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Abstract. A signed graph Γ is a graph whose edges are labeled by signs. If Γ has n vertices,
its spectral radius is the number ̺(Γ) := max{|λi(Γ)| : 1 6 i 6 n}, where λ1(Γ) > . . . >

λn(Γ) are the eigenvalues of the signed adjacency matrix A(Γ). Here we determine the
signed graphs achieving the minimal or the maximal spectral radius in the classes Un andBn

of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
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1. Introduction

A signed graph Γ is a pair (Γ, σ), where G = (V (G), E(G)) is a simple graph

and σ : E(G) → {+1,−1} is a sign function (or signature) on the edges of G. The
(unsigned) graphG of Γ = (G, σ) is called the underlying graph. The sign of a cycle C

in Γ is given by sign(C) =
∏
e∈C

σ(e). A cycle is called positive or negative if sign(C)

is 1 or −1. A signed graph is balanced if all cycles, if any, are positive; otherwise it

is unbalanced. If all edges in Γ are positive or negative, then Γ is denoted by (G,+)

or (G,−); in this case, we refer to such signature as the all-positive or all-negative

one, respectively.

Most of the concepts defined for graphs are directly extended to signed graphs. For

example, the girth of a signed graph is the length of a shortest cycle in its underlying

graph. Moreover, a signed graph is said to be k-cyclic if the underlying graph is
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k-cyclic. This means that G is connected and |E(G)| = |V (G)| + k − 1. We use the

adjectives unicyclic and bicyclic as synonyms of 1-cyclic and 2-cyclic, respectively.

Whenever a subgraph H of the underlying graph G of Γ is considered, we assume

that on H the restriction of the original sign function is defined. In particular, we

say that Λ = (H, τ) is an induced signed subgraph of Γ = (G, σ) if H is an induced

subgraph of G and τ = σ
∣∣
H
.

The concept of signature switching plays a pivotal role in the realm of signed

graphs and cannot be eluded. Given a signed graph Γ = (G, σ) and a sign func-

tion θ : V → {−1,+1}, we can build a new signed graph Γθ = (G, σθ), where

σθ(e) = θ(vi)σ(e)θ(vj) for each edge e = vivj ∈ E(G). Two signed graphs Γ and Λ

are switching equivalent and we write Γ ∼ Λ if there exists a switching function

θ : V → {−1,+1} such that Λ = Γθ. Obviously, ∼ is an equivalence relation on
the set of signed graphs with the same underlying graph. Signature switching does

not affect the sign of the cycles; therefore, Γ and Γθ share the set of positive cycles.

By [21], Lemma 5.3 it follows that a signed graph Γ = (G, σ) is balanced if and only if

Γ ∼ (G,+). Furthermore, two signed graphs Γ and Λ are said to be switching isomor-

phic if Γ is isomorphic to a switching of Λ. If G is bicyclic, there are at least three (and

up to four) switching non-isomorphic signatures (see [5], Section 3 or [9], Section 2).

Graph matrices and their invariants can be naturally extended from graphs to

signed graphs. Once we fix a labelling v1, . . . , vn of the vertices of G, the adjacency

matrix A(Γ) of a signed graph Γ = (G, σ) is obtained from the adjacency matrix A(G)

by replacing 1 by −1 whenever the corresponding edge is negative. Similarly, the

Laplacian matrix L(Γ) is given by D(G)−A(Γ), where D(G) is the diagonal matrix

of vertex degrees of G. The reader is referred to [22] for basic results on the spectra

of signed graphs, to [23] for a possibly complete bibliography on signed graphs, and

to [24] for a glossary of terms related to signed graphs.

Since A(Γ) is symmetric, all its eigenvalues λ1(Γ) > . . . > λn(Γ) are real. More-

over, since the trace of A(Γ) is 0, we have λ1(Γ)λn(Γ) 6 0, where the equality holds

if and only the underlying graph G is empty.

The spectral radius of Γ is defined as the number

̺(Γ) := max{|λi(Γ)| : 1 6 i 6 n} = max{|λ1(Γ)|, |λn(Γ)|}.

Note that A(Γ) is not in general similar to a non-negative matrix. Hence it can

happen that |λn(Γ)| > |λ1(Γ)|. As a consequence of Theorems 1.2 and 1.5 in [19],
this case surely occurs when G is not bipartite and Γ = (G,−). On the contrary,

if Γ is balanced, then ̺(Γ) = λ1(Γ) (see [19], Theorem 1.5).

Laplacian spectral properties of signed bicyclic graphs have been investigated

in [4], [5], [9]. Here we focus on the adjacency matrix, and we address the fol-

lowing problem: for k ∈ {1, 2}, which unbalanced k-cyclic graphs have minimal or
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maximal spectral radius in the set of signed graphs of given order? Observe that the

0-cyclic case is trivial since all signed trees are balanced.

The identification within a fixed class of graphs of those elements which are ex-

tremal with respect to a fixed topological index is a very classical problem, and

the last decades have seen growing interest for the ‘spectral’ sub-branch of extremal

graph theory.

Let Un and Bn be the classes of unicyclic and bicyclic graphs, respectively,

with n vertices. Graphs in Un with extremal spectral radius have been considered

in [7], [11], [16]. The detection of extremal graphs in Bn with respect to the spectral

radius goes back to 1980s. In [8], Brualdi and Solheid found the graph in Bn with

maximal spectral radius; while in [19], graphs with minimal spectral radius in Bn

were identified by Simić, see [17]. Later on, extremal graphs in suitable proper

subsets of Bn have been detected in [10], [13], [14], [20].

Let now Un and Bn be the classes of unbalanced unicyclic and bicyclic graphs,

respectively, with n vertices. Some extremal problems have been already solved

in the context of signed graphs as well. For instance, the first author and others

focused their attention on the index of signed graphs (i.e. the largest eigenvalue

of the adjacency matrix), finding out in [2] the set of graphs with extremal index

in Un (which is not empty for n > 3). In order to describe the extremal objects,

we denote by G(3; a1, a2, a3) or U(3; a1, a2, a3) the graph obtained by attaching ai
pendant vertices or a hanging path of length ai, respectively, to the vertex vi of the

triangle C3, with a1 > a2 > a3 and a1 + a2 + a3 = n− 3.

It turns out that, among all signed graphs in Un, the ones attaining the maximal

index are switching isomorphic to (G(3;n − 3, 0, 0),−). For n > 6 a graph achiev-

ing the minimal index in Un is switching isomorphic to (U(3; a1, a2, a3),−), where

a1 − a3 6 1, see [2], Theorems 3.2 and 3.11.

The remainder of the paper is structured as follows. After some preliminaries

in Section 2, we determine in Section 3 the signed graphs with maximum spectral

radius in Un and in the set Bn. Finally, Section 4 is devoted to seeking out the

signed graphs in Un and Bn with minimum spectral radius. It is worth noting that,

for all n > 4, the signed graph (G(3;n − 3, 0, 0),−) turns out to maximize in Un

both the index and the spectral radius. On the contrary, for all n > 6, the minimizer

with respect to the index and the one with respect to the spectral radius are not

isomorphic. In fact, they have girth 3 and 4, respectively.
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2. Preliminaries

Let Γ = (G, σ) be a signed graph of order n. Recall that throughout this paper

we denote by λ1(Γ) > . . . > λn(Γ) the eigenvalues of its adjacency matrix. The

first known result we mention concerns the relationship between the spectrum of

a signed graph Γ = (G, σ) and the spectrum of the graph −Γ = (G,−σ) obtained by

reversing the signature on all edges. Clearly (G,−) = −(G,+). The statement is an

immediate consequence of the equality A(−Γ) = −A(Γ).

Proposition 2.1. Let Γ = (G, σ) be a signed graph of order n. The following

formula holds:

λi(−Γ) = −λn−i+1(Γ) for 1 6 i 6 n.

When G is bipartite, it can be proved that (G, σ) and (G,−σ) are switching

equivalent. Therefore, the next corollary, which is also known, comes easily from

Proposition 2.1.

Corollary 2.2. Let Γ = (G, σ) be a signed graph of order n. If G is bipartite,

then the spectrum of the adjacency matrix Spec(A(Γ)) is symmetric with respect

to 0, i.e.

(2.1) λi(Γ) = −λn−i+1(Γ) for 1 6 i 6 n.

For the sake of brevity we simply say that Spec(A(Γ)) is symmetric if (2.1) holds. It

is known that Spec(A(G,+)) is symmetric if and only if G is bipartite (see [19], Theo-

rem 1.2); yet there are examples of unbalanced signed graphs Γ such that Spec(A(Γ))

is symmetric, but Γ and −Γ are not switching isomorphic. This topic is discussed

in [6], Section 3.1.

The next theorem is known as the Interlacing Theorem for signed graphs.

Theorem 2.3. Let Γ be a signed graph of order n, and let Λ be an induced

subgraph of Γ of order m. Then

(2.2) λn−m+i(Γ) 6 λi(Λ) 6 λi(Γ) for 1 6 i 6 m.

Corollary 2.4. Let Γ be a signed graph, and let Λ be an induced subgraph of Γ

with m vertices. The following inclusion of real intervals holds:

[λm(Λ), λ1(Λ)] ⊆ [λn(Γ), λ1(Γ)].
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Corollary 2.4 says that the property of a signed graph to have its spectrum included

in some real interval is hereditary with respect to its vertex-induced signed subgraphs.

As already noted in [1], Section 3.1, this implies that we can characterize the signed

graphs whose spectrum lies in the interval I by providing the maximal signed graphs
with such property.

The following result reproduces [2], Theorem 2.5. An alternative proof can be

obtained by considering both Proposition 2.1 and [18], Theorem 3.1.

Theorem 2.5. Let (G, σ) be a signed graph of order n with at least one edge.

Then

(2.3) λn(G,−) 6 λn(G, σ) < λ1(G, σ) 6 λ1(G,+).

The requirement of non-emptiness for the graphG in the statement of Theorem 2.5

clearly guarantees the non-emptiness of the function σ. Conventionally, the empty

signature on an empty graph (like every signature on forests) is considered to be

balanced.

This section of preliminaries ends by recalling two theorems proved in [15]. Re-

cently, they were used by the first author and others to get the spectral characteri-

zation of signed cycles, see [1].

A u v A

B w z T2k B

S14 S16

. . .

Figure 1. Maximal signed graphs whose spectrum is in [−2, 2]. Negative edges are depicted
by dashed lines.
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Theorem 2.6 ([15], Theorem 1). Signed graphs with eigenvalues in [−2, 2] are

the induced subgraphs of

(i) the 2k-vertex toral tessellation T2k, whose spectrum is {−2(k), 2(k)};
(ii) the 14-vertex signed graph S14, whose spectrum is {−2(7), 2(7)};
(iii) the 16-vertex signed hypercube S16, whose spectrum is {−2(7), 0(2), 2(7)}.
The above mentioned signed graphs are depicted in Figure 1.

Theorem 2.7 ([15], Theorem 4). Up to switching isomorphism, the connected

signed graphs having all their eigenvalues in (−2, 2) are the induced subgraphs of

(i) the unbalanced cycle C−
2k;

(ii) the signed graph Qh,k, depicted in Figure 2;

(iii) the eleven sporadic examples U1, U2, . . . , U11 with 8 vertices depicted in Figure 3.

︸ ︷︷ ︸ ︸ ︷︷ ︸
h k

Figure 2. The signed graph Qh,k. The only negative edge is depicted by a dashed line.

U1

U2 U3

U4 U5

U6 U7

U8

U9

U10

U11

Figure 3. The eleven sporadic examples U1, U2, . . . , U11. All of them have 8 vertices. Neg-
ative edges are depicted by dashed lines.
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3. Unbalanced unicyclic and bicyclic graphs

with maximum spectral radius

The following two theorems embody in the context of signed graphs parts of [8],

Theorem 3.2, which was originally formulated for unsigned graphs. In their state-

ments, U+
n or B

+
n denotes, respectively, the class of balanced unicyclic or bicyclic

signed graphs with n vertices.

Theorem 3.1. Let n > 3. The maximal spectral radius for signed graphs in U+
n is

only attained by those graphs which are switching isomorphic to (G(3;n−3, 0, 0),+).

Here and in Section 4, we denote by Dn the graph obtained by attaching n − 4

pendant vertices to a vertex v of degree 3 in a diamond, i.e. a theta-graph of order 4

(see Figure 4).

(G;n− 3, 0, 0),+)

.

.

.

︸
︷︷

︸

n− 3

(Dn,+)

.

.

.

︸
︷︷

︸

n− 4

Figure 4. The graphs maximizing the spectral radius in U
+
n and in B

+
n .

Theorem 3.2. Let n > 4. The maximal spectral radius for signed graphs in B+
n

is only attained by those graphs which are switching isomorphic to (Dn,+).

The characteristic polynomials of A(G(3;n − 3, 0, 0),+) and A(Dn) were shown

in [8] and can be derived by the graph divisor technique, see [12], Chapter 2.4. We

exhibit them in the following corollary, included here for the sake of completeness.

Corollary 3.3. The spectral radii ̺(G(3;n−3, 0, 0),+) and ̺(Dn,+) correspond,

respectively, to the largest root of the following two polynomials:

p1(λ) = λ3 − λ2 − (n− 1)λ+ n− 3 and p2(λ) = λ4 − (n+ 1)λ2 − 4λ+ 2(n− 4).

The detection of graphs with maximum index in U+
n turns out to be a crucial step

to determine the signed graphs with maximum spectral radius in Un, as the proof of

the following theorem shows.

Theorem 3.4. Let n > 3. In the class Un, a signed graph attains the maximal

spectral radius if and only if it is switching isomorphic to (G(3;n− 3, 0, 0),−).
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P r o o f. Let (G, σ) be an element in Un. The following inequalities hold.

λ1(G, σ) 6 λ1(G,+) (by Theorem 2.5)(3.1)

6 λ1(G(3;n− 3, 0, 0),+) (by Theorem 3.1)

= −λn(G(3;n− 3, 0, 0),−) (by Proposition 2.1).

Note that the second inequality is strict unless G is isomorphic to G(3;n− 3, 0, 0).

Similarly

−λn(G, σ) = λ1(G,−σ) (by Proposition 2.1)(3.2)

6 λ1(G,+) (by Theorem 2.5)

6 λ1(G(3;n− 3, 0, 0),+) (by Theorem 3.1)

= −λn(G(3;n− 3, 0, 0),−) (by Proposition 2.1).

Observe that (G(3;n − 3, 0, 0),−) is unbalanced; in fact, it contains a negative tri-

angle. Moreover,

|λn(G(3;n− 3, 0, 0),−)| = λ1(G(3;n− 3, 0, 0),+) > |λn(G(3;n− 3, 0, 0),+)|
= λ1(G(3;n− 3, 0, 0),−)

by Proposition 2.1 and [19], Theorem 1.5.

Using both (3.1) and (3.2) we get

̺(G, σ) = max{λ1(G, σ),−λn(G, σ)} 6 −λn(G(3;n− 3, 0, 0),−)

= ̺(G(3;n− 3, 0, 0),−),

where the equality holds only if (G, σ) is switching isomorphic to (G(3;n−3, 0, 0),−)

(recall that all unbalanced signatures on G(3;n− 3, 0, 0) are switching equivalent).

�

By comparing our Theorem 3.4 and Theorem 3.1 from paper [2], we discover that

(G(3;n− 3, 0, 0),−) maximizes in Un both the index and the spectral radius.

In the remainder of this section, we identify the signed graphs with maximum

spectral radius in Bn, the class of unbalanced bicyclic signed graphs with n vertices.

ClearlyBn is not empty for n > 4. We recall that Dn is the bicyclic graph depicted in

Figure 4 (once you forget the signature). The reader immediately realizes that there

exist just two switching non-isomorphic unbalanced signatures on Dn, depending on

the non-negative number of unbalanced triangles: The key-point is that the signed
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graph Γ̃n : = (Dn, σ̃) depicted in Figure 5 and−Γ̃n, though switching non-equivalent,

are switching isomorphic.

Lemma 3.5. Let n > 4. The two switching non-isomorphic unbalanced signatures

on Dn give rise to signed graphs with different spectral radii.

P r o o f. As representatives of the two switching non-isomorphic unbalanced sig-

natures on Dn we choose Γ̃n = (Dn, σ̃) and (Dn,−) depicted in Figure 5.

v1

v2

v4

v3

v5

vn

Γ̃n(Dn, σ̃) (Dn,−)

︸
︷︷

︸
n− 4.

.

.

︸
︷︷

︸

n− 4.

.

.

Figure 5. Representatives of the two switching non-isomorphic unbalanced graphs hav-
ing Dn as the underlying graph.

First note that Γ̃n and −Γ̃n are switching isomorphic. By Proposition 2.1 it follows

that Spec(A(Γ̃n)) is symmetric; hence, ̺(Γ̃n) = λ1(Γ̃n) = −λn(Γ̃n).

For n = 4 our claim comes from direct computation:

2 = ̺(Γ̃4) <

√
17 + 1

2
= ̺(D4,−).

For the rest of the proof we assume n > 4. Since λ1(Γ̃5) =
√
3 +

√
3 > 2 and Γ̃5 is

an induced subgraph of Γ̃n for all n > 4, we deduce by Theorem 2.3 that ̺(Γ̃n) =

λ1(Γ̃n) > λ1(Γ̃5) > 2. Once we label the vertices of Γ̃n according to Figure 5, and

fix a λ1(Γ̃n)-unit eigenvector X = (x1, . . . , xn)
⊤, we prove that x1x4 > 0.

In order to see this, we solve the linear system consisting of the eigenvalue equa-

tions of X at the vertices v1, v2, and v4. It turns out that

x1 =
λ̃2

(λ̃+ 1)(λ̃− 2)
x4,

where λ̃ stands for λ1(Γ̃n). Now x1 and x4 cannot be both 0, since in this case all

the other components of X should be null as well. Hence, x1x4 > 0 as claimed.

By using the properties of the Rayleigh quotient we now see that

(3.3) ̺(Γ̃n) = λ1(Γ̃n) = 2

(∑

i
+
∼j

xixj − x1x4

)
< 2

(∑

i
+
∼j

xixj + x1x4

)
6 λ1(Dn,+)

= − λn(Dn,−) = ̺(Dn,−),

where ‘i
+∼ j’ means that there exists a positive edge connecting vi and vj . �
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Theorem 3.6. Let n > 4. In the class Bn, a signed graph attains the maximal

spectral radius if and only if it is switching isomorphic to (Dn,−).

P r o o f. The starting argument closely resembles the one used along the proof of

Theorem 3.4. Let (G, σ) be an element in Bn. By Theorems 2.5 and 3.2, together

with Proposition 2.1, we have

(3.4) λ1(G, σ) 6 λ1(G,+) 6 λ1(Dn,+) = −λn(Dn,−)

and

(3.5) −λn(G, σ) = λ1(G,−σ) 6 λ1(G,+) 6 λ1(Dn,+) = −λn(Dn,−),

where the last inequalities in both (3.4) and (3.5) possibly hold only if G = Dn.

Hence,

̺(G, σ) 6 ̺(Dn,−) ∀ (G, σ) ∈ Bn,

where the inequality is surely strict if G 6= Dn.

The proof is now over since, by (3.3), ̺(Dn, σ) < ̺(Dn,−) for every unbalanced

graph (Dn, σ) switching non-isomorphic to (Dn,−). �

We explicitly point out that (Dn,−) is not the right candidate to attain the

maximum index in Bn. In fact, if we consider the graph G obtained by attaching

a pendant vertex to the central vertex of the friendship graph F2, and choose a sign

function σ on V (G) giving rise just to an unbalanced cycle, the largest eigenvalue

of (G, σ) is bigger than λ1(D6,−).

4. Unbalanced unicyclic and bicyclic graphs

with minimum spectral radius

In order to detect the signed graphs minimizing the spectral radius in the set Un, we

consider the graphs Qh,k (h > k) consisting of an unbalanced quadrangle having two

pendant paths of length h and k at two opposite vertices of the cycle. Such graphs are

depicted in Figure 2. By [3], Theorem 3.6 we easily get ̺(Qh,k) = 2 cos(π/(2h+ 4)).

Lemma 4.1 ([2], Lemma 3.10). Let U
(4)
n be the class of unbalanced unicyclic

graphs of order n and girth 4. Every graph minimizing the index in U
(4)
n is switching

isomorphic to Q⌈ 1
2
(n−4)⌉,⌊ 1

2
(n−4)⌋.
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We now show that the graphs minimizing the index in U
(4)
n are also those that

minimize the spectral radius in Un.

Theorem 4.2. Let n > 4. In the class Un, a signed graph achieves the minimal

spectral radius if and only if it is switching isomorphic either to Q⌈ 1
2
(n−4)⌉,⌊ 1

2
(n−4)⌋

or (if n is even) to the unbalanced cycle C−
n .

P r o o f. By Theorem 2.7 we not only infer that, for every n > 4, there exist graphs

in Un whose spectrum is entirely contained in the interval (−2, 2), but also that, up

to switching isomorphism, the one minimizing the spectral radius in Un has to be

searched among the several Qh,n−4−h, C
−
n (if n is even) and the induced subgraphs

of the eleven sporadic examples U1, U2, . . . , U11 (if n 6 8). Since all such graphs

are bipartite their spectral radius coincides with their index. Now the statement

comes from Lemma 4.1, from the equality Spec(A(C−
2l)) = Spec(Ql−2,l−2) (see [1],

Theorem 21), and from a direct check when 5 6 n 6 8. �

As already observed in Section 1, for n > 4, the graphs Q⌈ 1
2
(n−4)⌉,⌊ 1

2
(n−4)⌋ do not

attain the minimal index in Un, which, according to [2], Theorem 3.11, for n > 6 is

achieved instead by the signed graph (U(3; p, q, r),−) with

p =

⌈
n− 3

3

⌉
> q > r =

⌊
n− 3

3

⌋
.

The remainder of this section is devoted to the detection of graphs in Bn mini-

mizing the spectral radius. For any n > 4, we set

̺(n) = min{̺(Γ): Γ ∈ Bn}.

A quite important role is played by the signed theta-graph Θ2,2,c with c+3 vertices.

Its underlying graph is obtained from three disjoint paths of order 3, 3 and c + 1,

respectively, by merging their initial vertices to a single vertex, say x, and their

ending vertices to a single vertex y. This graph has just one negative edge incident

to y such that there is an unbalanced quadrangle as a subgraph (see Figure 7).

Lemma 4.3. For any c > 1, the spectral radius of Θ2,2,c is 2.

P r o o f. The graph Θ2,2,c appears among the induced subgraphs of T2(c+2), a set

of generating vertices being the union of all the vertices of the top line in Figure 1

and of a single vertex, say w, from the bottom line. By Theorem 2.6, this implies

that ̺(Θ2,2,c) 6 2, and such inequality cannot be strict, since, by Theorem 2.7, no

graph in Figure 3 contains any Θ2,2,c as an induced subgraph. �
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We point out that the graph T2(c+2) contains many other switching isomorphic

copies of Θ2,2,c. For instance we can take as generating vertices, z, w and all vertices

of the top line, vertex v excluded.

Proposition 4.4. Let n > 4. The values achieved by the minimum spectral

radius of signed graphs in Bn can be read in Table 1.

n 4 5 6 7 8 > 9

̺(n) 2 2
√
3 2 cos

π

10
2 cos

π

15
2

Table 1. Values of the minimum spectral radius.

P r o o f. Recall that for any n > 4 there exists an unbalanced bicyclic graph

whose spectral radius is 2; namely, Θ2,2,n−3. Graphs in Figure 3 do not contain

induced bicyclic subgraphs of order 4 or 5 or n > 9. That is why, by Lemma 4.3, the

values ̺(4), ̺(5), and ̺(n) for n > 8 are 2. To determine ̺(n) for n = 6, 7, 8 we com-

pute the spectral radii of the relatively small number of unbalanced bicyclic graphs

contained in the sporadic graphs U1, . . . , U11. The minimizers are the graphs Γ3, Γ4

and Γ5 depicted in Figure 6 and the graph U7 in Figure 3 (Γ5 and U7 share the same

spectrum). It turns out that

̺(6) = ̺(Γ3) =
√
3; ̺(7) = ̺(Γ4); and ̺(8) = ̺(Γ5) = ̺(U7).

The values of ̺(7) and ̺(8) in Table 1 depend on the inclusions of spectra

Spec(A(Γ4)) ⊂ Spec(A(P29)) and Spec(A(Γ5)) ⊂ Spec(A(P14))

proved in [3]. �

Γ1 Γ2 Γ3 Γ4 Γ5

Figure 6. Minimizers of the spectral radius in Bn when 4 6 n 6 8.

In the subsequent proofs we assign to each vertex of the toral tessellation T2k

coordinates in the set (Z/kZ) × (Z/2Z). Namely, A and B are identified with the

pairs (0, 1); (0, 0), respectively, u and w with (1, 1) and (1, 0); and so on.

Lemma 4.5. Let k > 4. Every bicyclic induced subgraph of the toral tessella-

tion T2k with 2k vertices has girth 4.

428



P r o o f. Along the proof we refer to the depiction of T2k in Figure 1. In our

hypotheses T2k is triangle-free. Let Γ = (G, σ) be a bicyclic induced subgraph of T2k

and let C be a cycle of G. If C contains two vertices having the same ascissa then its

girth is 4. In order to see this, assume that u and w in Figure 1 are in V (C). Such

set contains also a neighbor of u, say A. This means that C is one of the following

three quadrangles: AuBw, Auvw, or Auzw. In particular, the girth of C is 4. If

the girth of C is bigger than 4, the non-existence of pairs of vertices with the same

x-coordinate implies that the girth is k and C is one of the four following cycles:

(0, 0)(1, 0) . . . (k, 0); (0, 1)(1, 1) . . . (k, 1);

(0, 0)(1, 1) . . . (j, (1 − (−1)j)/2) . . . (k, 0); (0, 1)(1, 0) . . . (j, (1 + (−1)j)/2) . . . (k, 1).

(the third and the fourth ones occur only if k is even). Let now t be a vertex

in V (G) \ V (C). We leave to the reader to check that, in all four cases, t is adjacent

to two vertices in V (C) having a common neighbor in C. In other words, G contains

a quadrangle. �

Proposition 4.6. Let k > 4, and let (p, q, r) be a triple of non-negative integers.

Every bicyclic induced subgraph of the toral tessellation T2k with 2k vertices is

switching isomorphic to either Θ2,2,k−2, Θ
′
l (0 6 l 6 k − 4), Θ′′

l (0 6 l 6 k − 5),

Qp,q,r (p+ q + r 6 k − 6), Q′
p,q,r (p+ q + r 6 k − 7), or Q′′

p,q,r (p+ q + r 6 k − 8),

all depicted in Figure 7.

x
u1 uc−2

y

Θ′

2,2,c

︸ ︷︷ ︸

l + 1

Θ′

l Θ′′

l

︸ ︷︷ ︸

l + 1

︸ ︷︷ ︸
p+ 1

︸ ︷︷ ︸
q + 1

︸ ︷︷ ︸

r + 1

Θp,q,r

︸ ︷︷ ︸
p+ 1

︸ ︷︷ ︸
q + 1

︸ ︷︷ ︸

r + 1

Θ′

p,q,r

︸ ︷︷ ︸
p+ 1

︸ ︷︷ ︸
q + 1

︸ ︷︷ ︸

r + 1

Θ′′

p,q,r

Figure 7. Bicyclic graphs contained in T2k for suitable c, l, p, q and r.
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P r o o f. Once again we consider the graph T2k as depicted in Figure 1. Let

Γ = (G, σ) be a bicyclic induced subgraph of T2k. By Lemma 4.5, G contains

a quadrangle Q.

In order to examine all cases, we first suppose that three vertices in Q have the

same y-coordinate. To fix ideas, we assume that Q = Auvw. Now, if neither B nor z

are in V (G), then Γ is switching isomorphic to Θ2,2,k−2. If instead {B, z}∩V (G) 6= ∅,
we assume that B ∈ V (G) (the case x ∈ V (G) could be treated similarly). The degree

of B is two, otherwise Γ would not be bicyclic. Vertices in V (G) \ {A, u, v, w,B},
if existing, necessarily form a tree attached to v. Bicyclicity of Γ ensures that such

signed graph is switching isomorphic to a graph of type Θ′
l or Θ

′′
l .

Finally we suppose that the quadrangle Q has only two vertices with 1 as the

y-coordinate. To fix ideas, let Q = Auzw. If {B, z} ∩ V (G) 6= ∅ we return to the
previous case. If v and B are not in V (G), aside from Auzw the graph Γ must

contain another cycle C. By the topology of T2k, the cycle C has at most one vertex

in common with Auzw. It is now straightforward to realize that Γ is switching

isomorphic to a graph of type Qp,q,r, Q
′
p,q,r or Q

′′
p,q,r, where the number p + q + r

satisfies the inequalities of the statement. As a final remark note that the induced

subgraphs of type Θ′′
l and Q

′′
p,q,r are maximal, in the sense that they are not properly

contained in another bicyclic induced subgraph of T2k. �

We explicitly note that the bicyclic graphs in the statement of Proposition 4.6

are all bipartite. Their spectrum is symmetric (see Corollary 2.2). In particular the

index of all of them is 2. We specify their order.

Θ2,2,c ∈ Bc+3, Θ′
l ∈ Bl+5, Θ′′

l ∈ Bl+7

Qp,q,r ∈ Bp+q+r+7, Q′
p,q,r ∈ Bp+q+r+9, Q′′

p,q,r ∈ Bp+q+r+11.

Besides these families, up to switching isomorphism there are still twelve sporadic

bicyclic graphs whose spectral radius is 2. We depict them in Figure 8. They

have 9 or 10 vertices. Consistently with Theorem 2.6 and Proposition 4.6, they are

induced subgraphs of either S14 or S16. Table 2 establishes whether a certain Λi

with 1 6 i 6 12 in Figure 8 is an induced subgraph of Sj (j ∈ {14, 16}) or not.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 Λ11 Λ12

S14 X X X

S16 X X X X X X X X X X X

Table 2. Induced subgraphs of S14 and S16.

The non-existence of other sporadic bicyclic graphs inside S14 and S16 with min-

imal spectral radius was proved through the following sieve-type algorithm: having
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Corollary 2.4 on disposal, and bipartiteness of S14 and S16 as well, we first identified,

for 4 6 n 6 16, the graphs Γ = (G, σ) ∈ Bn not containing odd cycles or pendant

vertices such that ̺(Γ) 6 2, and then we added in all possible ways pendant trees

to such Γ’s, one vertex at time up to 16 − |V (G)|, being careful that, at each step,
the spectral radius did not exceed 2. It turned out that, for n > 9, the spectral

radius of all signed graphs in Bn is bigger than 2 whenever they are not switching

isomorphic to any graph in Figures 7 or 8. Our final theorem summarizes the results

so far achieved on the unbalanced bicyclic signed graphs of order n (n > 9).

Λ1 Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 Λ11 Λ12

Figure 8. The twelve sporadic graphs with order n ∈ {9, 10} whose spectral radius is 2.

Theorem 4.7. Let n > 9. Up to switching isomorphism, the graphs in Bn mini-

mizing the spectral radius are the following.

⊲ For n = 9: Λi, with 1 6 i 6 8; Θ2,2,6; Θ
′
4; Θ

′′
2 ; Q2,0,0; Q1,0,1; Q1,1,0; Q

′
0,0,0.

⊲ For n = 10: Λi, with 9 6 i 6 12; Θ2,2,7; Θ
′
5; Θ

′′
3 ; Qp,q,r, with p+ q+ r = 3; Q′

p,q,r,

with p+ q + r = 1.

⊲ For n > 10: Θ2,2,n−3; Θ
′
6; Θ

′′
4 ; Qp,q,r, with p + q + r = n − 7; Q′

p,q,r, with

p+ q + r = n− 9; Q′′
p,q,r, with p+ q + r = n− 11.

The problem of identifying the graphs in Bn minimizing the index is still open. In

the light of experimental results, it seems that the minimizers do not appear among

the graphs listed in Theorem 4.7.
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[6] F.Belardo, S.Cioabă, J. Koolen, J.Wang: Open problems in the spectral theory of
signed graphs. Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. zbl MR doi
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