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A characterization of symplectic

groups related to Fermat primes

Behnam Ebrahimzadeh, Alireza K. Asboei

Abstract. We proved that the symplectic groups PSp(4, 2n), where 22n + 1 is
a Fermat prime number is uniquely determined by its order, the first largest

element orders and the second largest element orders.
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1. Introduction

Throughout this paper, all groups considered are finite and p is a Fermat prime

number. The set of prime divisors of |G| is denoted by π(G), the set of orders

of elements of G is denoted by πe(G), the largest element orders and the second

largest element orders of πe(G) are denoted by k1(G) and k2(G), respectively.

Also, a Sylow p-subgroup of G is denoted by Gp. The prime graph Γ(G) of

group G is a graph whose vertex set is π(G), and two vertices u and v are adjacent

if and only if uv ∈ πe(G). Furthermore, assume that Γ(G) has t(G) connected

components πi for i = 1, 2, . . . , t(G). In the case where |G| is of even order, let π1

be the connected component containing 2.

In the past 30 years, there has been a lot of attention to the problem, whether

a finite simple group G is fully determined by |G| and πe(G). The problem was

completely solved by V.D. Mazurov et al. in [9]. After that, several researchers

tried to characterize some finite simple groups with less information. It turns out

that the largest element orders can be used to characterize L3(q) (q ≤ 8) and

U3(q) (q ≤ 11), L2(q) where q < 125, the sporadic simple groups, K4-group of

type L2(p), PGL(2, q), the Suzuki group Sz(q), where q − 1 or q ± √
2q + 1 is

a prime number by using the largest orders, see [6], [3], [5], [1], [4], [8].

In this paper, we show that the simple symplectic groups PSp(4, 2n), where

22n + 1 is a Fermat prime number, is uniquely determined by its order, the first
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largest element orders and the second largest element orders. The main theorem

is as follows.

Main theorem. Let G be a group such that |G| = |PSp(4, 2n)|, k1(G) =

k1(PSp(4, 2
n)) = 22n+1 and k2(G) = k2(PSp(4, 2

n)) = 22n−1, where (22n+1) > 5

is a Fermat prime number. Then G ∼= PSp(4, 2n).

2. Preliminaries

Lemma 2.1 ([2]). Let G be a Frobenius group of even order with kernel K and

complement H . Then

(1) t(G) = 2, π(H) and π(K) are vertex sets of the connected components

of Γ(G);

(2) |H | divides |K| − 1;

(3) kernel K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal

series 1 EH EK E G such that G/H and K are Frobenius groups with kernels

K/H and H , respectively.

Lemma 2.3 ([9]). Let G be a 2-Frobenius group of evenorder. Then

(1) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

(2) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.4 ([10]). Let G be a finite group with t(G) ≥ 2. Then one of the

following statements holds:

(1) group G is a Frobenius group;

(2) group G is a 2-Frobenius group;

(3) group G has a normal series 1 EH EK E G such that H and G/K are

π1-groups, K/H is a non-abelian simple group.

3. Proof of the main theorem

We denote the simple symplectic groups PSp(4, 2n) by C and prime number

22n + 1 = q2 + 1 by p. Recall that G is a group such that |G| = |C| = q4 ×
(q4 − 1)(q2 − 1), k1(G) = k1(C) = q2 + 1 and k2(G) = k2(C) = q2 − 1.

Lemma 3.1. Vertex p is an isolated vertex of Γ(G).

Proof: Let there is t ∈ π(G) − {p} such that tp ∈ πe(G). So, tp ≥ 2p =

2(q2 + 1) > q2 + 1 and so k1(G) = q2 + 1 < tp, which is a contradiction. �
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By the above lemma, we have t(G) ≥ 2. By Lemma 2.4, G is a Frobenius group,

or a 2-Frobenius group, or G has a normal series 1EHEKEG such that H and

G/K are π1-groups, and K/H is a non-abelian simple group. In the following two

lemmas, we show that G is neither a Frobenius group nor a 2-Frobenius group.

Lemma 3.2. Group G is not a Frobenius group.

Proof: Let G be a Frobenius group with kernel K and complement H . By

Lemma 3.2, t(G) = 2, π(H) and π(K) are vertex sets of the connected components

of Γ(G) and also |H | divides |K| − 1. Now, by Lemma 3.1, p is an isolated vertex

of Γ(G). Thus, we deduce that (i) |H | = p and |K| = |G|/p or (ii) |H | = |G|/p
and |K| = p. Since |H | divides |K| − 1, the last case cannot occur. So, |H | = p

and |K| = |G|/p, and hence q2 + 1 | q4(q4 − 1)(q2 − 1)/(q2 + 1) − 1. Therefore,

(q2 + 1) divides (q2 + 1)(q6 − 3q4 + 4q2 − 4) + 4. It follows that p | 4, which is

a contradiction. �

Lemma 3.3. Group G is not a 2-Frobenius group.

Proof: Let G be a 2-Frobenius group. Then G has a normal series 1 E H E

K E G such that G/H and K are Frobenius groups by kernels K/H and H ,

respectively. Set |G/K| = x. Since p is an isolated vertex of Γ(G), we have

|K/H | = p and |H | = |G|/(xp). By Lemma 3.3, |G/K| divides |Aut(K/H)|.
Thus, x | p−1. On the other hand, (q2, q−1) = 1. So, |G/K| | (p−1), we deduce

that (q − 1) | |H |. Since H is nilpotent, Ht ⋊ K/H is a Frobenius group with

kernel Ht and complement K/H , where t is a prime divisor of q − 1. So, |K/H |
divides |Ht|−1. That implies that q2+1 ≤ q−2 ≤ q, which is a contradiction. �

Now, we show that G is isomorphic to C. Since G is neither a Frobenius

group nor a 2-Frobenius group, by Lemma 2.4, G has a normal series 1 E H E

KEG such that H and G/K are π1-groups and also K/H is a non-abelian simple

group. Since |G| = |G/K| × |K/H | × |H | and H and G/K are π1-groups, each

odd order component of G is an odd order component of K/H . Since p | |K/H |,
t(k/H) ≥ 2. According to the classification of finite simple groups, we know that

the possibilities for K/H are the alternating group Altm, m ≥ 5, one of the 26

sporadic simple groups, and the simple groups of Lie types.

In the rest of the proof, we shall consider all these possibilities one after another.

Step 1. Let K/H ∼= Altm, where there is a prime p′ such that m ∈ {p′, p′ + 1,

p′ + 2}. By [10] k2(Altm) = p′, or p′ − 2. If q2 − 1 = p′, then q2 − 2 = p′ − 1. On

the other hand,

|Altm| | |PSp(4, q)| = q4(q4 − 1)(q2 − 1).
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Hence, q2 − 2 = p′ − 1 divides the order of Altm, and that divides the order of

PSp(4, q), which is equal to q4(q4 − 1)(q2 − 1). The latter integer is not divisible

by q2 − 2, and that is a contradiction.

Similarly, if q2−1 = p′−2, then q2−2 = p′−3. So, q2−2 = p′−3 divides the

order of Altm, and that divides the order of PSp(4, q), which is a contradiction.

Step 2. If K/H is isomorphic to one of the sporadic simple groups, then by [7],

k2(S) = {5, 7, 11, 13, 17, 19, 23, 31, 37, 59}. So, q2 − 1 = 5, 7, 11, 17, 19, 23, 31,

37, 59. Let q2 − 1 = 5. Then q2 = 6. Now, we can see easily this equation is

impossible. Similarly, we can rule out the other cases.

Step 3. Let K/H be isomorphic to a simple group of Lie-type.

3.1. Then K/H 6∼= Bm(q ), where m > 2, q is a prime power. By [7], k2(Bm(q )) =

qm − q. Also,

|Bm(q )| = 1

(2, q − 1)
qm2

m
∏

i=1

(q 2i − 1).

Since |Bm(q )| | |G|,

1

(2, q − 1)
qm2

m
∏

i=1

(q 2i − 1) | q4(q4 − 1)(q2 − 1).

On the other hand, q2 − 1 = qm − q. So, (q − 1)(q + 1) = q (qm−1 − 1). Since

(q − 1, q + 1) = 1, so we have q − 1 = q and q + 1 = qm−1 − 1. As a result,

q = q + 1 and q = qm−1 − 2 and so |Bm(q )| ∤ |G|, which is a contradiction.

3.2. If K/H ∼= 3D4(q), then by [7], k2(
3D4(q )) = q 4 − q 2 + 1. Also, we have

|3D4(q )| = q12(q 8 + q 4 + 1)(q 6 − 1)(q 2 − 1).

Since |3D4(q )| | |G|,

q12(q 8 + q 4 + 1)(q 6 − 1)(q 2 − 1) | q4(q4 − 1)(q2 − 1).

On the other hand, q2 − 1 = q 4 − q 2 + 1. It follows that

q2 − 2 = q 2(q 2 − 1).

Thus,

2(22n−1 − 1) = q 2(q 2 − 1)

and so q 2 = 2, or 3. In both cases, we get a contradiction.

3.3. Let K/H ∼= E6(q ), E7(q ), E8(q ), F4(q ). For example, if K/H ∼= F4(q ),

then by [7], k2(F4(q )) = q 4 + 1. Also,

|F4(q )| = q 24(q 2 − 1)(q 6 − 1)(q 8 − 1)(q12 − 1).
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Since |F4(q )| | |G|,

q 24(q 2 − 1)(q 6 − 1)(q 8 − 1)(q12 − 1) | q 4(q 4 − 1)(q 2 − 1).

Therefore, q2 − 1 = q 4 + 1 and then q2 = q 4 + 2, which is a contradiction by

|F4(q )| | |G|.
Similarly, when K/H ∼= E6(q ), E7(q ), or E8(q ), we get a contradiction.

3.4. If K/H ∼= 2E6(q ), then by [7] k2(
2E6(q )) = (q 6 − 1)/(3, q + 1). Also,

|2E6(q )| =
q 36(q12 − 1)(q 9 + 1)(q 8 − 1)(q 6 − 1)(q 5 + 1)(q 2 − 1)

(3, q + 1)
.

So, q2 − 1 = (q 6 − 1)/(3, q + 1). First, if (3, q + 1) = 1, then q2 − 1 = q 6 − 1 and

so q2 = q 6. It follows that |2E6(q )| ∤ |G|, which is a contradiction.

Similarly, when (3, q + 1) = 3, we get a contradiction.

3.5. If K/H ∼= 2G2(3
2m+1) where m ≥ 1, then by [7], k(2G2(3

2m+1)) = 32m+1 −
3m+1 + 1. Also, if q = 32m+1, then

|2G2(3
2m+1| = q 3(q 3 + 1)(q − 1).

Since |2G2(3
2m+1)| | |G|, we have

q 3(q 3 + 1)(q − 1) | q4(q4 − 1)(q2 − 1).

So, 32m+1 − 3m+1 + 1 = q2 − 1 and so q2 − 2 = 32m+1 − 3m+1. Hence,

2(22n−1 − 1) = 3m+1(3m − 1).

Then 3m − 1 = 2 and 3m+1 = 22n−1 − 1, which implies that m = 1 and n = 2.

On the other hand, |2G2(27)| ∤ |PSp(4, 4)|, which is a contradiction.

3.6. If K/H ∼= 2B2(q ), where q = 22m+1 ≥ 8, then by [7], k2(
2B2(q )) = q − 1.

We have

|2B2(q )| = q 2(q 2 + 1)(q − 1).

Since |2B2(q )| | |G|, we have

q 2(q 2 + 1)(q − 1) | q4(q4 − 1)(q2 − 1).

On the other hand, q − 1 = q2 − 1. So, q = q2. Hence,

q4(q4 + 1)(q2 − 1) | q4(q4 − 1)(q2 − 1),

which is a contradiction.

3.7. If K/H ∼= G2(q ), then by [7], k2(G2(q )) = q ′2 − q + 1 and also

|G2(q )| = q 6(q 6 − 1)(q 2 − 1).
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Since |G2(q )| | |G|,

q 6(q 6 − 1)(q 2 − 1) | q4(q4 − 1)(q2 − 1).

On the other hand, q2 − 1 = q 2 − q + 1. So, 2(22n−1 − 1) = q (q − 1) and then

q = 2. As a result, 2 = 22n−1, which is a contradiction.

3.8. Let K/H ∼= 2Am(q ), where m ≥ 2. If m = 2, then by [7], k2(
2A2(q )) =

(q 2 − q + 1)/(3, q + 1). Also,

|2A2(q )| =
1

(3, q + 1)
q 3

m
∏

i=1

(q i+1 − (−1)i+1).

Since |2A2(q )| | |G|, we have (q 2 − q + 1)/(3, q + 1) = q2 − 1. If (3, q + 1) = 1,

then q 2 − q + 1 = q2 − 1. Thus,

2(22n−1 − 1) = q (q − 1).

So, q = 2, which is a contradiction.

If m > 2, then

k2(
2Am(q )) =

q 2m − 1

(2n′ + 1, q + 1)
.

Now, q2 − 1 = (q 2m − 1)/(2n′ + 1, q + 1). So,

q4 =
( q 2m − 1

(2m+ 1, q + 1)
+ 1

)2

≤ q 4m.

Also,
qm(m+1)/2

∏m
i=1(q

i+1 − (−1)i+1)

(m+ 1, q + 1)
| |G|.

Thus,

qm(m+1)/2 <
qm(m+1)/2

∏m
i=1(q

i+1 − (−1)i+1)

(m+ 1, q + 1)
≤ q4(q4 − 1)(q2 − 1) ≤ q4

and so qm(m+1)/2 ≤ q 4m. As a result, m ≤ 7, which is a contradiction.

3.9. LetK/H ∼= Dm(q), wherem ≥ 4. Similar to Case 3.8, we get a contradiction.

3.10. If K/H ∼= 2F4(q ), where q = 22m+1 ≥ 8, then by [7],

k2(
2F4(q )) = q 2 −

√

2q 3 + q −
√

2q + 1.

So, q 2 −
√

2q 3 + q −√
2q + 1 = q2 − 1. As a result,

2(22n−1 − 1) = 2m+1(23m+1 − 22m+1 + 2m − 1).

Hence, 2m+1 = 2 and 23m+1 − 22m+1 + 2m = 22n−1.
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If 2m+1 = 2, then m = 0, which is a contradiction.

If 23m+1 − 22m+1 + 2m = 22n−1, then

2m(22m+1 − 2m+1 + 1) = 22n−1.

So, 2m = 2 and 22m+1−2m+1+1 = 22n−2. Then m = 1 and so 5 = 22n−2, which

is a contradiction.

3.11. If K/H ∼= Lm+1(q ), where m ≥ 1, then by [7]

k2(Lm+1(q )) =
(qm+1 − 1)(qm − 1)

(q − 1)(q − 1,m+ 1)
.

Also,

|Lm+1(q )| =
1

(m+ 1, q − 1)
qm(m+1)/2(qm − 1)

m
∏

i=1

(q i+1 − 1).

We have

1

(m+ 1, q − 1)
qm(m+1)/2(qm − 1)

m
∏

i=1

(q i+1 − 1) | q4(q4 − 1)(q2 − 1)

so,

(qm+1 − 1)(qm − 1)

(q − 1)(q − 1,m+ 1)
= q2 − 1

and so

q4 =
( (qm+1 − 1)(qm − 1)

(q − 1)(q − 1,m+ 1)
+ 1

)2

.

Since |Lm+1(q )| ∤ |G|, we get a contradiction.

3.12. Let K/H ∼= PSp(m, q ), where m ≥ 4. First, if m > 4, then by [7],

k2(PSp(m, q )) = qm − q.

So, q2−1 = qm−q and then (q−1)(q+1) = q (qm−1−1). Since (q−1, q+1) = 1,

q − 1 = q and q + 1 = qm−1 − 1, q = q + 1 and q = q n−1 − 2. Therefore,

|PSp(m, q )| ∤ |G|, which is a contradiction.

If m = 4, then k2(PSp(m, q )) = q 2 − 1 = q2 − 1. Thus, q = q and so

K/H ∼= C. It follows that H = 1 and G = K ∼= C. The proof of the main

theorem is completed.
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