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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 1 , P A G E S 6 0 – 7 7

MULTI-AGENT SOLVER FOR NON-NEGATIVE MATRIX
FACTORIZATION BASED ON OPTIMIZATION

Zhipeng Tu and Weijian Li

This paper investigates a distributed solver for non-negative matrix factorization (NMF)
over a multi-agent network. After reformulating the problem into the standard distributed
optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual
method and in the form of multiplicative update rule. With the help of auxiliary functions,
we provide monotonic convergence analysis. Furthermore, we show by computational com-
plexity analysis and numerical examples that our distributed NMF algorithm performs well in
comparison with the centralized NMF algorithm.

Keywords: distributed optimization, non-negative matrix factorization, multiplicative up-
date rules, multi-agent network

Classification: 15A23, 68W15

1. INTRODUCTION

In recent years, distributed computation has attracted considerable attention since the
increasing scale of data causes centralized algorithms to be inefficient [1, 19, 24]. Both
discrete-time and continuous-time algorithms [23, 26, 28] have been investigated for
distributed optimization with various types of constraints. Matrix computation is a
promising technique for big data processing, and efficient distributed algorithms for
matrix computation are worth of study.

One of the most intriguing matrix computation problems lies in Non-negative Matrix
Factorization (NMF), which is to find two low rank factors X ∈ Rp×d

+ and Y ∈ Rd×q
+ for

a given matrix M ∈ Rp×q
+ , such that M ≈ XY . To solve it, the following optimization

problem is considered

min
X,Y

1

2
‖M −XY ‖2F (1)

s.t. X ≥ 0, Y ≥ 0 ,

which is NP-hard and non-convex. Generally, d is chosen to be far less than p or q, so
that the dimensions of X and Y are smaller than that of the original matrix M . This
results in a compressed version of the original data matrix. Furthermore, X can be
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regarded as the basis matrix that is optimized for the linear approximation of the data
in M . NMF is widely used among matrix computation due to its special property; it can
learn a part-representation of the data [10], such as parts of faces and semantic features
of text. In fact, formulation (1) arises in many up-to-date applications like joint matrix
factorization [5], multi-view clustering [15] and matrix completion [21].

Due to the importance of NMF, centralized algorithms for it have been widely inves-
tigated, such as the projected gradient method (PG) [13], the active set method (AS)
[9], the multiplicative update rule method (MUR) [11], etc. However, centralized algo-
rithms will become inefficient when the dimension of the matrices increasing, which is
known as the curse of dimensionality. Indeed, there comes a few works in distributed
solver for NMF. In [14], Liu partitioned the data and rearranged the computation, then
factorizing million-by-million matrices with billions of nonzero values became feasible
on distributed MapReduce clusters; while Yin leveraged block-wise update functions,
which can perform local aggregation and thus have an efficient MapReduce implemen-
tation for NMF [25]. Whereas, previous works have not explicitly addressed the issue of
information change and communication cost in practice.

In some practical situations, we consider certain agents in a network together to
solve a NMF problem. Due to the limited energy, privacy protection (e. g. credit card
fraud), and other communication constraints, it is impossible for agents in the network
to exchange their sub-datasets. In order to fulfill a given task, each agent over the
network needs to work out his sub-task and communicate some information with its
local neighbors as well. Thus, multi-agent networks are taken into account [16, 18].
Many algorithms and good results have bee obtained. [20, 27] consider the problem of
solving a linear algebraic equation Ax = b in a distributed way by a multi-agent system.
[3, 29] solve distributed computation for matrix equations such as AXB = F over
multi-agent networks. [12] minimizes the nuclear norm under linear equality constraints
over a multi-agent network. Nevertheless, few attention is paid to non-negative matrix
factorization.

The main purpose of this paper is to design a distributed solver for non-negative
matrix factorization over a multi-agent network. Divide M into n parts, and we focus
on decomposing Mis into a common basis matrix X and different coefficient matrices
Yis. Main contributions of our work include:

• To solve NMF of the form
∑n

i=1Mi =
∑n

i=1XYi, we propose a distributed com-
putation design, where each agent i only knows Mi, works out his sub-task of
decomposing Mi into Xi and Yi, and shares Xi with its neighbors. Then, all
agents obtain a consensus public matrix X∗ and their private matrices Yi.

• By using distributed constrained optimization reformulation, we design our dis-
tributed algorithm for non-negative matrix factorization (DisNMF) based on the
primal-dual method and the multiplicative update rule, which is easy to imple-
ment.

• For the distributed algorithm proposed, we provide monotonic convergence anal-
ysis by using auxiliary functions. Also, we show by computational complexity
analysis and numerical examples that the performance of our distributed algo-
rithm matches that of centralized NMF algorithms.
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The remainder of this paper is organized as follows. Section 2 provides necessary
preliminary knowledge for our study. Next, the problem is formulated and a distributed
algorithm is proposed in Section 3. Section 4 provides the convergence analysis and
computational complexity analysis, whereas Section 5 gives numerical examples for il-
lustration. Finally, some concluding remarks are given in Section 6.

2. MATHEMATICAL PRELIMINARIES

In this section, we introduce necessary preliminaries about matrix, graph and optimiza-
tion.

2.1. Matrix

Denote R, Rn, Rp×q, Rp×q
+ as the set of real numbers, n-dimensional real column vectors,

p-by-q real matrices and p-by-q non-negative matrices, respectively. For M ∈ Rp×q,
denote rank(M), ker(M), tr(M), M−1, M> as the rank, kernel, trace, inverse, transpose
of M , respectively. Denote Ms· ∈ Rq as the sth row of M , M·t ∈ Rp as the tth column of
M , and Mst ∈ R as the (s, t) element of M . A matrix is non-negative (write as M ≥ 0)
means all elements of M is non-negative, that is Mst ≥ 0. For Mi ∈ Rp×q, i ∈ {1, · · · , n},
denote col{M1, . . . ,Mn} ∈ Rnp×q as the matrix defined by stacking Mi together in
columns. Write 1n for the n-dimensional vector with all elements of 1, and 0p×q for the
p-by-q matrix with all elements of 0.

Furthermore, denote ‖·‖F as the Frobenius norm of real matrices, defined by ‖M‖F =√
tr(M>M) =

√∑
i,j M

2
ij . Let 〈·, ·〉F be the Frobenius inner product of real matrices,

defined by 〈M1,M2〉F = tr
(
M>1 M2

)
=
∑

i,j (M1)ij (M2)ij , forM1,M2 ∈ Rp×q. We have

〈M1M2,M3〉F =
〈
M1,M3M

>
2

〉
F

=
〈
M2,M

>
1 M3

〉
F

, for M1 ∈ Rp×r,M2 ∈ Rr×q,M3 ∈
Rp×q. Let M1 ⊗M2 be the Kronecker product of M1 and M2.

2.2. Graph theory

A multi-agent network can be described by an undirected graph G(V, E), where V =
{1, . . . , n} is the set of nodes, representing the set of agents, and E ⊂ V × V is the set
of edges. Let A = [aij ] ∈ Rn×n be the adjacency matrix of G such that aij = aji. If
(vi, vj) ∈ E , then vi and vj can exchange information, and aij = 0 otherwise. We also
assume that there are no self-loops, that is aii = 0. The Laplacian matrix is L = D−A,
where D ∈ Rn×n is a diagonal matrix with Dii =

∑n
j=1 aij . A path between nodes vi

and vj is defined as a sequence of edges (vi, vi1), (vi1, vi2), · · · , (vik, vj) ∈ E with distinct
nodes vil ∈ V. The graph is connected if there exists a path between any pair of distinct
nodes vi and vj . The Laplacian matrix has an important property, which helps to
reformulate distributed constraint on optimization later:

Lemma 2.1. (Godsil and Royle [4]) If the undirected graph G is connected, then
L = L> ≥ 0, rank(L) = n− 1 and ker(L) = {k1n : k ∈ R}.
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2.3. Optimization

Since the NMF problem we handle here is non-convex, we adopt some basic optimization
concepts [8] for later analysis.

Definition 2.2. (Joint Convexity and Marginal Convexity) A continuously differen-
tiable function in two variables f : Rp×Rq → R is considered jointly convex, if for every(
x1,y1

)
,
(
x2,y2

)
∈ Rp × Rq, we have

f
(
x2,y2

)
≥ f

(
x1,y1

)
+
〈
∇f

(
x1,y1

)
,
(
x2,y2

)
−
(
x1,y1

)〉
,

where ∇f
(
x1,y1

)
is the gradient of f at the point

(
x1,y1

)
. f is considered marginally

convex in its first variable, if for every value of y ∈ Rq, the function f(·,y) : Rp → R is
convex, i. e., for every x1,x2 ∈ Rp, we have

f
(
x2,y

)
≥ f

(
x1,y

)
+
〈
∇xf

(
x1,y

)
,x2 − x1

〉
,

where ∇xf
(
x1,y

)
is the partial gradient of f with respect to its first variable at the

point (x1,y). A similar condition is imposed for f to be considered marginally convex
in its second variable.

Definition 2.3. (Marginally Optimum Coordinate and Bistable Point) Let f be a func-
tion of two variables constrained to be in the sets X,Y respectively. For any point
y ∈ Y, we say that x̃ is a marginally optimal coordinate with respect to y, and use the
shorthand x̃ ∈ mOPTf (y), if f(x̃,y) ≤ f(x,y) for all x ∈ X. Similarly definition for
ỹ ∈ mOPTf (x). A point (x,y) ∈ X×Y is considered a bistable point if x ∈ mOPTf (y)
and y ∈ mOPTf (x).

We will make use of the auxiliary function similar to that used in [11], which is defined
as follows.

Definition 2.4. (Auxiliary Function) G(x, x′) is an auxiliary function for F (x) if the
conditions

G(x, x′) ≥ F (x), G(x′, x′) = F (x′)

are satisfied.

Lemma 2.5. If G(x, x′) is an auxiliary function of F (x), then F (x) is non-increasing
under the update

xk+1 = arg min
x

G
(
x, xk

)
. (2)

P r o o f . F
(
xk+1

)
≤ G

(
xk+1, xk

)
≤ G

(
xk, xk

)
= F

(
xk
)
. �

The equality F (xk+1) = F (xk) holds only if xk is a local minimum of G(x, xk). By
iterating the updates in (2), the sequence will converge to a local minimum xmin =
arg minx F (x) [11].
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3. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this section, we reformulate the problem of distributed computation for NMF over a
multi-agent network as a standard distributed optimization problem, and we propose a
distributed algorithm for the reformulation.

3.1. Problem formulation

This paper considers the distributed computation for (1) over a multi-agent network,
where each agent just knows partial information of matrix M . As Figure 1 shows, the
to-be-factorized matrix M is partitioned into n parts as

M = [M1,M2, . . . ,Mn] ∈ Rp×q
+ .

where Mi ∈ Rp×qi
+ and

∑n
i=1 qi = q.

Fig. 1. Distributed Matrix Factorization.

Consider the problem over a multi-agent network of n agents, where each agent i only
knows Mi. Here, we introduce a public matrix X ∈ Rp×d

+ for all agents and a private

matrix Y = [Y1, Y2, . . . , Yn] ∈ Rd×q
+ , where Yi ∈ Rd×qi

+ is held by agent i. Mi and Yi are
not shared between agents for privacy protection. Then (1) can be rewritten as

min
X,Yi

1

2

n∑
i=1

‖Mi −XYi‖2F (3)

s.t. X ≥ 0, Yi ≥ 0 i ∈ {1, . . . , n}.

In fact, formulation (3) arises in many up-to-date applications, including the following
three problems.

(1) Joint Matrix Factorization [5]: Many real-world datasets consist of different views
which provide complementary evidence to each other. To find the links among these
representations, we can decompose these view matrices into a common basis matrix
and different coefficient matrices. Formally, given n views denoted as {M1, . . . ,Mn},
each view is factorized as Mi ≈ XiYi, where Xis are of the same dimension p×d for
all views, while Yis are of the dimension d× qi, differing per view. The joint matrix
factorization problem can be cast into (3).
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(2) Multi-view Clustering [15]: Multi-view clustering aims to integrate information from
multiple views in the unsupervised setting. The basic idea is that a data point in
different views would be assigned to the same cluster with high probability. With
the help of matrix factorization, coefficient matrices learnt from different views are
required to be a common consensus, which is considered to reflect the latent clus-
tering structure shared by different views. Just as the above joint matrix factor-
ization problem, given n views denoted as {M1, . . . ,Mn}, each view is factorized
as Mi ≈ XiYi. Here, Yis are of the same shape but Xis can differ along the row
dimension across multiple views. This problem can be formulated as

min
Xi,Y

1

2

n∑
i=1

‖Mi −XiY ‖2F (4)

s.t. Xi ≥ 0, Y ≥ 0 i ∈ {1, . . . , n},

which is the same in principle with (3).

(3) Non-negative Matrix Completion [21]: This problem can be defined as recover-
ing the missing elements of an incomplete matrix M ∈ Rp×q

+ with given elements
(Mij)(i,j)∈Ω, where Ω is the index set of those known elements. Referring to [22],
the problem can be formulated as:

min
X

rank(X) (5)

s.t. Xij= Mij ≥ 0, (i, j) ∈ Ω ,

which is NP-hard and non-convex. One way to minimize rank(X) is to minimize
the nuclear norm ‖X‖∗. [12] designs a distributed solver to minimize the nuclear
norm under linear equality constraints over a multi-agent network, while it is time-
consuming since it involves matrix Singular Value Decomposition (SVD) operation,
which is increasingly costly as matrix sizes and increase. Another promising way
to minimize rank is through matrix factorization. If M can be represented by the
product of two matrices, that isM = XY,X ∈ Rp×d

+ , Y ∈ Rd×q
+ , then rank(XY ) ≤ d.

d is a latent dimension to be determined. Then the non-negative matrix completion
problem can be formulated as:

min
X,Y

1

2
‖PΩ(M)− PΩ(XY )‖2F (6)

s.t. X ≥ 0, Y ≥ 0,

where PΩ(M) − PΩ(XY ) means M −XY in every observed elements, and the ob-

jective function is actually equivalent to
∑

(i,j)∈Ω (Mij − (XY )ij)
2
. Problem (6) is

similar to problem (1), which can be rewritten as the distributed form like (3).

Obviously, (3) is not a standard distributed structure. To reformulate it, each agent
over the network works out his own sub-task of decomposing Mi into Xi and Yi, and
shares Xi with its neighbors, as (7) describes.



66 ZHIPENG TU AND WEIJIAN LI

min
Xi,Yi

1

2

n∑
i=1

‖Mi −XiYi‖2F (7)

s.t. Xi ≥ 0, Yi ≥ 0,

Xi = Xj , i, j ∈ {1, . . . , n}.

A graph G(V, E) is used to describe the multi-agent network, and its Laplacian matrix
is L = D−A. To guarantee all agents obtaining a consensus solution X∗, the following
assumption is made, which has been widely used in the literatures.

Assumption 3.1. The graph of the multi-agent network is undirected and connected.

Under Assumption 3.1, by Lemma 2.1, ker(L) = k1n. As a result, Xi = Xj is equiv-
alent to the equation (L ⊗ Ip)X = 0, where X = col{X1, . . . , Xn}, in other words,∑n

j=1 aij(Xi −Xj) = 0, i ∈ {1, · · · , n}. In consequence, problem (7) is reformulated as

min
Xi,Yi

F (X ,Y) =
1

2

n∑
i=1

‖Mi −XiYi‖2F (8)

s.t. Xi ≥ 0, Yi ≥ 0,
n∑

j=1

aij(Xi −Xj) = 0, i ∈ {1, · · · , n} ,

where X = col{X1, · · · , Xn}, Y = col{Y1, · · · , Yn}. The objective function F (X ,Y) is
not jointly convex in X and Y, nevertheless, marginally convex in both the variables.
Fixing either X or Y reduces the above problem to a least squares problem. The following
theorem shows the relationship of the optimal solutions between (3) and (8), whose proof
is straightforward by the Karush-Kuhn-Tucker optimal conditions and is omitted here.

Lemma 3.2. Under Assumption 3.1, (X∗,Y∗) is an optimal solution to problem (3) if
and only if (X ∗,Y∗) is an optimal solution to problem (8), where X ∗ = col{X∗1 , . . . , X∗n}
and Y∗ = col{Y ∗1 , . . . , Y ∗n } such that X∗i = X∗ for i ∈ {1, . . . , n}.

3.2. Distributed algorithm design

In this subsection, we propose a distributed algorithm for the reformulation (8). Let
Ψi,Φi,Λi be the Lagrange multipliers for the constraintsXi ≥ 0, Yi ≥ 0 and

∑n
j=1 aij(Xi−

Xj) = 0, i ∈ {1, · · · , n}, respectively. The Lagrange function L of (8) is defined as

L(X ,Y,Λ,Ψ,Φ) =
1

2

n∑
i=1

(‖Mi −XiYi‖2F + 〈Λi,

n∑
j=1

aij(Xi −Xj)〉F

+ 〈Ψi, Xi〉F + 〈Φi, Yi〉F ) , (9)

where Λ = col{Λ1, · · · ,Λn}, Ψ = col{Ψ1, · · · ,Ψn}, Φ = col{Φ1, · · · ,Φn}, Ψi ≤ 0,
Φi ≤ 0, i ∈ {1, · · · , n}. According to the Karush-Kuhn-Tucker optimal conditions, the
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stationarity condition and complementary slackness condition require that

∂L
∂Xi

= − (Mi −XiYi)Y
>
i + (Li· ⊗ Ip)Λ + Ψi = 0 ,

∂L
∂Yi

= −X>i (Mi −XiYi) + Φi = 0 ,

(Ψi)st(Xi)st = 0 ,

(Φi)st(Yi)st = 0 .

(10)

Since Li· = Di· −Ai·, we get the following equations for (Xi)st and (Yi)st:(
MiY

T
i −XiYiY

T
i − (Di· ⊗ Ip)Λ + (Ai· ⊗ Ip)Λ

)
st

(Xi)st = 0 ,(
XT

i Mi −XT
i XiYi

)
(Yi)st = 0 .

These equations lead to the following updating rules:

(Xi)st ← (Xi)st

(
MiY

>
i + (Ai· ⊗ Ip)Λ

)
st(

XiYiY >i + (Di· ⊗ Ip)Λ
)
st

= (Xi)st

(
MiY

>
i +

∑n
j=1 aijΛj

)
st(

XiYiY >i + (
∑n

j=1 aij)Λi

)
st

,

(11)

(Yi)st ← (Yi)st

(
X>i Mi

)
st(

X>i XiYi
)
st

. (12)

As for the Lagrange multiplier Λ, we apply gradient method to each element (Λi)st:

(Λi)st ← (Λi)st + (ηi)st
∂L

∂(Λi)st
= (Λi)st + (ηi)st((Li· ⊗ Ip)X )st

= (Λi)st + (ηi)st (((Di· ⊗ Ip)X )st − ((Ai· ⊗ Ip)X )st) ,

(13)

where (ηi)st is a step-size. Particularly, if we take (ηi)st = (Λi)st
((Ai·⊗Ip)X )st

, then

(Λi)st ← (Λi)st
((Di· ⊗ Ip)X )st
((Ai· ⊗ Ip)X )st

= (Λi)st
((
∑n

j=1 aij)Xi)st

(
∑n

j=1 aijXj)st
. (14)

Our distributed NMF algorithm (written as DisNMF) is formed by the above iterative
updating rules (11), (12), (14) and its pseudo-code is shown in 1. In each iteration, every
agent updates its Xi, Yi,Λi once. Notice that update rules are multiplicative, when
the initial values (Xi)

0
st , (Yi)

0
st , (Λi)

0
st are non-negative, Xi, Yi,Λi will be non-negative

matrices all the time. This lets us produce a non-negative factorization for M .

Remark 3.3. One can also use the constraint 〈X , LX〉F = 0 for Xis consensus, since

〈X , LX〉F = 1
2

∑n
i,j=1 aij ‖Xi −Xj‖2F ≥ 0, and the equality holds if and only if Xi =
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Algorithm 1 Distributed Non-negative Matrix Factorization (DisNMF)

Input: {Mi}ni=1: data matrices; A: adjacency matrix; d: latent dimension;
1: initial {Xi}ni=1, {Yi}ni=1, {Λi}ni=1;
2: repeat
3: for i = 1 : n do

4: compute Xi = Xi . ∗
MiY

>
i +

∑n
j=1 aijΛj

XiYiY >i +(
∑n

j=1 aij)Λi
;

5: compute Yi = Yi . ∗ X>i Mi

X>i XiYi
;

6: compute Λi = Λi . ∗
(
∑n

j=1 aij)Xi∑n
j=1 aijXj

;

7: end for
8: until

∑n
i=1 ‖Mi−XiYi‖2F∑n

i=1 ‖Mi‖2F
≤ ε

Output: Factors {Xi}ni=1, {Yi}ni=1

Xj ,∀i, j ∈ {1, · · · , n}. Using this consensus constraint, similarly we can design a dis-
tributed algorithm

(Xi)st ← (Xi)st

(
MiY

>
i + λ(Ai· ⊗ Ip)X

)
st(

XiYiY >i + λ(Di· ⊗ Ip)X
)
st

, (15)

(Yi)st ← (Yi)st

(
X>i Mi

)
st(

X>i XiYi
)
st

, (16)

λ← λ+ α 〈X , LX〉F , (17)

where λ is the Lagrange multiplier for the constraint 〈X , LX〉F = 0 and α is a small
positive step-size. On the other hand, if we put 〈X , LX〉F into the objective function as
the penalty function with a fixed penalty parameter λ, then the problem turns out to
be the Graph Regularized NMF [2].

4. MAIN RESULTS

In this section, we provide convergence analysis and computational complexity analysis
for the proposed DisNMF algorithm.

4.1. Convergence analysis

Since the non-negative constraints will be satisfied by multiplicative update rules, we
consider the problem (8) only with equality constraints, that is

min
Xi,Yi

F (X ,Y) =
1

2

n∑
i=1

‖Mi −XiYi‖2F (18)

s.t.

n∑
j=1

aij(Xi −Xj) = 0, i ∈ {1, · · · , n} .
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Still, let Λis be the Lagrange multipliers for the constraints
∑n

j=1 aij(Xi − Xj) = 0,
i ∈ {1, · · · , n}. Then, the Lagrange function L of (18) is

L(X ,Y,Λ) =
1

2

n∑
i=1

(‖Mi −XiYi‖2F + 〈Λi,

n∑
j=1

aij(Xi −Xj)〉F ) . (19)

It is easy to verify that the solution of the problem (18) coincides with that of the
following problem

min
X ,Y

max
Λ
L(X ,Y,Λ) (20)

Inspired by the primal-dual method, the algorithm is designed as

X k+1,Yk+1 ← argmin
X ,Y

L
(
X ,Y,Λ|X k,Yk,Λk

)
(21)

(Λi)
k+1
st ← (Λi)

k
st + (ηi)

k
st

∂L
∂(Λi)kst

(22)

where (ηi)
k
st is a step-size, X k,Yk,Λk denote the variables X ,Y,Λ at iteration k. The

update of dual variable (22) is easy to carry out, just as the (13) and (14) showed. Given
the initial value (Λi)

0
st ≥ 0, Λk

i will be non-negative matrices all the time. The difficulty
lies in dealing with (21), since L is non-convex. We will solve this by constructing
auxiliary functions.

For any element (Xi)st in L, let L(Xi)st denotes the part of L relevant to (Xi)st. Let
L′(Xi)st

and L′′(Xi)st
denote the first and second order partial derivative of L with respect

to (Xi)st, that is,

L′(Xi)st
=

(
∂L
∂Xi

)
st

=
(
−MiY

>
i +XiYiY

>
i + (Li· ⊗ Ip)Λ

)
st
, (23)

L′′(Xi)st
= (YiY

>
i )tt . (24)

The Taylor series expansion of L(Xi)st(x) at the point x = (Xi)
k
st is

L(Xi)st(x) = L(Xi)st

(
(Xi)

k
st

)
+ L′(Xi)st

(
(Xi)

k
st

)
(x− (Xi)

k
st) +

1

2
L′′(Xi)st

(
x− (Xi)

k
st

)2
.

(25)
Since the update is essentially element-wise, it is sufficient to show that each L(Xi)st is
non-increasing under the update step of (11). We prove this by defining the auxiliary
function regarding (Xi)st as follows.

Lemma 4.1. The function

G(x, (Xi)
k
st) = L(Xi)st

(
(Xi)

k
st

)
+ L′(Xi)st

(
(Xi)

k
st

) (
x− (Xi)

k
st

)
+

(
XiYiY

>
i +Di·Λ

)
st

2(Xi)st

(
x− (Xi)

k
st

)2 (26)

is an auxiliary function for L(Xi)st(x).
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P r o o f . Obviously, G((Xi)
k
st, (Xi)

k
st) = L(Xi)st((Xi)

k
st). According to the definition of

auxiliary function, we only need to show that G(x, (Xi)
k
st) ≥ L(Xi)st(x). Put (24) into

(25) and compare it with (26), it is equivalent to show(
XiYiY

>
i + (Di· ⊗ Ip)Λ

)
st

2(Xi)st
≥ 1

2
L′′(Xi)st

=
1

2
(YiY

>
i )tt .

Since D and Λ are non-negative matrices, ((Di· ⊗ Ip)Λ)st ≥ 0. To prove the above
inequality, we have

(XiYiY
>
i )st =

d∑
l=1

(Xi)sl(YiY
>
i )lt ≥ (Xi)st(YiY

>
i )tt .

�

Then we define auxiliary functions for the update rule (12). Similarly, let L(Yi)st

denotes the part of L relevant to (Yi)st. Then we have

Lemma 4.2. The function

G(y, (Yi)
k
st) = L(Yi)st

(
(Yi)

k
st

)
+ L′(Yi)st

(
(Yi)

k
st

) (
y − (Yi)

k
st

)
+

(X>i XiYi)st
2(Yi)st

(
y − (Yi)

k
st

)2 (27)

is an auxiliary function for L(Yi)st(y).

The proof of Lemma 4.2 is essentially similar to that of Lemma 4.1. The key point is

(X>i XiYi)st
2(Yi)st

≥ 1

2
L′′(Yi)st

=
1

2
(X>i Xi)ss ,

since

(X>i XiYi)st =

d∑
l=1

(X>i Xi)sl(Yi)lt ≥ (X>i Xi)ss(Yi)st .

The complete proof is omitted here due to the space limitation.
Then, we have the following lemma regarding the iterative updating rules (11), (12)

and (14).

Lemma 4.3. The Lagrange function L is non-increasing under the update rules (11)
and (12), and L is non-decreasing under the update rules (14). L is invariant if and only
if X , Y and Λ are at a stationary point.

P r o o f . Putting G(x, (Xi)
k
st) of (26) and G(y, (Yi)

k
st) of (27) into (2), we have:

(Xi)
k+1
st = arg min

x
G
(
x, (Xi)

k
st

)
, (28)

(Yi)
k+1
st = arg min

y
G
(
y, (Yi)

k
st

)
. (29)
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To solve above argmin problems, let

G′(x, (Xi)
k
st) =

(
XiYiY

>
i + (Di· ⊗ Ip)Λ

)
st

(Xi)st

(
x− (Xi)

k
st

)
+ L′(Xi)st

(
(Xi)

k
st

)
= 0 , (30)

G′(y, (Yi)
k
st) =

(
X>i XiYi

)
st

(Yi)st

(
x− (Xi)

k
st

)
+ L′(Yi)st

(
(Yi)

k
st

)
= 0 . (31)

We get the close form update rules of (Xi)st and (Yi)st:

(Xi)
k+1
st = (Xi)

k
st −

(Xi)
k
st · L′(Xi)st

(
(Xi)

k
st

)(
XiYiY >i + (Di· ⊗ Ip)Λ

)k
st

= (Xi)
k
st

(MiY
>
i + (Ai· ⊗ Ip)Λ)kst(

XiYiY >i + (Di· ⊗ Ip)Λ
)k
st

,

(32)

(Yi)
k+1
st = (Yi)

k
st −

(Yi)
k
st · L′(Yi)st

(
(Yi)

k
st

)(
X>i XiYi

)k
st

= (Yi)
k
st

(X>i Mi)
k
st(

X>i XiYi
)k
st

. (33)

Lemma 4.1 and Lemma 4.2 state that (26) and (27) are auxiliary functions, so L(Xi)st(x),
L(Yi)st(y) are non-increasing under update rules (11) and (12), according to Lemma 2.5.

On the other hand, we calculate the change of L with the update of Λ at iteration k:

L(X k,Yk,Λk+1)− L(X k,Yk,Λk) =

n∑
i=1

〈(Li· ⊗ Ip)X k,Λk+1 − Λk〉F

=

n∑
i=1

∑
s,t

(ηi)
k
st

(
((Li· ⊗ Ip)X )kst

)2 ≥ 0 . (34)

Then L is non-decreasing under the update rules (14). �

Theorem 4.4. Under Assumption 3.1, the sequence (X k,Yk) generated by the update
rules (11), (12) and (14) will converge to a local minimum of the objective function F .

P r o o f . Lemma 4.3 indecates that the update rules (11), (12) and (14) stop after
they reach a Saddle Point of L, denoted as (X ∗,Y∗, Λ∗). Since F is a continuously
differentiable function and is marginally convex in both its variables, its bistable points
are exactly its stationary points. Then (X ∗,Y∗) is a bistable point as well as a local
minimum of the objective function F . �

Moreover, for non-convex functions, there is no assurance that all bistable points are
global minima. The bistable point to which DisNMF eventually converges to depends on
where the procedure was initialized. In order to converge to the globally optimal point,
DisNMF should be initialized inside the region of attraction of the global optimum.

In practice, one often use F (X k,Yk)/‖M‖2F ≤ ε as the algorithm stopping criterion.
In other works, no matter (X k,Yk) converges to the globally optimal point or not, we
do get a non-negative factorization of M within an acceptable approximation error.
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Remark 4.5. Without additional constraints, one can not ensure the uniqueness of the
factorization, since, for any diagonal matrix D with its diagonal entries positive, and
any permutation matrix P , we have

XiYi = (XiPD)((PD)−1Yi) ,

which allows us to produce many feasible solutions. To put it simply, once we get a
factorization (X ,Y) of M , a set of solutions (aX , a−1Y) are also factorizations of M , for
any a ∈ R+. In this sense, we can properly scale the Xk

i , so that the sequence Xk
i can

have a bound, even ‖X1
i ‖F = ‖X2

i ‖F = · · · = ‖Xk
i ‖F . Further study of the uniqueness

of NMF can go to the reference [7].

4.2. Computational complexity analysis

Here we discuss the computational complexity of our DisNMF algorithm in compari-
son with the standard NMF algorithm (MUR). We count the numbers of arithmetic
operations in Table 1.

addition multiplication division overall

NMF: X dp(q − 1) + d2(q − 1) + d(d− 1)p dpq + d2p + d2q + dq dp O(dpq)
NMF: Y d(p− 1)q + d2(p− 1) + d(d− 1)q dpq + d2p + d2q + dq dq O(dpq)

DisNMF: Xi dpqi + d2p + d2qi − d2 + (n− 1)dp dpqi + d2p + d2qi + 2dp + ndp dp O(dpqi + ndp)
DisNMF: Yi d(p− 1)qi + d2(p− 1) + d(d− 1)qi dpqi + d2p + d2qi + dqi dqi O(dpqi)
DisNMF: Λi (n− 1)dp ndp + 2dp dp O(ndp)

Tab. 1. Computational operation counts for each iteration in

DisNMF.

It shows that the cost for standard NMF’s update in each iteration is O(dpq). As for
DisNMF, in each iteration every agent should update its Xi, Yi and Λi, so the cost for
DisNMF’s update is

n∑
i=1

(O(dpqi + ndp) +O(dpqi) +O(ndp))

=O(dp

n∑
i=1

qi) +

n∑
i=1

O(ndp) = O(dpq + n2dp) ≈ O(dpq) , (35)

since
∑n

i=1 qi = q and the agent number n� q in practice. Computational complexity
analysis shows that our DisNMF is a linear extension of NMF.

5. NUMERICAL EXAMPLE

This section gives numerical examples for illustration. By applying DisNMF algorithm
to a small matrix and a big matrix respectively, we show the good performance of
DisNMF and make comparison tests.
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5.1. A small matrix example

Consider the following 6× 8-dimension matrix:

M =


24 34 35 61 49 34 21 21
19 23 26 36 23 25 7 18
36 38 47 58 38 40 9 34
18 26 26 46 36 26 16 15
27 29 35 43 26 31 6 25
15 21 23 34 21 25 6 17

.

Assume that there are four agents, and each agent only has access to two columns of
M . Moreover, the adjacency matrix of the multi-agent network is

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .
Set latent dimension d = 4 and iteration T = 3000, we run DisNMF algorithm to
factorize M and get the factors {X1, · · · , X4}, {Y1, · · · , Y4}. To see the approximation
of the factorization, we multiply factors back, that is {X1Y1, · · · , X4Y4}:

M =


24.1700 34.1632 35.1438 60.8913 48.8155 34.1312 21.1868 20.6344
18.8522 22.7751 25.8614 36.0496 23.2838 24.9087 6.7278 18.3903
36.2039 38.2503 47.1519 57.8863 37.7320 40.1719 9.2535 33.5023
17.7934 25.7907 25.8521 46.1318 36.2218 25.8207 15.7747 15.4537
26.7432 28.7257 34.8197 43.1314 26.2742 30.8090 5.7770 25.5990
15.1219 21.1537 23.0638 33.9900 20.8694 25.0560 6.0609 16.6820

.

F (X T ,YT )/‖M‖2F actually quantifies the quality of the approximation. After 3000 it-
eration, F (X 3000,Y3000) = 2.6132 and F (X 3000,Y3000)/‖M‖2F = 5.8034 × 10−5. In
addition, we draw the trajectories of F, ‖Xi‖F , ‖Yi‖F versus iteration, as shown in Fig-
ure 2.

(a) F (X ,Y) (b) ‖Xi‖F of 4 agents (c) ‖Yi‖F of 4 agents

Fig. 2. Trajectory of F (X ,Y), ‖Xi‖F , ‖Yi‖F versus iteration.
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Figure 2(a) shows that the solutions are feasible because limk→∞
∑n

i=1 ‖Mi−Xk
i Y

k
i ‖2F →

0; Figure 2(b) shows that Xi of each agent will come to consensus and Figure 2(c) shows
that Yi of each agent will converge respectively.

5.2. Comparison tests

It is time to consider a pretty big low-rank matrix M ∈ R1000×1000, which is randomly
generated with rank(M) = 100, and we set the latent dimension d = 100.

Since our DisNMF algorithm is designed over multi-agent networks, its performance
can by affected by the number of agents and the structure of the communication net-
work. Firstly, we consider four kinds of multi-agent networks, which consist of 5 agents,
10 agents, 20 agents and 50 agents, respectively; the structure of the networks are all
completely connected graph, that is, agents in the network can communicate with each
other. The performance of DisNMF with different agent numbers can be seen in Fig-
ure 3(a).

(a) Different agent numbers (b) Different network structures

Fig. 3. The performance of DisNMF with different multi-agent

networks.

Then we look into the structure of the communication network. We consider three
kinds of multi-agent networks, which all consist of 10 agents. In the first network, each
agent can communicate with its nearest 2 neighbors; in the second network, each agent
can communicate with its nearest 4 neighbors and in the third network, each agent can
communicate with 9 neighbors, that is, they can communicate with each other. The
communication graphs are shown in Figure 4, and the performance of DisNMF with
different network structures can be seen in Figure 3(b).

Last but not the least, we compare our distributed NMF algorithm with the standard
centralized NMF algorithm (MUR)[11]. We adopt a 10-agent completely connected net-
work. After 5000 iterations, our DisNMF algorithm achieves F (X 5000,Y5000)/‖M‖2F =
1.175 × 10−5. Figure 5 indicates that although matrices are distributed stored among
agents, DisNMF is comparable with centralized NMF algorithm.
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(a) Each agent with 2 neighbors (b) Each agent with 4 neighbors (c) Each agent with 9 neighbors

Fig. 4. Three kinds of network structures.

Fig. 5. Comparative result for our distributed NMF algorithm with

centralized NMF algorithm.

6. CONCLUSION

In this paper, a distributed algorithm for non-negative matrix factorization over a multi-
agent network has been studied. The convergence analysis has been provided by using
auxiliary functions, and the algorithm performance has been illustrated via numerical
examples. The proposed algorithm can be widely used in many applications, such as
joint NMF problem, multi-view clustering problem and distributed matrix completion
problem, with minor modification in the update rules.
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