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Abstract. We shall describe how to construct a fundamental solution for the Pell equation
x
2 − my

2 = 1 over finite fields of characteristic p 6= 2. Especially, a complete description
of the structure of these fundamental solutions will be given using Chebyshev polynomials.
Furthermore, we shall describe the structure of the solutions of the general Pell equation
x
2 −my

2 = n.
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1. Introduction

The classical Pell equation is the Diophantine equation x2 −my2 = 1, where m is

an arbitrary integer. Given that m is a square-free positive integer, it is known that

Pell equation has infinitely many solutions, which arise from a special “fundamental

solution”. If the solutions of the classical Pell equation are ordered by magnitude,

then the nth solution (xn, yn) with xn > 0 and yn > 0 can be expressed in terms

of the first one (x1, y1) by xn + yn
√
m = (x1 + y1

√
m)n. Accordingly, the first so-

lution (x1, y1), or equivalently, the number x1 + y1
√
m, is called the fundamental

solution. Therefore, solving the Pell equation reduces to finding a fundamental so-

lution. This problem is extensively discussed in the literature. See, for instance, [3],

pages 137–158.

In this paper we shall show that there exists a similar “fundamental solution” for

Pell equations in the framework of finite fields of characteristic p 6= 2. Our main

results are Theorems 4.5, 5.3 and 5.5. In Theorem 4.5 we describe how to construct

a fundamental solution for the Pell equation x2 −my2 = 1 for non-square m. Under

the same settings, in Theorem 5.3 we describe all the solutions of the general Pell
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equation x2 − my2 = n. Finally, in Theorem 5.5 we solve a similar problem for

square m.

The following notation will be used throughout this paper. If a 6= 0 is an integer

and p a prime, pr ‖ a will mean pr is the highest power of p dividing a. A finite field

will be denoted by F. Given such a field, it has a prime power q = pd elements. If

the number q = pd of elements in F is to be emphasized, F will be denoted by Fq.

The prime number p is called the characteristic of F and is denoted by char(F).

Throughout this paper we assume that p > 2, because for p = 2 the discussion of

the Pell equation is a triviality. When d = 1, Fp may be identified with the field

Z/pZ = {0, 1, 2, . . . , p − 1} of the residue classes of Z mod p. If an element m of F

is a non-square in F, the polynomial f(x) = x2 − m is irreducible over F. We will

denote the quadratic field extension F[x]/(f(x)) of F by F
(√

m
)

. Its elements may

be regarded as a + b
√
m with a, b in F. The set F∗

q of nonzero elements of a finite

field Fq is a cyclic group under multiplication of order q − 1. An element of F∗
q is

a generator of this group if and only if its order is coprime to q − 1. The conjugate

of an element σ = a+ b
√
m of F

(√
m
)

is the element σ := a− b
√
m of F

(√
m
)

. The

norm N(σ) of σ is defined by N(σ) := σσ = a2−mb2. The norm is multiplicative, i.e.,

N(στ) = N(σ)N(τ). Clearly, the set of solutions to our Pell equation x2−my2 = 1 is

the kernel, ker(N) =
{

σ ∈ F
(√

m
)

: N(σ) = 1
}

of the norm N: F
(√

m
)∗ → F

∗, which

is a cyclic subgroup of F
(√

m
)∗
. Our aim in this paper is to describe a generator

of ker(N).

2. Preliminaries – Chebyshev polynomials over general fields

The Chebyshev polynomials are well known sequences of polynomials. These

polynomials have many interesting properties and appear in various branches of

mathematics, especially in real and complex analysis. In this section we shall explore

several of these properties, but in the framework of general fields.

Let F be a field. The Chebyshev polynomials of the first kind (above F) are defined

by the following recurrence relation:











T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x) if n > 2,

and the Chebyshev polynomials of the second kind (above F) are defined by











S0(x) = 1,

S1(x) = 2x,

Sn(x) = 2xSn−1(x)− Sn−2(x) if n > 2.
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We remark that in this context, we identify every integer k ∈ Z with the element k1F

of F. The first ten Chebyshev polynomials of the first kind are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 64x7 − 112x5 + 56x3 − 7x,

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1,

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x,

and the first ten Chebyshev polynomials of the second kind are

S0(x) = 1,

S1(x) = 2x,

S2(x) = 4x2 − 1,

S3(x) = 8x3 − 4x,

S4(x) = 16x4 − 12x2 + 1,

S5(x) = 32x5 − 32x3 + 6x,

S6(x) = 64x6 − 80x4 + 24x2 − 1,

S7(x) = 128x7 − 192x5 + 80x3 − 8x,

S8(x) = 256x8 − 448x6 + 240x4 − 40x2 + 1,

S9(x) = 512x9 − 1024x7 + 672x5 − 160x3 + 10x.

Observe that the recurrence relations defining the Chebyshev polynomials indeed

produce polynomials in the ring F[x]. Note that by the identification of every k ∈ Z

with k1F ∈ F, it follows that if f(x) = g(x) over Z[x], then also f(x) = g(x)

over F[x]. This observation can be applied in order to derive identities involving

Chebyshev polynomials since, as one can verify directly from the recurrence relation,

all the coefficients of Chebyshev polynomials are integers.

Another important point is related to the solutions of the recurrence relations

defining the Chebyshev polynomials. The characteristic polynomial of the rela-

tion defining the Chebyshev polynomials of the first kind is p(t) = t2 − 2xt + 1.
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The roots of p(t) are α(x) = x+
√
x2 − 1 and β(x) = x−

√
x2 − 1. Note that these

roots are elements of the field F(x,∆), where ∆(x) :=
√
x2 − 1 is an element such

that ∆2(x) = x2 − 1. Therefore, the solution of this recurrence is of the form

Tn(x) = A(x)α(x)n +B(x)β(x)n,

where A(x),B(x) ∈ F(x,∆). Since T0(x) = 1 and T1(x) = x, it follows that

A(x) + B(x) = 1 and A(x)α(x) + B(x)β(x) = x. Solving this system over F(x,∆)

gives A(x) = B(x) = 1
2 . Therefore

Tn(x) =
1

2
(αn(x) + βn(x)).

We remark that although the solution is expressed using the non-polynomial ele-

ment ∆, the Tn’s are still polynomials over the ring F[x].

Similarly, as one can verify, the solution of the recurrence relation which defines

the Chebyshev polynomials of the second kind is

Sn(x) =
1

2∆(x)
(αn(x) − βn(x)).

Using these ideas we turn to prove a list of identities gathered in Proposition 2.1

below. We remark that in this section, for the purpose of clarity, we shall use Tn

and Sn instead of Tn(x) and Sn(x), respectively.

Proposition 2.1. Let F be a field with char(F) 6= 2 and let n be a positive integer.

Then:

(1) degTn = n,

(2) Sn+1 − Sn−1 = 2Tn+1,

(3) Sm+n = SmSn − Sm−1Sn−1 for all integers m,n > 1,

(4) 2TnTm = Tn+m +T|n−m| for all integers m,n > 0,

(5) S2n = Sn+1Sn−1 + 1,

(6) S2n = S2n − S2n−1 and S2n+1 = 2SnTn+1,

(7) Sn + Sn−1 = 2(T1 +T2 + . . .+Tn) + 1,

(8) T2n − 1 = 2S2n−1(x
2 − 1),

(9) T2n+1 − 1 = (Sn−1 + Sn)
2(x− 1).

P r o o f. We shall prove identities (5)–(9). By the above discussion, it follows that

in order to prove the rest of the identities, it suffices to prove them over Z[x]. The

proof of (1)–(4) can be found in [1].

(5) The proof is by induction on n. For n = 1 indeed

S2S0 + 1 = (4x2 − 1)1 + 1 = (2x)2 = S21.
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Let n > 2. By the definition of Sn and the inductive hypothesis we obtain

Sn+1Sn−1 + 1 = (2xSn − Sn−1)Sn−1 + 1 = 2xSnSn−1 − S2n−1 + 1

= 2xSnSn−1 − (SnSn−2 + 1) + 1 = Sn(2xSn−1 − Sn−2) = S2n.

(6) By part (3) with m = n we obtain

S2n = S2n − S2n−1.

In addition, by part (3) with m = n+ 1 and part (2) we obtain

S2n+1 = Sn+1Sn − SnSn−1 = Sn(Sn+1 − Sn−1) = 2SnTn+1.

(7) The proof is by induction on n. For n = 1, indeed

S1 + S0 = 2x+ 1 = 2T1 + 1.

Let n > 2. By part (2) and the inductive hypothesis we obtain

Sn + Sn−1 = (Sn − Sn−2) + (Sn−1 + Sn−2) = 2Tn + 2(T1 +T2 + . . .+Tn−1) + 1

= 2(T1 +T2 + . . .+Tn) + 1.

(8) We shall use the explicit solutions of the recurrence relation of Tn and Sn

developed previously. Note that

2S2n−1(x
2 − 1) = 2

( 1

2∆
(αn − βn)

)2

(x2 − 1) =
2(x2 − 1)

4∆2
(α2n − 2(αβ)n + β2n).

Since αβ = 1 and ∆2 = x2 − 1, we obtain that

2S2n−1(x
2 − 1) =

1

2
(α2n − 2 + β2n) = T2n(x)− 1,

as required.

(9) The proof is by induction on n. For n = 1 indeed

T3 − 1 = 4x3 − 3x− 1 = (1 + 2x)2(x− 1) = (S0 + S1)
2(x − 1).
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Let n > 2. By the definition of Tn and Sn, parts (8) and (5), and by the inductive

hypothesis we obtain

T2n+1 − 1 = 2xT2n − T2n−1 − 1

= 2x(1 + 2(x2 − 1)S2n−1)− (1 + (x − 1)(Sn−2 + Sn−1)
2)− 1

= 2(x− 1) + 4x(x− 1)(x+ 1)S2n−1 − (x− 1)(Sn−2 + Sn−1)
2

= (x− 1)(2 + (2xSn−1)
2 + 2Sn−1(2xSn−1)− (Sn−2 + Sn−1)

2)

= (x− 1)(2 + (Sn + Sn−2)
2 + 2Sn−1(Sn + Sn−2)− (Sn−2 + Sn−1)

2)

= (x− 1)(2(1 + SnSn−2) + S2n + 2Sn−1Sn − S2n−1)

= (x− 1)(2S2n−1 + S2n + 2Sn−1Sn − S2n−1)

= (x− 1)(Sn−1 + Sn)
2.

�

Another two sequences of polynomials which will be important in the sequel are

the conjugate Chebyshev polynomials. The conjugate Chebyshev polynomials of the

first kind (above F) are defined by the following recurrence relation:











T∗
0(x) = 1,

T∗
1(x) = x,

T∗
n(x) = 2xT∗

n−1(x) + T∗
n−2(x) if n > 2,

and the conjugate Chebyshev polynomials of the second kind (above F) are defined by











S∗0(x) = 1,

S∗1(x) = 2x,

S∗n(x) = 2xS∗n−1(x) + S∗n−2(x) if n > 2.

The first few conjugate Chebyshev polynomials are

T∗
0(x) = 1, S∗0(x) = 1,

T∗
1(x) = x, S∗1(x) = 2x,

T∗
2(x) = 2x2 + 1, S∗2(x) = 4x2 + 1,

T∗
3(x) = 4x3 + 3x, S∗3(x) = 8x2 + 4x,

T∗
4(x) = 8x4 + 8x2 + 1, S∗4(x) = 16x4 + 12x2 + 1,

T∗
5(x) = 16x5 + 20x3 + 5x, S∗5(x) = 32x5 + 32x3 + 6x.

The polynomials T∗
n and S

∗
n can be expressed in terms of the polynomials Tn and Sn.

In order to do so, we need to consider these polynomials over the field extension F(i),

where i is an element such that i2 + 1 = 0.

496



Proposition 2.2. Let n be a positive integer. Then

(1) Tn(ix) = inT∗
n(x) and Sn(ix) = inS∗n(x),

(2) T∗
2n = 2(T∗

n)
2 − (−1)n.

P r o o f. (1) The proof is by induction on n. For n = 1 and n = 2 indeed

T1(ix) = ix = i1T∗
1(x),

S1(ix) = 2ix = i(2x) = i1S∗1(x),

T2(ix) = 2(ix)2 − 1 = −(2x2 + 1) = i2T∗
2(x),

S2(ix) = 4(ix)2 − 1 = −(4x2 + 1) = i2S∗2(x).

Let n > 3. By the definitions of both T∗
n and S

∗
n and by the inductive hypothesis we

obtain

Tn(ix) = 2ixTn−1(ix)− Tn−2(ix) = 2ixin−1T∗
n−1(x) − in−2T∗

n−2(x)

= 2inxT∗
n−1(x) − ini−2T∗

n−2(x) = in(2xT∗
n−1(x) + T∗

n−2(x)) = inT∗
n(x).

Since Sn and S
∗
n are defined by the same recursive relation as Tn and T

∗
n, the above

calculations will be also suitable for proving the identity for Sn(ix).

(2) By part (1) and Proposition 2.1 (4) we obtain

T∗
2n(x) = i−2nT2n(ix) = i−2nTn+n(ix) = (−1)n(2T2

n(ix)− 1)

= (−1)n(2(inT∗
n(x))

2 − 1) = (−1)n(2(−1)n(T∗
n)

2(x)− 1)

= 2(T∗
n)

2(x)− (−1)n.

�

3. Basic properties of the extension field F
(√

m
)

The analysis of the solutions of Pell equations will be performed using the frame-

work of the quadratic extension fields as recalled briefly in the introductory section.

Proposition 3.1. Let F be a finite field with q elements, a ∈ F and let n be

a positive integer. Then the equation xn = a is solvable if and only if a(q−1)/d = 1,

where d = gcd(n, q − 1). Moreover, if there are solutions, then there are exactly d

solutions.

For a proof see [2], page 80. The following property of F
(√

m
)

is of a particular

importance for us:

Proposition 3.2. Suppose that F is a finite field with q elements and m ∈ F is

a non-square element. Then σq = σ for every σ ∈ F
(√

m
)

.
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P r o o f. Set a = m(q−1)/2. First we shall prove that a = −1. Note that since

char(F) 6= 2, it follows that q is odd, so q − 1 is even. Hence, a is well defined.

Since |F∗| = q − 1 and m ∈ F
∗, it follows that a2 = mq−1 = 1. Therefore, either

a = 1 or a = −1. By the assumption, m is a non-square element, so the equation

x2 = m is not solvable. Hence, by Proposition 3.1 it follows that a 6= 1. Therefore

a = −1, as required.

In view of the fact that (α + β)p
s

= αps

+ βps

for every α, β in a field of char-

acteristic p and for every positive integer s (see [2], page 81), it follows that for

every x, y ∈ F

(

x+ y
√
m
)q

= xq + yq
(√

m
)q

= x+
√
m
(√

m
)q−1

y.

Note that since m(q−1)/2 = −1, we obtain that

(√
m
)q−1

=
(√

m
2)(q−1)/2

= m(q−1)/2 = −1.

Therefore,
(

x+ y
√
m
)q

= x− y
√
m = x+ y

√
m, as required. �

As we shall see, there is a connection between the solutions of Pell equations and

the set of nth roots of unity in F
(√

m
)

. In order to reveal this connection, we need

the following result, which follows from Proposition 3.1:

Proposition 3.3. Let F be a finite field and let n be a positive integer. Then the

set of nth-roots of unity in F forms a cyclic subgroup of F∗ of order gcd(n, |F∗|).

4. The solution of the Pell equation x2 −my2 = 1

In this section we shall describe the solutions of Pell equations x2 −my2 = 1 over

finite fields F. This will be done for non-square m’s. Note that in this case, there is

a bijection between the elements of F×F and F
(√

m
)

. Therefore, it is convenient to

refer to x+ y
√
m as (x, y), as a solution of a Pell equation.

We begin with the following result, which follows from Propositions 3.2 and 3.3:

Proposition 4.1. Suppose that F is a finite field with q elements. If m ∈ F is

a non-square element, then the set

G = ker(N) =
{

σ ∈ F
(√

m
)

: N(σ) = 1
}

is a cyclic subgroup of F
(√

m
)∗
of order q + 1.
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Proposition 4.2. Suppose m ∈ F is a non-square element, a, b ∈ F and n is

a positive integer. Then

(

a+ b
√
m
)n

= Tn(a) + bSn−1(a)
√
m

if a2 −mb2 = 1, and

(

a+ b
√
m
)n

= T∗
n(a) + bS∗n−1(a)

√
m

if a2 −mb2 = −1.

P r o o f. Note that over the field F(x,∆) we have the following identity:

Tn + Sn−1∆ =
1

2
(αn + βn) +

1

2∆
(αn − βn) ·∆ = αn,

that is

Tn(x) + Sn−1(x)
√

x2 − 1 =
(

x+
√

x2 − 1
)n
.

Now, if a2−mb2 = 1, then mb2 = a2−1, so without loss of generality we may deduce

that b
√
m =

√
a2 − 1. Therefore,

(

a+ b
√
m
)n

=
(

a+
√

a2 − 1
)n

= Tn(a) + Sn−1(a)
√

a2 − 1 = Tn(a) + bSn−1(a)
√
m,

as required.

Suppose now that a2−mb2 = −1. Note that over the field F(i) this can be written

as (ia)2 − m(ib)2 = 1. Using the first part of the proof and Proposition 2.2 (1) we

obtain

(

ia+ ib
√
m
)n

= Tn(ia) + ibSn−1(ia)
√
m = inT∗

n(a) + ibin−1S∗n−1(a)
√
m

= in
(

T∗
n(a) + bS∗n−1(a)

√
m
)

.

Hence
(

a+ b
√
m
)n

= T∗
n(a) + bS∗n−1(a)

√
m, as required. �

The following two theorems are the building blocks of our main result. We begin

with the case of primes p > 2.

Theorem 4.3. Suppose that F is a finite field with q elements. Suppose also

that p is an odd prime such that p | q+1, c is the positive integer such that pc ‖ q+1

and r is a positive integer satisfying 1 6 r 6 c. In addition, given a non-square

element m ∈ F, consider the group

G =
{

σ ∈ F
(√

m
)

: N(σ) = 1
}

.
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Let σ = a+ b
√
m ∈ G and kr = 1

2 (p
r − 1). Then:

(a) If σ 6= 1, then ord(σ) | pr if and only if Skr
(a) + Skr−1(a) = 0.

(b) ord(σ) = pr if and only if Lpr(a) = 0, where Lpr denotes the polynomial

Lpr(x) := 2

(p−1)/2
∑

j=1

Tjpr−1(x) + 1.

P r o o f. In this proof, for the purpose of clarity, we shall use Tk and Sk instead

of Tk(a) and Sk(a).

(a) Set n = kr. By Propositions 4.2 and 2.1 (6), (9) we obtain

(

a+ b
√
m
)pr

=
(

a+ b
√
m
)2n+1

= T2n+1 + bS2n
√
m

= 1 + (Sn + Sn−1)
2(a− 1) + b(S2n − S2n−1)

√
m

= 1 + (Sn + Sn−1)
(

(a− 1)(Sn + Sn−1) + b(Sn − Sn−1)
√
m
)

.

Hence, if Sn(a) + Sn−1(a) = 0, then σpr

= 1, so ord(σ) | pr, as required.
Conversely, if ord(σ) | pr, then σpr

= 1. Hence either Sn + Sn−1 = 0 or

(∗) (a− 1)(Sn + Sn−1) + b(Sn − Sn−1)
√
m = 0.

We claim that Sn + Sn−1 = 0. Suppose otherwise that Sn + Sn−1 6= 0. Since σ 6= 1

and N(σ) = a2 −mb2 = 1, it follows that a 6= 1, so (a − 1)(Sn + Sn−1) 6= 0, which

contradicts (∗). Therefore Sn + Sn−1 = 0, as claimed.

(b) Consider the sets

A =
{

a+ b
√
m ∈ G: a, b ∈ F, ord

(

a+ b
√
m
)

= pr
}

,

B =
{

a+ b
√
m ∈ G: a, b ∈ F, Lpr (a) = 0

}

.

It suffices to prove that A = B. First we shall prove using induction on r that

LpLp2 . . .Lpr = Skr
+ Skr−1.

If r = 1, then it follows by Proposition 2.1 (7) that

Lp = 2

(p−1)/2
∑

j=1

Tj + 1 = 2

k1
∑

j=1

Tj + 1 = Sk1
+ Sk1−1.
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Suppose that r > 2. By the inductive hypothesis, Proposition 2.1 (4) (7) and the

definition of Lpr we obtain

Lp . . .Lpr−1Lpr = (Skr−1
+ Skr−1−1)Lpr

=

(

2

kr−1
∑

i=1

Ti + 1

)(

2

(p−1)/2
∑

j=1

Tjpr−1 + 1

)

= 2

kr−1
∑

i=1

(p−1)/2
∑

j=1

2TiTjpr−1 + 2

kr−1
∑

i=1

Ti + 2

(p−1)/2
∑

j=1

Tjpr−1 + 1

= 2

kr−1
∑

i=1

Ti + 2

(p−1)/2
∑

j=1

kr−1
∑

i=1

(Tjpr−1+i +Tjpr−1−i) + 2

(p−1)/2
∑

j=1

Tjpr−1 + 1

= 2

(kr−1
∑

l=1

Tl +

(p−1)/2
∑

j=1

jpr−1+kr−1
∑

l=jpr−1−kr−1

Tl

)

+ 1.

Note that for every 0 6 j 6 1
2 (p− 1)− 1 we have

((j + 1)pr−1 − kr−1)− (jpr−1 + kr−1) = pr−1 − 2kr−1 = 1.

Therefore

LpLp2 . . .Lpr = 2

(p−1)pr−1/2+kr−1
∑

l=1

Tl + 1 = 2

(pr−1)/2
∑

l=1

Tl + 1 = Skr
+ Skr−1,

as claimed.

Returning to our central claim, first we shall prove that A ⊆ B. So suppose

that σ = a + b
√
m has order pr. Hence Skr

(a) + Skr−1(a) = 0 by part (a). Since

LpLp2 . . .Lpr = Skr
+ Skr−1, it follows that Lp(a)Lp2(a) . . .Lpr (a) = 0. If r = 1,

then Lp(a) = 0 and we are done. Suppose that r > 2 but Lpr (a) 6= 0. Then

Lp(a) . . .Lpr−1(a) = 0, and since Lp . . .Lpr−1 = Skr−1
+ Skr−1−1, it follows that

Skr−1
(a) + Skr−1−1(a) = 0. By part (a) we deduce that ord(σ) | pr−1, which contra-

dicts the fact that the order of σ is pr.

In view of the fact that A ⊆ B, in order to prove that A = B, it suffices to prove

that |A| > |B|. Since char(F) 6= 2, Proposition 2.1 (1) implies that

deg Lpr = deg

(

2

(p−1)/2
∑

j=1

Tjpr−1 + 1

)

= deg(T(p−1)pr−1/2) =
(p− 1)pr−1

2
=

ϕ(pr)

2
,

where ϕ denotes Euler’s totient function. It follows that Lpr has at most 1
2ϕ(p

r)

roots in F. Now, given an element a ∈ F such that Lpr (a) = 0, there are at most
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two elements b ∈ F such that a2 − mb2 = 1 (namely b and (−b)). Hence |B| 6
1
2ϕ(p

r) · 2 = ϕ(pr).

Regarding |A|, since ord
(

a+ b
√
m
)

= pr, it follows that pr | |G|. But by Proposi-
tion 4.1 the group G is cyclic, so the number of elements in G of order pr is exactly

ϕ(pr). Thus |A| = ϕ(pr), so |B| 6 |A|, as required. �

Next we prove the complementary theorem for the case p = 2.

Theorem 4.4. Suppose that F is a finite field with q elements. Suppose also that

c is the positive integer such that 2c ‖ q + 1 and r is a positive integer satisfying

1 6 r 6 c. In addition, given a non-square element m ∈ F, consider the group

G =
{

σ ∈ F
(√

m
)

: N(σ) = 1
}

.

Let σ = a+ b
√
m ∈ G. Then:

(a) If σ 6= ±1, then ord(σ) | 2r if and only if S2r−1−1(a) = 0.

(b) If r > 2, then ord(σ) = 2r if and only if T2r−2(a) = 0.

P r o o f. In this proof, for the purpose of clarity, we shall use Tk and Sk instead

of Tk(a) and Sk(a).

(a) Set n = 2r−1. By Propositions 4.2 and 2.1 (6), (8) we obtain

(

a+ b
√
m
)2r

=
(

a+ b
√
m
)2n

= T2n + bS2n−1

√
m

= 1 + 2S2n−1(a
2 − 1) + 2bSn−1Tn

√
m

= 1 + 2Sn−1

(

(a2 − 1)Sn−1 + bTn

√
m
)

.

Hence, if Sn−1(a) = 0, then σ2r = 1, so ord(σ) | 2r, as required.
Conversely, if ord(σ) | 2r, then σ2r = 1. Hence either Sn−1 = 0 or

(∗) (a2 − 1)Sn−1 + bTn

√
m = 0.

We claim that Sn−1 = 0. Suppose otherwise that Sn−1 6= 0. Since a + b
√
m 6= ±1

and a2 −mb2 = 1 it follows that a 6= ±1, so (a2 − 1)Sn−1 6= 0, which contradicts (∗).
Therefore Sn−1(a) = 0, as required.

(b) Consider the sets

A =
{

a+ b
√
m ∈ G: a, b ∈ F, ord

(

a+ b
√
m
)

= 2r
}

,

B =
{

a+ b
√
m ∈ G: a, b ∈ F, T2r−2(a) = 0

}

.

It suffices to prove that A = B. We begin by proving that

S2r−1 = 2rT20T21T22 . . .T2r−1
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for every r > 1. The proof is by induction on r. If r = 1, then indeed S21−1 =

S1 = 2x = 2T1 = 21T20 . Suppose now that r > 2. By Proposition 2.1 (6) and the

inductive hypothesis it follows that

S2r−1 = 2S2r−1−1T2r−1 = 2(2r−1T20T21 . . .T2r−2)T2r−1 = 2rT20T21 . . .T2r−1 ,

as claimed.

Returning to our central claim, we shall prove that A ⊆ B. So suppose that

a+ b
√
m has order 2r and r > 2. By part (a) it follows that S2r−1−1(a) = 0. Since

S2r−1−1 = 2r−1T20T21 . . .T2r−2

and char(F) 6= 2 it follows that

T20(a)T21(a) . . .T2r−2(a) = 0.

If r = 2, then T20(a) = 0 and we are done. Assume that r > 3 but T2r−2(a) 6= 0.

Then T20(a)T21(a) . . .T2r−3(a) = 0, and since 2r−2T20T21 . . .T2r−3 = S2r−2−1, it fol-

lows that S2r−2−1(a) = 0. But then, by part (a) we deduce that ord
(

a+b
√
m
)

| 2r−1,

which contradicts the fact that the order of a+ b
√
m is 2r.

In view of the fact that A ⊆ B, in order to prove that A = B, it suffices to prove

that |A| > |B|. Since char(F) 6= 2, Proposition 2.1 (1) implies that deg(T2r−2 ) =

2r−2 = 1
2ϕ(2

r). It follows that T2r−2 has at most 1
2ϕ(2

r) roots in F. Given an

element a ∈ F such that T2r−2(a) = 0, there are at most two elements b ∈ F such

that a2 −mb2 = 1 (namely b and (−b)). Hence, |B| 6 1
2ϕ(2

r) · 2 = ϕ(2r).

Regarding |A|, since ord
(

a + b
√
m
)

= 2r, it follows that 2r | |G|. But by Propo-
sition 4.1 the group G is cyclic, so the number of elements in G of order 2r is

exactly ϕ(2r). Thus |A| = ϕ(2r), so |B| 6 |A|, as required. �

Now we can prove the main result of this section.

Theorem 4.5. Suppose that F is a finite field with q elements and let m ∈ F.

Consider the equation

(∗) x2 −my2 = 1.

If m is a non-square element, then (∗) has exactly q + 1 solutions (x, y) over F.

Moreover, these solutions are given by

x+ y
√
m = ωk

q+1, k ∈ {0, 1, . . . , q},
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where ωq+1 =
∏

ωpr , in which the product extends over all prime powers pr ‖ q+ 1,

and the ωpr ’s are chosen as follows:

(a) If p > 2, then ωpr = a + b
√
m is any solution of (∗) such that Lpr (a) = 0,

where Lpr is the polynomial

Lpr(x) := 2

(p−1)/2
∑

j=1

Tjpr−1(x) + 1,

and Tk denotes the kth Chebyshev polynomial.

(b) If p = 2 and r = 1, then ω2 = −1.

(c) If p = 2 and r > 2, then ω2r = a + b
√
m is any solution of (∗) such that

T2r−2(a) = 0.

P r o o f. Set G = {(x, y) : x, y ∈ F, x2 − my2 = 1}. By Proposition 4.1, G is
a cyclic group of order q + 1. Let ωq+1 be a generator of G. By the fundamental

theorem of cyclic groups, we have that

ωq+1 =
∏

pr‖q+1

ωpr ,

where the product extends over all prime powers pr ‖ q+1, and ωpr ∈G is of order pr.

If p > 2, then by Theorem 4.3 (b), the element ωpr is of the form ωpr = a+ b
√
m,

where a, b ∈ F are any two elements that satisfy both of the equations a2 −mb2 = 1

and Lpr (a) = 0, as required.

Suppose that p = 2. If r = 1, then we may choose ω2 = −1, since clearly −1 ∈ G

and ord(−1) = 2. If r > 2, then by Theorem 4.4 (b), ω2r is of the form ω2r = a+b
√
m,

where a, b ∈ F are any two elements that satisfy both of the equations a2 −mb2 = 1

and Tr−2(a) = 0, as required. The proof is therefore complete. �

We conclude this section with several examples illustrating Theorem 4.5.

Example 4.6. Let us solve the Pell equation x2 − 3y2 = 1 over the field F149.

Here, using the notation of Theorem 4.5, F = F149, q = 149 and m = 3. Hence

q + 1 = 2 · 3 · 52. Note that since
( 3

149

)

=
(149

3

)

=
(2

3

)

= −1,

it follows that m = 3 is a non-square element in F. By Theorem 4.5, we deduce that

x2 − 3y2 = 1 has q + 1 = 150 solutions and a fundamental solution for this equation

is ω150 = ω2ω3ω25.

First we find ω2. In this case r = 1, so by Theorem 4.5 (b) we obtain that ω2 = −1.

Next we find ω3. In this case p = 3 and r = 1. By Theorem 4.5 (a) we obtain that
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ω3 = a+ b
√
3, where a, b ∈ F are any two elements that satisfy both of the equations

a2 − 3b2 = 1 and L3(a) = 0. Here

L3(x) = 2T1(x) + 1 = 2x+ 1.

Since a = 74 and b = 22 satisfy both a2 − 3b2 = 1 and L3(a) = 0, we may choose

ω3 = 74 + 22
√
3.

Finally we find ω25. By Theorem 4.5 (a) we obtain that ω25 = a + b
√
3, where

a, b ∈ F are any two elements that satisfy both of the equations a2 − 3b2 = 1 and

L25(a) = 0. Here

L25(x) = 2(T5(x) + T10(x)) + 1

= 130x10 − 27x8 + 5x6 + 32x5 − 55x4 − 40x3 − 49x2 + 10x− 1.

Since a = 10 and b = 35 satisfy both a2 − 3b2 = 1 and L25(a) = 0, we may choose

ω25 = 10 + 35
√
3.

Once we found the ω2, ω3 and ω25, the fundamental solution of x
2 − 3y2 = 1 is

ω2ω3ω25 = (−1)
(

74 + 22
√
3
)(

10 + 35
√
3
)

= 79 + 21
√
3.

Therefore, the solutions (x, y) of the Pell equation x2 − 3y2 = 1 over F149 are given

by x+ y
√
3 =

(

79 + 21
√
3
)k
, where k ∈ {0, 1, 2, . . . , 149}.

Example 4.7. Let us solve the Pell equation x2+y2 = 1 over the field F = F167.

Here q = 167, m = −1. Hence q + 1 = 23 · 3 · 7. Note that

( −1

167

)

= −1

since 167 ≡ −1 (mod 4), so m = −1 is a non-square element in F. By Theorem 4.5,

we deduce that x2 + y2 = 1 has q + 1 = 168 solutions and a fundamental solution

for this equation is ω168 = ω8ω3ω7.

First we find ω8. In this case r = 3, so by Theorem 4.5 (c) ω8 = a + bi, where

i :=
√
−1 and a, b ∈ F are any two elements that satisfy both of the equations

a2 + b2 = 1 and T2(a) = 0. Here T2(x) = 2x2 − 1. Since a = 77 and b = 77 satisfy

both a2 + b2 = 1 and T2(a) = 0, we may choose ω8 = 77 + 77i.

Next we find ω3. By Theorem 4.5 (a) ω3 = a + bi, where a, b ∈ F are any two

elements that satisfy both of the equations a2+ b2 = 1 and L3(a) = 0. Here L3(x) =

2T1(x)+1 = 2x+1. Since a = 83 and b = 31 satisfy both a2+b2 = 1 and L3(a) = 0,

we may choose ω3 = 83 + 31i.
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Finally we find ω7. By Theorem 4.5 (a) ω7 = a + bi, where a, b ∈ F are any two

elements that satisfy both of the equations a2 + b2 = 1 and L7(a) = 0. Here

L7(x) = 2(T1(x) + T2(x) + T3(x)) + 1 = 8x3 + 4x2 − 4x− 1.

Since a = 61 and b = 11 satisfy both a2 + b2 = 1 and L7(a) = 0, we may choose

ω7 = 61 + 11i. Once we found the ω8, ω3 and ω7, the fundamental solution of

x2 + y2 = 1 is

ω8ω3ω7 = (77 + 77i)(83 + 31i)(61 + 11i) = 58 + 12i.

Therefore, the solutions (x, y) of the Pell equation x2 + y2 = 1 over F167 are given

by x+ yi = (58 + 12i)k, where k ∈ {0, 1, 2, . . . , 167}.

5. The solution of the general Pell equation x2 −my2 = n

In this section we shall solve the general Pell equation x2 − my2 = n for any

m,n ∈ F. As we shall see, in order to solve the general Pell equation, it suffices to find

a fundamental solution for x2−my2 = 1 and a particular solution for x2−my2 = n.

We begin by proving the existence and form of a solution for the negative Pell

equation x2 −my2 = −1.

Proposition 5.1. Suppose that F is a finite field with q elements and letm ∈ F be

a non-square element. In addition, let c be the positive integer such that 2c ‖ q + 1.

Then the polynomial T∗
2c−1 has 2c−1 roots over F. Furthermore, if T∗

2c−1(a) = 0,

then there exists b ∈ F such that N
(

a+ b
√
m
)

= −1.

P r o o f. Consider the sets

A =
{

a+ b
√
m : a, b ∈ F, ord

(

a+ b
√
m
)

= 2c+1
}

,

B =
{

a+ b
√
m : a, b ∈ F, T∗

2c−1(a) = 0, N
(

a+ b
√
m
)

= −1
}

.

First we shall prove that A = B. We begin by proving that A ⊆ B. Suppose that

σ = a+ b
√
m has order 2c+1. We shall prove that N(σ) = −1 and T∗

2c−1(a) = 0.

If ord(σ) = 2c+1, then σ2c 6= 1. Since σ2c+1

= 1 implies either σ2c = 1 or σ2c = −1,

it follows that σ2c = −1. Therefore

(σ2c)(q+1)/2c = (−1)(q+1)/2c ,

so σq+1 = −1, since (q + 1)/2c is odd. By Proposition 3.2, N(σ) = σσ = σq+1, so

N(σ) = −1, as required.

Next we prove that T∗
2c−1(a) = 0. By our assumption, the order of σ is 2c+1.

Hence
(

a+ b
√
m
)2c

= −1.
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In addition, since N(σ) = a2 −mb2 = −1, we deduce by Proposition 4.2 that

T∗
2c(a) + bS∗2c−1(a)

√
m = −1.

Therefore T∗
2c(a) = −1. Since T∗

2c = 2(T∗
2c−1)2 − 1 by Proposition 2.2 (2), it follows

that 2(T∗
2c−1)2(a) = 0, so T∗

2c−1(a) = 0. Hence A ⊆ B, as required.

In view of the fact that A ⊆ B, it suffices to prove that |A| > |B|. Let r be the
number of roots of T∗

2c−1 over F. Clearly, |B| 6 2r. Since |A| = ϕ(2c+1) = 2c and

A ⊆ B, it follows that 2c 6 |B|. Thus 2c 6 2r, that is, 2c−1 6 r. On the other hand,

r 6 deg(T∗
2c−1) = 2c−1, so r = 2c−1. Therefore, |B| 6 2c = |A|, so |A| = |B|, as

required.

Note that since |B| = 2deg(T∗
2c−1), it follows that for every root of T∗

2c−1 , there

exists indeed at least one element b ∈ F such that N
(

a+b
√
m
)

6= −1, as claimed. �

Theorem 5.2. Let m ∈ F be a non-square element. In addition, let c be the

positive integer such that 2c ‖ q + 1. Then:

(a) If n ∈ F is a square element, then
(√

n, 0
)

is a solution of x2 − my2 = n,

where
√
n denotes any pre-chosen root of n in F.

(b) If n ∈ F is a non-square element, then
(

ny0, nx0/
√
mn

)

is a solution of

x2 − my2 = n, where
√
mn denotes any pre-chosen root of mn in F and

(x0, y0) is any solution of the negative Pell equation x2 − ny2 = −1 such that

T∗
2c−1(x0) = 0, where T∗

k denotes the kth conjugate Chebyshev polynomial.

P r o o f. Part (a) is clear, so we may proceed to part (b). As in the proof of

Proposition 3.2, note that since m and n are both non-square, it follows by Proposi-

tion 3.1 thatm(q−1)/2 = −1 and n(q−1)/2 = −1, so (mn)(q−1)/2 = 1. Therefore,mn is

a square element, so
√
mn exists in F. Now, since x2

0 − ny20 = −1, it follows that

(ny0)
2 −m

( nx0√
mn

)2

= n2y20 −m · n
2x2

0

mn
= n(ny20 − x2

0) = n.

Additionally, by Proposition 5.1 we may assume that x0 satisfies T
∗
2c−1(x0) = 0, as

required. �

Theorem 5.3. Let m,n ∈ F such that m is a non-square. Then the equation

x2 −my2 = n has exactly q+ 1 solutions over F. Furthermore, these q + 1 solutions

are given by

x+ y
√
m = σωk,

where σ ∈ F
(√

m
)

is any particular solution of x2 − my2 = n, ω ∈ F
(√

m
)

is

a fundamental solution of x2 −my2 = 1 and k ∈ {0, 1, 2, . . . , q}.
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P r o o f. By Proposition 5.1 and Theorem 5.2 it follows that the general Pell

equation x2 − my2 = n is solvable. Let σ ∈ F
(√

m
)

be a particular solution of

x2 −my2 = n. Observe that it suffices to prove that

{

τ ∈ F
(√

m
)

: N(τ) = n
}

= {σωk : 0 6 k 6 q}.

First, note that by our assumptionsN(σ) = n and N(ω) = 1. Now, by the multiplicity

of the norm, given k ∈ {0, 1, 2, . . . , q}, we obtain

N(σωk) = N(σ)N(ω)k = n · 1k = n,

so σωk is a solution of x2 −my2 = n.

Conversely, suppose that τ ∈ F
(√

m
)

satisfies N(τ) = n. Thus N(τ) = N(σ), so

N(τ/σ) = N(τ)/N(σ) = 1. Therefore, τ/σ is a solution of x2 −my2 = 1 and hence,

by Theorem 4.5 there exist a fundamental solution ω ∈ F
(√

m
)

and k ∈ {0, 1, . . . , q}
such that τ/σ = ωk. Thus τ = σωk, as required. �

Example 5.4. Let us solve the equation x2 + y2 + z2 = 1 over the field F = F7.

Clearly, this equation is equivalent to x2 + y2 = 1 − z2, which by Theorem 5.3 is

solvable for every z ∈ F.

First, in order to solve this equation, we need to find a fundamental solution for

x2 + y2 = 1. Here m = −1 and q = 7, so q + 1 = 23. Note that (−1 | 7) = −1

since 7 ≡ 3 (mod 4), so m = −1 is a non-square element in F. By Theorem 4.5, we

deduce that x2 + y2 = 1 has q + 1 = 8 solutions and a fundamental solution for this

equation is ω8. In this case r = 3, so by Theorem 4.5 (c) ω8 = a+ bi, where i :=
√
−1

and a, b ∈ F are any two elements that satisfy both of the equations a2 + b2 = 1 and

T2(a) = 0. Here T2(x) = 2x2 − 1. Since a = 2 and b = 2 satisfy both a2 + b2 = 1

and T2(a) = 0, we may choose ω8 = 2 + 2i.

Next, we shall solve x2 + y2 = 1 − z2 for every z ∈ F. For z = 0, the equation

is x2 + y2 = 1 and we may take the particular solution σ = 1. For z = ±1, the

equation is x2 + y2 = 0 and we may take the particular solution σ = 0. For z = ±2,

the equation is x2 + y2 = 4 and we may take the particular solution σ = 2. Finally,

for z = ±3, the equation is x2 + y2 = 6 and we may take the particular solution

σ = 3 + 2i.

Therefore, the solutions of x2 + y2 + z2 = 1 are the triples (x, y, z) such that

x+ yi = (2 + 2i)k, z = 0,

x+ yi = 0, z = ±1,

x+ yi = 2(2 + 2i)k, z = ±2,

x+ yi = (3 + 2i)(2 + 2i)k, z = ±3,
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where k ∈ {0, 1, . . . , 7}. This gives us the following 42 solutions:

(1, 0, 0) (2, 0,±2) (3, 2,±3) (0, 0,±1) (2, 2, 0)

(4, 4,±2) (2, 3,±3) (0, 1, 0) (0, 2,±2) (5, 3,±3)

(5, 2, 0) (3, 4,±2) (4, 2,±3) (6, 0, 0) (5, 0,±2)

(4, 5,±3) (5, 5, 0) (3, 3,±2) (5, 4,±3) (0, 6, 0)

(0, 5,±2) (2, 4,±3) (2, 5, 0) (4, 3,±2) (3, 5,±3)

We conclude with a complete description of the solutions of the general Pell equa-

tion x2 −my2 = n for a square element m.

Theorem 5.5. Let m,n ∈ F such that m 6= 0 is a square element. Consider the

equation

(∗) x2 −my2 = n.

(a) If n = 0, then (∗) has exactly 2q − 1 solutions (x, y) over F. Moreover, these

solutions are given by

(x, y) =
(

±a
√
m, a

)

,

where a ∈ F and
√
m denotes any pre-chosen root of m in F.

(b) If n 6= 0, then (∗) has exactly q − 1 solutions (x, y) over F. Moreover, these

solutions are given by

(x, y) =
(a+ n/a

2
,
a− n/a

2
√
m

)

,

where a ∈ F
∗ and

√
m denotes any pre-chosen root of m in F.

P r o o f. (a) If a ∈ F, then (x, y) =
(

±a
√
m, a

)

satisfies the equation x2−my2 = 0.

Indeed,

x2 −my2 =
(

±a
√
m
)2 −ma2 = a2m−ma2 = 0.

Conversely, if x2 −my2 = 0, then
(

x − √
my

)(

x +
√
my

)

= 0, so either x =
√
my

or x = −√
my. Therefore, there exists a ∈ F such that either (x, y) =

(

a
√
m, a

)

or

(x, y) =
(

−a
√
m, a

)

, as required.

Note that
(

a
√
m, a

)

6=
(

−a
√
m, a

)

if and only if a 6= 0, so when a extends over the

nonzero elements of F, the number of solutions is 2(q − 1). By adding to the count

also the trivial solution (0, 0), we obtain 2(q − 1) + 1 = 2q − 1 solutions, as claimed.

(b) If a ∈ F
∗, then

(x, y) =
(a+ 1/a

2
,
a− 1/a

2
√
m

)
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satisfies the equation x2 −my2 = n. Indeed,

x2−my2=
(a+ n/a

2

)2

−m
(a− n/a

2
√
m

)2

=
a2 + n2/a2 + 2n

4
−m·a

2 + n2/a2 − 2n

4m
= n.

Conversely, if x2 −my2 = n, then
(

x − √
my

)(

x +
√
my

)

= n. Since n 6= 0, there

exists a ∈ F
∗ such that







x+
√
my = a,

x−√
my =

n

a
.

Solving this system of linear equations gives

(x, y) =
(a+ n/a

2
,
a− n/a

2
√
m

)

.

We note that since a extends over the nonzero elements of F, the number of solutions

is indeed q − 1. �

Example 5.6. Let us solve the the general Pell equation x2 − 2y2 = 5 over the

field F = F17. Note that since 17 ≡ 1 (mod 8), it follows that (2 | 17) = 1, so

m = 2 is a square in F. Indeed, in this case 2 = 62, so we may choose
√
m = 6. By

Theorem 5.5 (b), the solutions of x2 − 2y2 = 5 are

(x, y) =
(a+ 5/a

2
,
a− 5/a

2
√
m

)

=
(a+ 5/a

2
,
a− 5/a

12

)

,

where a ∈ F
∗
17, which gives the following 16 solutions:

(3,11) (15,12) (8,2) (9,2) (3,6) (2,12) (16,7) (1,7)

(1,10) (15,5) (14,11) (8,15) (9,15) (2,5) (14,6) (16,10)
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