(z, α). Since
∫ 1

rk+2
̺(t) dt = 2−k−2,

we obtain 2−k .
∫ 1

|w| ̺(t) dt for every w ∈ E(z, α), α ∈ (0, α0). Plugging this

into (5.7) and using that ̺∗(w) . ̺(w), we get

|f(z)|2 .
2k

(1 − |z|)n
∫

E(z,α)

|f(w)|2̺∗(w) dv(w)

.
2k

(1 − |z|)n
∫

E(z,α)

|f(w)|2̺(w) dv(w).

This completes the proof. �

P r o o f of Theorem 2.3. (a) ⇒ (b). This follows from Lemma 5.2 (b).
(b) ⇒ (c). By Proposition 5.1 (b), for sufficiently small α > 0, we have

|Kz(w)|2 ≍ ‖Kz‖2̺‖Kw‖2̺, w ∈ E(z, α), z ∈ Bn.

Then by Proposition 5.1 (a), we get

T̃µ(z) =

∫

Bn

|kz(w)|2 dµ(w) = ‖Kz‖−2
̺

∫

Bn

|Kz(w)|2 dµ(w)

> ‖Kz‖−2
̺

∫

E(z,α)

|Kz(w)|2 dµ(w) ≍
∫

E(z,α)

‖Kw‖2̺ dµ(w) ≍ µ̂α(z).

Since T̃µ is in Lp(Bn, dλ̺), µ̂α is also in Lp(Bn, dλ̺).
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(c) ⇒ (a). For every orthonormal basis {el} of A2
̺, we have

(5.8)
∑

l

〈Tµel, el〉p̺ =
∑

l

(∫

Bn

|el(z)|2 dµ(z)
)p

.

By Lemma 5.3,

|el(z)|2 .
2k

(1− |z|)n
∫

E(z,α)

|el(w)|2̺(w) dv(w), z ∈ Ωk.

By Fubini’s theorem and Hölder’s inequality, we have

∫

Bn

|el(z)|2 dµ(z) .
∫

Bn

|el(w)|2µ̂α(w)̺(w) dv(w)

6

(∫

Bn

|el(w)|2µ̂α(w)
p̺(w) dv(w)

)1/p(∫

Bn

|el(w)|2̺(w) dv(w)
)1/q

=

(∫

Bn

|el(w)|2µ̂α(w)
p̺(w) dv(w)

)1/p

,

where 1/p+ 1/q = 1. Thus, (5.8) implies that

∑

l

〈Tµel, el〉p̺ .

∫

Bn

(∑

l

|el(w)|2
)
µ̂α(w)

p̺(w) dv(w)

=

∫

Bn

‖Kw‖2̺µ̂α(w)
p̺(w) dv(w) ≍

∫

Bn

µ̂α(w)
p dλ̺(w) < ∞.

This proves (a). �

Remark 5.4. Let 1 < p < ∞. In the case of large weighted Bergman spaces,
Arroussi, Park and Pau proved in [1], Theorem 4.6 that

Tµ ∈ Sp ⇔ µ̃ε(z) =
µ(B(z, ε))

(1 − |z|)2n is in the corresponding weighted Lp,

where B(z, ε) is the Euclidean ball with the center z and radius ε(1 − |z|). When
the dimension n = 1, we can see that µ̃ε is in Lp if and only if µ̂ε is in L

p. However,

for n > 1, this equivalence is not true anymore.

Let us verify this. Choose zk ∈ Bn such that |zk| tend to 1 sufficiently rapidly as
k → ∞. Consider

µ =
∞∑

k=1

ckχB(zk,ε) and µ∗ =
∞∑

k=1

ckχB(zk,3ε),

227



where ck > 0 will be chosen later. We have

µ . µ̃ε . µ∗

and
∞∑

k=1

ck
v(B(zk, ε))

v(E(zk, ε))
χE(zk,ε) . µ̂ε .

∞∑

k=1

ck
v(B(zk, ε))

v(E(zk, ε))
χE(zk,3ε).

Hence

µ̃ε ∈ Lp ⇔
∞∑

k=1

cpkv(B(zk, ε)) < ∞

and

µ̂ε ∈ Lp ⇔
∞∑

k=1

cpk
(v(B(zk, ε)))

p

(v(E(zk, ε)))p−1
< ∞.

Since

cpk(v(B(zk, ε)))
p(v(E(zk, ε)))

1−p

cpkv(B(zk, ε))
=

(v(B(zk, ε))

v(E(zk, ε))

)p−1

≍ (1− |zk|)(n−1)(p−1) → 0

as k → ∞, we can choose ck such that µ̂ε ∈ Lp but µ̃ε /∈ Lp. On the other hand, one

can easily see that µ̃ε ∈ Lp implies µ̂ε ∈ Lp.
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