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Abstract. We consider a biharmonic problem ∆2uω = fω with Navier type boundary
conditions uω = ∆uω = 0, on a family of truncated sectors Ωω in R

2 of radius r, 0 < r < 1
and opening angle ω, ω ∈ (2π/3, π] when ω is close to π. The family of right-hand sides
(fω)ω∈(2π/3,π] is assumed to depend smoothly on ω in L2(Ωω). The main result is that uω

converges to uπ when ω → π with respect to the H2-norm. We can also show that the
H2-topology is optimal for such a convergence result.

Keywords: sector; convex; biharmonic; elliptic; singularity; convergence; Sobolev space
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1. Introduction

We are interested in a family of Navier boundary value problems of the following

type. For Ωω an open polygonal convex set in R
2 and fω ∈ L2(Ωω) given, we search

a (unique) solution uω : Ωω → R to the problem

(Pω)

{

∆2uω = fω in Ωω,

u = ∆uω = 0 on ∂Ωω.

The proposed problem may describe the behaviour of a hinged plate coming from

linear elasticity in planar domains with corner type singularities. The question of

existence, uniqueness and regularity of the solution of such problems with differ-

ent boundary conditions has been addressed by many authors in the literature,

The research has been supported by the Ministry of Higher Education and Scientific
Research within the framework of PRFU university training projects.

c© Institute of Mathematics, Czech Academy of Sciences 2021.

DOI: 10.21136/AM.2021.0284-19 383

http://dx.doi.org/10.21136/AM.2021.0284-19


cf. e.g. Kondratiev [9], Blum and Rannacher [1], Grisvard ([7], [8]), Maz’ya ([11],

[10], [12]), Nicaise ([14], [15], [13]), Dauge ([4], [5], [2]), [3], Stylianou [16], Tami

([17], [18]) and others.

Thanks to localization techniques similar to Chapter 7 of [8] or Chapter 2 of [17],

one can assume that the given open polygonal set Ωω is a conic sector of B1(0)

with opening angle ω ∈ (2π/3, π], where ω is defined uniquely up to rotation. The

solution uω of problem (Pω) in Ωω associated to a right-hand side fω ∈ L2(Ωω)

exhibits a singularity at the origin 0 whose effect is to limit the regularity of uω,

expressed in the scale of Sobolev spaces Hσ(Ωω) of order σ < 1 + π/ω. In contrast,

when ω = π, the solution uπ belongs toH
4(Ωπ). Therefore, there is a jump in Sobolev

exponents describing the regularity of solution when ω → π on the side ω < π, i.e.

maintaining Ωω convex at 0.

Assumption 1.1. The family (fω)ω∈(2π/3,π] is assumed to satisfy the following

convergence relation:

lim
ω→π

‖fω − fπ‖L2(Ωω) = 0.

The main goal of this paper is to prove under Assumption 1.1 and the convexity

of Ωω the convergence in H2-norm of uω to uπ as ω tends to π in the sense that

lim
ω→π

<

‖uω − uπ‖H2(Ωω) = 0.

Since 1 + π/ω tends to 2 for ω close to π, this topology is expected to be the best

possible in that sense. To the best of our knowledge, very few authors have addressed

this question in the biharmonic case, while most other works in the literature only

consider second order problems.

Recently, in [18], we described the singularities of solutions of such problems locally

in the vicinity of the corner and we gave uniform estimates with respect to the angle

parameter ω close to π which is analogous to a Taylor expansion of uω near 0 that

converges to the Taylor expansion of uπ. If ω < π, it is known cf. [18], [17], [1]

that the solution of this problem uω decomposes in the vicinity of the origin as

uω = u1,ω + u2,ω + u3,ω, where u1,ω, u2,ω are the singular parts of uω and u3,ω is

the regular part. More precisely, in the vicinity of the origin, uω ∈ Hσ(Ωω) for all

σ < 1 + π/ω, while for ω = π, the solution uπ enjoys H
4 regularity on Ωπ .

An unpublished version of the result presented here, the proof of the H2 conver-

gence, was completely achieved via a Fourier series technique in Chapter 4 of [17]

with the inconvenience of being tedious and quite technical. In addition, the method

was based on explicit estimates of Fourier coefficients of the solutions, hence making

it specific to the biharmonic operator. In the present paper, we give a different and

simpler version of the proof which is possibly applicable to other elliptic operators.
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The main tools are based on explicit estimates of the trace hω of uπ on the bound-

ary ∂Ωω which allows one to construct a suitable extension with desirable properties

in order to compare uπ and uω on the whole of Ωω. The convergence result follows

thanks to the control of the maximal regularity of the Laplacian on convex domains.

The paper is organized as follows: In the second section, a problem setting is

presented on a truncated sector configuration with Navier type boundary conditions.

There, some definitions and a reasonable set of preliminary lemmas are given in order

to characterize some useful properties of traces and extension operators on radial

boundaries of a sector with explicit estimates with respect to to the opening angle ω

close to π. Moreover, the extension operator is given explicitly in a very simple way,

provided some extra regularity on the traces. The third section is the main one,

where we give the proof of convergence theorem in the best expected topological

space, based on an additional lemma which describes the behaviour of solutions uω

at a nearly flat boundary with respect to the energy norm, highlighting that this

method takes partial advantage of the extra H4 regularity of the solution uπ on the

regular domain Ωπ . Concluding remarks and future works are discussed in the last

section.

2. Problem setting and preliminary results

Let (Ωω)ω∈(2π/3,π] denote a family of conic sectors of B1(0) in R
2 with an opening

angle ω, and define the family of problems (Pω) where fω ∈ L2(Ωω) is assumed

to depend continuously on ω according to Assumption 1.1. Since Navier boundary

conditions are considered in a convex (Lipschitz) domain, it should be mentioned

that the notion of a solution to problem (Pω) is understood in the sense of Chap-

ter 2.3 of [17] or equivalently Chapter 2.7 of [6] by solving a system of two Poisson’s

equations.

In polar coordinates (x = r cos θ, y = r sin θ), cf. Figure 1, we will use the following

notation such that ∂Ωω = Γ+ ∪ Cω ∪ Γ−
ω designates the closed boundary of Ωω,

Ωω = {(x, y) ; 0 < r < 1, 0 < θ < ω}, Γ+ = {(x, y) ; 0 < r < 1, θ = 0},
Cω = {(x, y) ; r = 1, 0 < θ < ω}, Γ−

ω = {(x, y) ; 0 < r < 1, θ = ω}.

Trace spaces such as Hs(Γ−
ω ) are defined straightforwardly as follows. Let us

denote by δω := (cosω, sinω) the unit vector on Γ−
ω as in Figure 1 and for any

φ ∈ D′(Γ−
ω ) define φ̄ ∈ D′(0, 1) by the relation φ̄(r) := φ(rδω) for all r ∈ (0, 1).

Thus, for any real s, we set

Hs(Γ−
ω ) := {φ ∈ D′(Γ−

ω ) ; φ̄ ∈ Hs(0, 1)},
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0 Γ+

ω

Ωω

Γ−

ω

(cosω, sinω) = δω Cω

Figure 1. The sector Ωω, 2π/3 < ω 6 π.

endowed with norm ‖φ‖Hs(Γ−

ω ) := ‖φ̄‖Hs(0,1). In particular, integer order spaces such

as Hm(Γ−
ω ) can be defined straightforwardly, i.e., a function φ defined on Γ

−
ω belongs

to Hm(Γ−
ω ) if and only if φ and all its tangential derivatives on Γ−

ω up to order m

are in L2(Γ−
ω ).

Since the trace on Γ−
ω of a function in H

1
0 (Ωπ) is not necessarily zero, we will need

to define the following space:

H1
0,Γ−

ω

(Ωω) :=
{

φ ∈ H1(Ωω) ; φ|
∂Ωω\Γ−

ω

= 0
}

,

which can be identified with the space of restrictions to Ωω of functions in H1
0 (Ωπ).

In particular, we will show that the semi-norm defined by ‖∇2 · ‖L2(Ωω) (∇2 de-

notes the Hessian matrix) is a norm on H2(Ωω)∩H1
0,Γ−

ω

(Ωω) equivalent to the norm

H2(Ωω) with explicit control on the constant C(ω) with respect to ω ∈ (0, 2π]. More

interestingly, it will follow in the convex case ω ∈ (0, π] cf. Chapter 2.3 of [16] that

the Laplacian of a function is a norm on the space H2(Ωω) ∩H1
0 (Ωω) with namely

the same explicit control on the fundamental norm inequality for the Laplacian with

respect to ω ∈ (0, π].

In polar coordinates, we will denote by G(r, θ) := G(r cos θ, r sin θ), recalling that

Hm(Ωω, r dr dθ) is defined as the space of functions G ∈ L2(Ωω, r dr dθ) such that

1

rk2

∂k1+k2G

∂rk1∂θk2
∈ L2(Ωω , r dr dθ) and

∂k1

∂rk1

( 1

rk2

∂k2G

∂θk2

)

∈ L2(Ωω , r dr dθ)

for all k1, k2 satisfying 0 6 k1 + k2 6 m. It follows that functions G ∈ H1
0,Γ−

ω

(Ωω)

satisfy in this coordinate system G ∈ H1(Ωω , r dr dθ) and G(r, 0) = G(1, θ) = 0 for

all r ∈ (0, 1] and θ ∈ (0, ω).

Lemma 2.1. Let ω ∈ (0, 2π]. Then for all u ∈ H2(Ωω) ∩H1
0,Γ−

ω

(Ωω),

(2.1) ‖u‖H2(Ωω) 6 C(ω)‖∇2u‖L2(Ωω).
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If ω ∈ (0, π], then for all u ∈ H2(Ωω) ∩H1
0 (Ωω),

(2.2) ‖u‖H2(Ωω) 6 C(ω)‖∆u‖L2(Ωω),

with C(ω) =
√

1 + (1 + ω)2.

P r o o f of Lemma 2.1. Let u ∈ H2(Ωω) ∩H1
0,Γ−

ω

(Ωω). Then in polar coordinates

the trace ū(·, 0) lies in H3/2(0, 1) →֒ C1([0, 1]) and satisfies, for all r ∈ (0, 1),

ū(r, 0) =
∂ū

∂r
(r, 0) = 0.

Hence,

ū(r, θ) =

∫ θ

0

∂ū

∂α
(r, α) dα,

∂ū

∂r
(r, θ) =

∫ θ

0

∂2ū

∂α∂r
(r, α) dα,

and with the help of Cauchy-Schwarz inequality one deduces the following inequali-

ties:

∫ ω

0

∫ 1

0

|ū(r, θ)|2r dr dθ 6 ω

∫ ω

0

∫ 1

0

∣

∣

∣

∂ū

∂θ
(r, θ)

∣

∣

∣

2

r dr dθ,(2.3)

∫ ω

0

∫ 1

0

∣

∣

∣

∂ū

∂r
(r, θ)

∣

∣

∣

2

r dr dθ 6 ω

∫ ω

0

∫ 1

0

∣

∣

∣

∂2ū

∂θ∂r
(r, θ)

∣

∣

∣

2

r dr dθ.(2.4)

The first inequality (2.3) yields the classical Poincaré’s inequality

(2.5) ‖u‖2L2(Ωω) 6 ω‖∇u‖2L2(Ωω).

On the other hand, the trace ū(1, ·) lies in H3/2(0, ω) →֒ C1([0, ω]) and satisfies for

all θ ∈ (0, ω),

ū(1, θ) =
∂ū

∂θ
(1, θ) = 0.

It follows that
1

r

∂ū

∂θ
(r, θ) = −

∫ 1

r

∂

∂r′

( 1

r′
∂ū

∂θ

)

(r′, θ) dr′,

and by the same argument of the Cauchy-Schwarz inequality one obtains

(2.6)

∫ ω

0

∫ 1

0

∣

∣

∣

1

r

∂ū

∂θ
(r, θ)

∣

∣

∣

2

r dr dθ 6

∫ ω

0

∫ 1

0

∣

∣

∣

∂

∂r

(1

r

∂ū

∂θ

)

(r, θ)
∣

∣

∣

2

r dr dθ.
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Taking the sum of (2.4) and (2.6), one obtains the second Poincaré’s inequality of

higher order type

(2.7) ‖∇u‖2L2(Ωω) 6 (ω + 1)‖∇2u‖2L2(Ωω).

It follows from inequalities (2.5) and (2.7) that

(2.8) ‖u‖2H2(Ωω) = ‖u‖2L2(Ωω) + ‖∇u‖2L2(Ωω) + ‖∇2u‖2L2(Ωω)

6 (1 + (1 + ω)2)‖∇2u‖2L2(Ωω),

for all u ∈ H2(Ωω) ∩H1
0,Γ−

ω

(Ωω), which gives inequality (3.3).

Finally, assume u ∈ H2(Ωω) ∩ H1
0 (Ωω) and ω ∈ (0, π]. Then the Laplacian in-

equality (3.4) follows immediately, thanks to the fundamental convexity estimate for

the Laplacian (operator) ‖∇2u‖L2(Ωω) 6 ‖∆u‖L2(Ωω), cf. Chapter 2.3 of [16], where

the author’s proof was based on convexity, integration by parts in H3(Ωω)∩H1
0 (Ωω)

and a density argument. The proof of the lemma is finished. �

R em a r k 2.1. Estimate (2.5) is the classical Poincaré’s inequality obtained us-

ing only the fact that u ∈ H1(Ωω) with the boundary condition u = 0 on Γ+.

The higher order inequality (2.7) needs more regularity and a Dirichlet boundary

condition in another direction as Cω.

Lemma 2.2. Let hω := Tr(zπ) on Γ−
ω where zπ ∈ Hm+1(Ωπ) ∩ H1

0 (Ωπ), m > 0,

then for any integer k, 0 6 k 6 m,

(2.9)

∫ 1

0

r
∣

∣

∣

dk

drk
hω(rδω)

r

∣

∣

∣

2

dr +

∫ 1

0

1

r

∣

∣

∣

dk

drk
hω(rδω)

∣

∣

∣

2

dr 6 (π − ω)‖zπ‖2Hm+1(Ωπ )
.

In particular, one has

(2.10) lim
ω→π

‖hω‖Hm(Γ−

ω ) = 0.

Moreover, if m > 1, then hω ∈ Cm−1(Γ−
ω ) and hω(0) = hω(δω) = 0.

P r o o f of Lemma 2.2. Taking tangential derivatives up to order m along Γ−
ω , we

obtain in polar coordinates (r, θ), for any k, 0 6 k 6 m,

dk

drk
hω(rδω) =

∂k

∂rk
zπ(r, ω) = −

∫

π

ω

∂k+1

∂rk∂θ
zπ(r, θ) dθ,
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since zπ ∈ Hm+1(Ωπ) ∩ H1
0 (Ωπ) implies that all radial derivatives of zπ(r, θ) are

zero at θ = π. Thus, thanks to the Cauchy-Schwarz inequality and the fact that

zπ ∈ Hm+1(Ωπ), for all k 6 m we obtain the first estimate

(2.11)

∫ 1

0

1

r

∣

∣

∣

∂k

∂rk
zπ(r, ω)

∣

∣

∣

2

dr 6 (π − ω)

∫ 1

0

∫

π

0

∣

∣

∣

1

r

∂k+1

∂rk∂θ
zπ(r, θ)

∣

∣

∣

2

r dr dθ.

Similarly, we have

dk

drk
hω(rδω)

r
=

∂k

∂rk
zπ(r, ω)

r
= −

∫

π

ω

∂k

∂rk

(1

r

∂

∂θ

)

zπ(r, θ) dθ,

and by the same arguments above one obtains for all k 6 m the second estimate

(2.12)

∫ 1

0

r
∣

∣

∣

∂k

∂rk
zπ

r
(r, ω)

∣

∣

∣

2

dr 6 (π − ω)

∫ 1

0

∫

π

0

∣

∣

∣

∂k

∂rk

(1

r

∂

∂θ

)

zπ(r, θ)
∣

∣

∣

2

r dr dθ.

Then relation (2.9) follows by summing inequalities (2.11) and (2.12). Henceforth,

for all k, 0 6 k 6 m,

lim
ω→π

∥

∥

∥

dk

drk
hω(rδω)

∥

∥

∥

2

L2(Γ−

ω )
= 0,

i.e. (2.10) holds.

The last assertion is a direct consequence of Sobolev’s embedding theorem

Hm(Γ−
ω ) →֒ Cm−1(Γ−

ω ) with m > 1 and the fact that zπ ∈ Hm+1(Ωπ)∩H1
0 (Ωπ) which

yields zπ ∈ C0(Ωπ), in particular hω(0) = zπ(0, 0) = 0 and hω(δω) = zπ(1, ω) = 0.

The proof of the lemma is finished. �

The following lemma gives a weaker version of the existence of extension operators

for traces on Γ−
ω of functions at least H

2(Ωπ)∩H1
0 (Ωπ). The interest in such a lemma

lies in the fact that the solution uπ of our problem in Ωπ has an extra regularity ofH
4,

keeping it useful and powerful in the proof of the main result.

Lemma 2.3. Let ω ∈ (0, π], if gω = Tr(zπ) on Γ−
ω and zπ ∈ Hm+1(Ωπ) ∩H1

0 (Ωπ),

m > 1, then the function Gω (extension of gω to Ωω) defined in polar coordinates by

Gω(r, θ) := gω(r)
θ

ω

has the following properties:

(i) Tr(Gω) = gω on Γ−
ω and Gω ∈ Hm(Ωω) ∩H1

0,Γ−

ω

(Ωω).

(ii) There exists a constant C(m) > 0 dependent only on m, such that

‖Gω‖2Hm(Ωω) 6 C(m)
(

ω‖gω‖2Hm(Γ−

ω )
+

π − ω

ω
‖zπ‖2Hm+1(Ωπ )

)

,(2.13)

lim
ω→π

<

‖Gω‖Hm(Ωω) = 0.(2.14)
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P r o o f of Lemma 2.3. By definition of Gω and using Lemma 2.2 with m > 1, we

obtain gω ∈ H1(Γ−
ω ) →֒ C0(Γ−

ω ) and evidently Gω(r, ω) = gω(r), Gω(r, 0) = 0 for all

r ∈ (0, 1] and Gω(1, θ) = 0 for all θ ∈ (0, ω); hence Gω ∈ H1
0,Γ−

ω

(Ωω) which finishes

the proof of (i).

We also have, for any k, 0 6 k 6 m, where θ2/ω2 is estimated by 1,

∫ ω

0

∫ 1

0

∣

∣

∣

∂k

∂rk
Gω(r, θ)

∣

∣

∣

2

r dr dθ 6 ω

∫ 1

0

∣

∣

∣

dkgω(r)

drk

∣

∣

∣

2

r dr 6 ω‖gω‖2Hm(Γ−

ω )
,(2.15)

∫ ω

0

∫ 1

0

∣

∣

∣

1

rk
∂k

∂θk
Gω(r, θ)

∣

∣

∣

2

r dr dθ =







1

ω

∫ 1

0

1

r
|gω(r)|2 dr if k = 1,

0 if k > 2.

(2.16)

For the cross derivatives, we need to consider only those which are first order with

respect to θ, since all second-order θ-derivatives vanish identically. So, for any inte-

ger k, 0 6 k 6 m− 1,

∫ ω

0

∫ 1

0

∣

∣

∣

1

r

∂k+1

∂rk∂θ
Gω(r, θ)

∣

∣

∣

2

r dr dθ =
1

ω

∫ 1

0

1

r

∣

∣

∣

dkgω(r)

drk

∣

∣

∣

2

dr,(2.17)

∫ ω

0

∫ 1

0

∣

∣

∣

∂k

∂rk

(1

r

∂

∂θ

)

Gω(r, θ)
∣

∣

∣

2

r dr dθ =
1

ω

∫ 1

0

r
∣

∣

∣

dk

drk
gω(r)

r

∣

∣

∣

2

dr.(2.18)

Henceforth, since gω = Tr(zπ) on Γ
−
ω and zπ ∈ Hm+1(Ωπ)∩H1

0 (Ωπ), then by applying

Lemma 2.2 to the right-hand sides of (2.16), (2.17) and (2.18) and summing the

resulting inequality with (2.15) for all values of k = 0, 1, . . . ,m, one obtains (2.13).

Finally, (2.14) holds thanks to Lemma 2.2 using (2.10) by passing to the limit in (2.13)

as ω → π and the proof is finished. �

3. The main result

We consider the family of problems defined in the previous section (Pω)ω∈(2π/3,π],

and we assume that fω depends continuously on ω according to Assumption 1.1.

Then, the following theorem is optimal with respect to the Sobolev exponent. How-

ever, it should be pointed that uω and uπ have different domains of definition which

justifies the notion of convergence below with respect to norms defined on different

Sobolev spaces H2(Ωω) as ω tends to π.

Theorem 3.1. Let uω the family of solutions to problems (Pω), ω ∈ (2π/3, π],

then

lim
ω→π

‖uω − uπ‖H2(Ωω) = 0.
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Notice that the restriction of uω − uπ is actually in H2(Ωω) and not necessarily

in H2(Ωω) ∩ H1
0 (Ωω) since one does not necessarily have uπ = 0 on Γ−

ω . We will

make use of the following lemma which first gives a (weaker) convergence result of

solutions uω of problems (Pω) as ω → π with respect to the energy norm.

Lemma 3.1. Let uω the family of solutions to problems (Pω), ω ∈ (2π/3, π]. Then

lim
ω→π

‖∆uω −∆uπ‖H1(Ωω) = 0,(3.1)

lim
ω→π

‖uω − uπ‖H1(Ωω) = 0.(3.2)

P r o o f of Lemma 3.1. We set vω := ∆uω and vπ := ∆uπ . These are solutions of

the two following problems:

{

∆vω = fω ∈ L2(Ωω) in Ωω,

vω = 0 on ∂Ωω,
(3.3)

{

∆vπ = fπ ∈ L2(Ωπ) in Ωπ ,

vπ = 0 on ∂Ωπ.
(3.4)

If we use the same notation of a function defined on Ωπ and its restriction to Ωω,

then one has on Ωω:

(3.5)











∆vπ = fπ ∈ L2(Ωω),

vπ = 0 on ∂Ωω \ Γ−
ω ,

vπ = gω on Γ−
ω ,

where gω = Tr(vπ) on Γ−
ω . Since uπ ∈ H4(Ωπ), then vπ ∈ H2(Ωπ) ∩ H1

0 (Ωπ) and

Lemma 2.3 withm = 1 gives an extension of gω to Ωω, in polar coordinatesGω(r, θ) =

gω(r)θ/ω, such that Gω ∈ H1
0,Γ−

ω

(Ωω) and

(3.6) lim
ω→π

<

‖Gω‖H1(Ωω) = 0.

We deduce by comparison of trace operators that vπ − vω −Gω ∈ H1
0 (Ωω). On the

other hand, using (3.3) and (3.5), vπ − vω − Gω is a weak solution of the following

Dirichlet problem with homogeneous boundary conditions:

{

∆Φω = fπ − fω −∆Gω in D′(Ωω),

Φω = 0 on ∂Ωω.

391



Hence, for any test function ϕ ∈ D(Ωω),

∫

Ωω

∇(vπ − vω −Gω) · ∇ϕdx =

∫

Ωω

(fπ − fω)ϕdx−
∫

Ωω

∇Gω · ∇ϕdx.

By density this last equality holds for ϕ in H1
0 (Ωω), since fπ − fω and ∇Gω are in

L2(Ωω). Thus, choosing ϕ = vπ − vω −Gω and using the Cauchy-Schwarz inequality,

we obtain

(3.7) ‖∇(vπ − vω −Gω)‖2L2(Ωω) 6 ‖fπ − fω‖L2(Ωω)‖vπ − vω −Gω‖L2(Ωω)

+ ‖∇Gω‖L2(Ωω)‖∇(vπ − vω −Gω)‖L2(Ωω).

Following the lines of the proof of Lemma 2.1 and Remark 2.1, we have by the

Poincaré’s inequality (2.5),

(3.8) ‖vω − vπ −Gω‖L2(Ωω) 6
√
ω‖∇(vω − vπ −Gω)‖L2(Ωω).

Thus, (3.7) implies

‖∇(vπ − vω −Gω)‖L2(Ωω) 6
√
ω‖fπ − fω‖L2(Ωω) + ‖∇Gω‖L2(Ωω).

It follows thanks to (3.6) and Assumption 1.1 on the sequence (fω)ω that

(3.9) lim
ω→π

‖∇(vω − vπ −Gω)‖L2(Ωω) = 0.

Therefore, (3.8) and (3.9) yield

(3.10) lim
ω→π

‖vω − vπ −Gω‖H1(Ωω) = 0

and by the triangular inequality

‖vπ − vω‖H1(Ωω) 6 ‖vπ − vω −Gω‖H1(Ωω) + ‖Gω‖H1(Ωω),

the proof of (3.1) follows thanks to (3.10) and (3.6).

Similarly, the second assertion (3.2) can be proved by applying the same arguments

to uω and uπ which are solutions of the second-order elliptic homogeneous problems

{

∆uω = vω ∈ L2(Ωω) in Ωω,

uω = 0 on ∂Ωω,
{

∆uπ = vπ ∈ L2(Ωπ) in Ωπ ,

uπ = 0 on ∂Ωπ ,

which completes the proof. �
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P r o o f of Theorem 3.1. Let hω be the trace of uπ on Γ−
ω . Since uπ ∈ H4(Ωπ) ∩

H1
0 (Ωπ), then Lemma 2.3 with m = 3 provides us an extension Hω of hω to Ωω, in

polar coordinates Hω(r, θ) = hω(r)θ/ω, such that Hω ∈ H3(Ωω) ∩H1
0,Γ−

ω

(Ωω) and

(3.11) lim
ω→π

<

‖Hω‖H3(Ωω) = 0.

In particular uω − (uπ −Hω) ∈ H2(Ωω) ∩H1
0 (Ωω) and since ω 6 π, thus Lemma 2.1

gives us the elliptic inequality for the Laplacian

(3.12) ‖uω − uπ −Hω)‖H2(Ωω) 6 C(ω)‖∆uω −∆uπ +∆Hω‖L2(Ωω)

6 C(ω)‖∆uω −∆uπ‖L2(Ωω) + C(ω)‖∆Hω‖L2(Ωω)

6 C(ω)‖∆uω −∆uπ‖L2(Ωω) + C(ω)‖Hω‖H3(Ωω),

with C(ω) →
√

1 + (1 + π)2 as ω → π and the proof is finished thanks to Lemma 2.3,

equation (3.1) and relation (3.11). �

R em a r k 3.1. In the proof of the main result in Theorem 3.1 we did not need

the extra regularity of H4 of the solution uπ . In fact, H
3 is enough to have the

convergence result of the extension Hω in H2-norm which is more than enough to

continue the proof with the estimate (3.12).

Conclusion

The main result given throughout this paper allows us to describe the local be-

haviour of solutions of a biharmonic problem posed in a polygonal convex open set

near approximately flat boundaries. The convergence result is given with respect to

the best expected topology, in our case the H2-norm which gives actually a justifi-

cation of the Taylor expansion as obtained in the former work [18]. Even though it

can also be obtained from [17], Chapter 4 with different and more involved explicit

computation via Fourier methods, the techniques presented here are new and may

possibly apply to other operators as well.

Following Remark 3.1, it will be also interesting to consider the case of a more

general right-hand side f ∈ H−1 provided that one gives the right sense to the Navier

boundary conditions. Nevertheless, the authors claim that the optimal topology for

the convergence result becomes H1 since for ω < π the solution uω of the biharmonic

problem (Pω) will have at most a regularity H
σ for σ < π/ω.

The case of non convex domains (ω > π) needs other techniques. Beyond Fourier

methods as in [17], the authors claim that techniques such as singular perturbation

methods and asymptotic analysis with respect to the angle parameter ω close to π

may be powerful and more interesting to explore in forthcoming works.
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