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A TRACKING CONTROLLER DESIGN WITH PREVIEW
ACTION FOR A CLASS OF NONLINEAR LUR’E SYSTEMS
WITH TIME-VARYING DELAYS AND EXTERNAL
DISTURBANCES

Xiao Yu and Fucheng Liao

In this paper, the tracking control problem for a class of discrete-time nonlinear Lur’e systems
with time-varying delays and external disturbances is studied via a preview control method.
First, a novel translation approach is introduced to construct the augmented error system for
Lur’e systems. The output tracking problem is thereby transformed into a guaranteed cost H∞
controller design problem. To produce an integral control action that can eliminate the static
error, a discrete integrator is included. Next, a memory state feedback controller is developed,
and the sufficient conditions for asymptotic stability and guaranteed cost H∞ performance of the
closed-loop system are established by applying a suitable Lyapunov-Krasovskii functional and
the linear matrix inequality (LMI) technique. Based on this, the tracking control scheme with
preview action for the original system is presented. Finally, the effectiveness of our proposed
control method is illustrated via a numerical example.

Keywords: tracking control, preview control, nonlinear Lur’e system, linear matrix in-
equality

Classification: 93Cxx, 93Dxx

1. INTRODUCTION

Preview control, which is an important and effective control technique, is able to fully
utilize known future information about reference signals or disturbances to improve the
closed-loop transient response and enhance tracking quality [2, 36, 43]. In the 1960s,
three models of preview control were first proposed in [31]. Subsequently, the basic idea
of preview control gradually became popular, and considerable research results have
been reported in the literature. Based on linear quadratic regulation (LQR) theory and
the error system method, an optimal state feedback controller with disturbance preview
action, which could enhance the robustness of the closed-loop system, was proposed for
linear discrete-time systems in [35]. Following the approach of [35], the preview control
problem of linear discrete-time systems, under the assumption that the reference signal
was able to be previewed, was addressed in [12]. The result was further developed in
[11] where the preview controller was proposed for linear continuous-time systems. As
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an extension of the above results, in [20, 21], the preview controller design for linear
descriptor systems was investigated in both discrete- and continuous-time domains. In
practical applications, some phenomena, such as time delays and external disturbances,
are usually unavoidable. For this reason, some recent studies have taken these complex-
ities into account. For example, according to the H∞ control principle and the operator
Riccati equation, the preview controller for linear time-delay systems was discussed in
[16]. In addition, some mixed control methods, such as LQR control, preview control
and H∞ control, have also been proposed to address the tracking problem of linear un-
certain systems, such as those in [33] and [44]. However, most of the existing preview
controller design methods focus on certain linear systems, whereas very few results can
be immediately applied to nonlinear control systems. Moreover, when facing a variety of
complex nonlinear dynamics, researchers are still unable to find convenient and effective
universal approaches to design the preview controller. The preview control of nonlinear
systems, therefore, is a challenging problem that exactly explains the importance of this
current study.

The Lur’e system refers to a nonlinear dynamic system that consists of a linear sys-
tem and a nonlinear feedback loop satisfying certain sector constraints [13, 14, 25]. In
fact, this class of nonlinear systems covers various important physical systems, such as
genetic oscillators [18], Chua’s circuits [26, 27] and cellular neural networks [6, 8]. Owing
to the theoretical and practical significance of these systems in control engineering, a
tremendous amount of research has been done on the control problems of nonlinear Lur’e
systems. For instance, by using the convex combination method, the H∞ controller de-
sign was presented for a class of continuous-time Lur’e systems in [29]. Considering the
influence of time-varying delays, the H∞ control problem of continuous-time Lur’e sys-
tems was revisited in [38], in which a novel proportional derivative feedback technique
was constructed. Generally, state feedback control strategies were used in [29] and [38].
From the point of view of applications, static and dynamic output feedback control
strategies were preferred by engineers [15, 41]. Furthermore, several synchronization
control problems were studied for chaotic Lur’e systems in [4, 10, 17, 22, 23]. This was
especially true in [19], where the globally synchronised regions of linearly coupled Lur’e
systems were analysed via a decomposition method. More recently, the tracking control
with preview action was investigated for a class of continuous-time Lur’e nonlinear sys-
tems in [39]. In addition to these works, some other control problems, including adaptive
pinning control [7, 32, 34] and consensus tracking control [24, 42], were successfully de-
veloped for nonlinear systems in the Lur’e form. However, to the best of our knowledge,
until now, the preview controller design for nonlinear Lur’e systems has been relatively
rare. In addition, the external disturbances and time delays are frequently encountered
in various dynamical systems, and they may degrade the performance of the systems
or even lead to instability [5, 30]. Therefore, the preview controller design for Lur’e
systems with time-varying delays and external disturbances is of great significance, and
it has not yet been reported in the literature.

Motivated by the above discussion, in this paper, the preview controller design for
a class of discrete-time disturbed nonlinear Lur’e systems with time-varying delays is
investigated. First, according to the intrinsic characteristics of the system under consid-
eration, an appropriate translation method is chosen to construct an augmented error
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system with available future reference information. Then, the output tracking problem
is reduced to a guaranteed cost H∞ control problem. To make full use of the stored
current and previous state information, a memory state feedback controller is devel-
oped. Meanwhile, based on the Lyapunov–Krasovskii functional approach and the LMI
technique, the sufficient conditions for asymptotic stability and guaranteed cost H∞
performance of the resulting closed-loop system are systematically discussed. Finally,
the preview controller design method for the original system is presented. Compared
with the previous works [39, 40], the main contributions of the present paper are out-
lined as follows: (i) for the first time, a novel preview control scheme is proposed for the
output tracking problem of discrete-time disturbed nonlinear Lur’e systems with time-
varying delays via a translation approach; (ii) because the tracking error is not used as
usual in the state augmentation process, the construction of the augmented error sys-
tem is simplified, which effectively reduces the complexity of the controller design; and
(iii) sufficient linear matrix inequality conditions are established, which ensure that the
closed-loop system is not only asymptotically stable but also satisfies the requirement
of guaranteed cost H∞ performance.

This paper is organized as follows. In section 2, the system description and some
preliminaries are given. The construction of the augmented error system is presented
in Section 3. The design method of preview controller is demonstrated in Section 4.
Section 5 gives a simulation example to verify the performance of our method. Section
6 concludes the paper.

Notations: Rn denotes the n-dimensional Euclidean space; Rn×m denotes the n×m
matrix space; For a matrix P , P > 0 (P < 0) means that P is a real symmetric positive
(or negative) definite matrix; P > Q stands for P −Q > 0; I and 0 denote the identity
matrix and the zero matrix with appropriate dimension, respectively; l2 [0,∞) refers to
the space of square summable infinite vector sequences, and for ω(k) ∈ l2 [0,∞), its
norm is given by ‖ω‖2 =

√∑∞
k=0 ω

T (k)ω(k). MT denotes the transpose of the matrix
M . M−T denotes the inverse of the matrix MT , namely (MT )−1. The symbol “*” is
used to represent the symmetric term in a symmetric matrix.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the discrete-time nonlinear system{
x(k + 1) = Ax(k) +Adx(k − d(k)) +Bu(k) +Df(y(k)) + Eω(k),

y(k) = Cx(k),
(1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, and y(k) ∈ Rp

is the output vector. ω(k) ∈ Rq is the external disturbance vector. A,Ad, B,D,E and
C are known real constant matrices of appropriate dimensions. It is assumed that the
time-varying delay d(k) is known and satisfies 0 ≤ d1 ≤ d(k) ≤ d2. f(y) ∈ Rp denotes a
memoryless time-invariant nonlinearity.

In this paper, the following assumptions are required:
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Assumption 1. The nonlinearity f(·) ∈ Rp is in the form of

f(y) =
[
f1(y1) f2(y2) . . . fp(yp)

]T
,

where fi(0) = 0, and there exist constants ki, k̄i ∈ R and ki < k̄i such that

(fi(s2)− fi(s1)− ki(s2 − s1))
(
fi(s2)− fi(s1)− k̄i(s2 − s1)

)
≤ 0, s1 6= s2, (2)

for i = 1, 2, . . . , p.

Remark 2.1. As shown in [13], under Assumption 1, the nonlinear term fi(·) belongs
to sector [ki, k̄i]. In Assumption 1, if the inequality constraint (2) is replaced with

ki ≤
fi(s2)− fi(s1)

s2 − s1
≤ k̄i, s2 6= s1, (3)

the result obtained in this paper is still valid. Indeed, all nonlinearities satisfying the
inequality (3) satisfy inequality condition (2).

Assumption 2.

rank

[
A+Ad − I B

C 0

]
= n+ p. (full row rank)

Assumption 3. The external disturbance ω(k) converges to a constant vector ω as k →
∞, i. e., limk→∞ ω(k) = ω. Additionally, the difference vector between the disturbance
and its limit belongs to l2 [0,∞), i. e., ω(k)− ω ∈ l2 [0,∞).

Assumption 4. The reference signal r(k) converges to a constant vector r as k →∞,
i. e., limk→∞ r(k) = r. Furthermore, it is assumed that r(k) is able to be previewed, and
the preview length is Mr, that is, at each time k, Mr future values r(k+1), . . . , r(k+Mr)
as well as the present and past values of the reference signal are available. Additionally,
the future values of the reference signal beyond k + Mr are assumed to be a constant
vector r, namely,

r(k + i) = r, i = Mr + 1, Mr + 2, . . . .

Remark 2.2. Assumption 4 describes the preview property of the reference signal r(k),
and it is an important and basic assumption in the field of preview control. Future
information about the reference signal is less important as it exceeds the preview range.
Therefore, it is usually assumed that the values beyond the preview length are constant
[2, 31, 35, 36, 43].

The following technical lemmas are employed to establish our main results.

Lemma 2.3. (Schur complement lemma, Schur et al. [3]) The symmetric matrix[
S11 S12

ST
12 S22

]
< 0 if and only if one of the following two conditions is satisfied:

(i) S11 < 0, S22 − ST
12S
−1
11 S12 < 0;

(ii) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Lemma 2.4. (Nasiri et al. [28]) If there exist matrices P > 0 and G with appropriate
dimensions, then

−GTP−1G ≤ P −G−GT .
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3. CONSTRUCTION OF THE AUGMENTED ERROR SYSTEM

In this section, we construct the augmented error system of system (1) via a translation
approach.

Under Assumptions 3 and 4, if the closed-loop system of system (1) can track the
reference signal, there are steady-state values x(∞) and u(∞) such that{

x(∞) = Ax(∞) +Adx(∞) +Bu(∞) +Df(r) + Eω,
r = Cx(∞),

(4)

that is, [
A+Ad − I B

C 0

] [
x(∞)
u(∞)

]
=

[
−Df(r)− Eω

r

]
. (5)

When Assumption 2 holds, equation (5) obtains the solution x(∞), u(∞).
Define the new variables: 

x̃(k) = x(k)− x(∞),
ũ(k) = u(k)− u(∞),
ỹ(k) = y(k)− r,
r̃(k) = r(k)− r,
ω̃(k) = ω(k)− ω.

(6)

From (1), (4) and (6), we obtain the following dynamics:{
x̃(k + 1) = Ax̃(k) +Adx̃(k − d(k)) +Bũ(k) +Df̃(ỹ(k)) + Eω̃(k),
ỹ(k) = Cx̃(k),

(7)

where f̃(ỹ(k)) = f(y(k))− f(r), and from Assumption 3 one obtains ω̃(k) ∈ l2 [0,∞).
Denote ỹi = yi − ri and f̃i(ỹi) = fi(yi)− fi(ri). By Assumption 1, one can see that

(f̃i(ỹi)− kiỹi)(f̃i(ỹi)− k̄iỹi) ≤ 0. (8)

Equation (8) yields
(f̃(ỹ)−Kỹ)T (f̃(ỹ)− K̄ỹ) ≤ 0, (9)

where K = diag(k1, k2, . . . , kp) and K̄ = diag(k̄1, k̄2, . . . , k̄p).
By employing the loop transformation [13], the restriction equation (9) is transformed

into the following condition

φT (ỹ)
(
φ(ỹ)− (K̄ −K)ỹ

)
≤ 0, (10)

where φ(ỹ) = f̃(ỹ)−Kỹ. Hence, system (7) can be rewritten as

{
x̃(k + 1) = (A+DKC)x̃(k) +Adx̃(k − d(k)) +Bũ(k) +Dφ(ỹ(k)) + Eω̃(k),
ỹ(k) = Cx̃(k),

(11)

where φ(ỹ) satisfies (10), that is, φ(ỹ) belongs to the sector [0, K̄ −K].
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To make full use of the known future knowledge about the reference signal r(k), we
define the following vector:

xr(k) =


r̃(k)

r̃(k + 1)
...

r̃(k +Mr)

 .
Under Assumption 4, it is easily seen that

xr(k + 1) = Arxr(k), (12)

where

Ar =


0 Ip 0 . . . 0
0 0 Ip . . . 0
...

...
...

...
0 0 0 . . . Ip
0 0 0 . . . 0

 .
Note that the vector xr(k) contains all available future information about the refer-

ence signal at the current time k. By means of the lifting technique [20, 44], equations
(11) and (12) can be combined together, and then such useful information can be suc-
cessfully input into the control input.

Define the tracking error as e(k) = y(k)− r(k). As noted in [40], the integral control
action of the tracking error e(k) possesses the capability to effectively eliminate static
error. Since the control input in system (11) is ũ(k) rather than the difference of ũ(k),
the designed controller for the augmented system consisting of (11) and (12) does not
include the integral control action of the tracking error. Therefore, to avoid the static
error, we add the following integrator:

v(k + 1) = v(k) + e(k). (13)

If v(k) possesses a steady-state value v(∞) such that limk→∞ v(k) = v(∞), then it
follows that limk→∞ e(k) = 0. To this end, denote ṽ(k) = v(k)− v(∞), and from (13),
the dynamics of ṽ(k) can be expressed as

ṽ(k + 1) = ṽ(k) + e(k)

= ṽ(k) + (y(k)− r)− (r(k)− r)
= ṽ(k) + ỹ(k)− r̃(k)

= ṽ(k) + Cx̃(k)− r̃(k).

(14)

To synthesize a tracking controller with preview action plus the above integrator, we

define the augmented state vector x̄(k) =
[
x̃T (k) xTr (k) ṽT (k)

]T
. Combining (11),

(12) and (14) yields{
x̄(k + 1) = Āx̄(k) + Ādx̄(k − d(k)) + B̄ũ(k) + D̄φ(ỹ(k)) + Ēω̃(k),

ỹ(k) = C̃x̄(k),
(15)
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where

Ā=

 A+DKC 0 0
0 Ar 0
C Gr I

 , Gr =
[
−I 0 . . . 0

]
, Ād =

 Ad 0 0
0 0 0
0 0 0

 ,

B̄=

 B
0
0

 , Ē =

 E
0
0

 , D̄ =

 D
0
0

 , C̃ =
[
C 0 0

]
.

For performance assessment, we adopt the following quadratic cost function:

J =

∞∑
k=0

[
ṽT (k)Qv ṽ(k) + ũT (k)Rũ(k)

]
, (16)

where Qv > 0 and R > 0 are given weighting matrices. In J , the first term embodies the
requirement of small accumulative errors, and the second term reflects the limitation of
the control range; thus, the physical meaning is clear.

Furthermore, the cost function (16) can also be rewritten as a square of the two-norm
of the following performance signal:

z(k) = Mx̄(k) +Nũ(k), (17)

where

M =

[
0 0 Q

1/2
v

0 0 0

]
, N =

[
0

R1/2

]
.

In other words,

J =

∞∑
k=0

zT (k)z(k) = ‖z‖22 . (18)

Combining (15) and (17) yields the following Lur’e-type augmented error system
x̄(k + 1) = Āx̄(k) + Ādx̄(k − d(k)) + B̄ũ(k) + D̄φ(ỹ(k)) + Ēω̃(k),

ỹ(k) = C̃x̄(k),
z(k) = Mx̄(k) +Nũ(k),

(19)

where φ(ỹ) satisfies the sector condition (10).

Remark 3.1. In the existing literature regarding preview control, there are two con-
venient and effective approaches, namely, the difference approach [20, 33, 44] and the
auxiliary method [40], for constructing the required preview control system. However,
the drawback of these two methods is that they fail to deal with systems with time-
varying delays. To overcome this difficulty, a novel translation technique, which makes
use of the steady-state values related to the state vector and control input, is provided.
Moreover, compared with [40], the tracking error is not embedded into the augmented
error system (19) as a state component. This treatment helps to reduce the dimension
of the augmented system and simplify the structure of the preview controller.
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4. DESIGN OF THE PREVIEW CONTROLLER

In this section, inspired by [29, 33, 40], we wish to design a preview controller such that:
(i) the closed-loop output y(k) asymptotically tracks the reference signal r(k), that is,
limk→∞ e(k) = 0; and (ii) the guaranteed cost H∞ control performance is satisfied, that
is,

J = ‖z‖22 ≤ γ
2 ‖ω̃‖22 + J∗,

where γ > 0 is a prescribed H∞ performance level, and J∗ is a certain upper bound of
the cost function.

We design a memory state feedback controller in the following form:

ũ(k) = Kx̄(k) + Lx̄(k − d(k)), (20)

where K and L are the controller gains to be determined.

Remark 4.1. As commented in [37], because they consider more information, memory
controllers usually lead to better performances than those of memoryless controllers for
the designed systems. However, in this paper, the time delay is assumed to be known,
which is restrictive to some extent. Especially when the delayed states are inaccessible
or too expensive to be measured, memory controller realization becomes difficult. A
possible choice is to use the maximum delay bound d2 for control. Another way is to
implement the conventional memoryless state feedback control strategy by setting L = 0.

Substituting the controller (20) into system (19), we obtain the closed-loop system
as follows:

x̄(k + 1) = (Ā+ B̄K)x̄(k) + (Ād + B̄L)x̄(k − d(k)) + D̄φ(ỹ(k)) + Ēω̃(k),

ỹ(k) = C̃x̄(k),

z(k) = (M +NK)x̄(k) +NLx̄(k − d(k)).

(21)

To facilitate the presentation, we denote

K∆ = diag(
k̄1 − k1

2
,
k̄2 − k2

2
, · · · ,

k̄p − kp
2

), Z = diag(µ1, µ2, · · · , µp).

Theorem 4.2. Suppose that Assumptions 1-4 are satisfied. If for a given Z > 0 there
exist matrices P > 0, Q > 0, S, Sd, U and V such that

P − S − ST ∗ ∗ ∗ ∗ ∗ ∗
0 Q− Sd − Sd

T ∗ ∗ ∗ ∗ ∗
K∆ZC̃S 0 −Z ∗ ∗ ∗ ∗

0 0 0 −γ2I ∗ ∗ ∗
ĀS + B̄U ĀdSd + B̄V D̄ Ē −P ∗ ∗
MS +NU NV 0 0 0 −I ∗

S 0 0 0 0 0 −(d2 − d1 + 1)
−1
Q


< 0,

(22)
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then the closed-loop system (21) is asymptotically stable, and the performance index J
satisfies

J=‖z‖22≤γ
2 ‖ω‖22+x̄

T (0)P−1x̄(0)+

−1∑
i=−d2

x̄T (i)Q−1x̄(i)+

−d1∑
i=−d2+1

−1∑
j=i

x̄T (j)Q−1x̄(j). (23)

Furthermore, the controller gains can be obtained by K = US−1 and L = V Sd
−1.

P r o o f . We first consider system (19) with ω̃(k) = 0, namely,

x̄(k + 1) = (Ā+ B̄K)x̄(k) + (Ād + B̄L)x̄(k − d(k)) + D̄φ(ỹ(k)). (24)

For system (24), we adopt the following Lyapunov–Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k), (25)

where

V1(k)=x̄T (k)P−1x̄(k), V2(k)=

k−1∑
i=k−d(k)

x̄T (i)Q−1x̄(i), V3(k)=

−d1∑
i=−d2+1

k−1∑
j=k+i

x̄T (j)Q−1x̄(j).

It is clear that V (k) in (25) is positive definite because of P > 0 and Q > 0. Taking
the forward difference of V (k) along the trajectories of system (24) yields

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k). (26)

To make the mathematical derivations clear, the three items on the right side of
equation (26) are calculated separately. First, we obtain

∆V1(k) = x̄T (k + 1)P−1x̄(k + 1)− x̄T (k)P−1x̄(k)

= x̄T (k)
[
(Ā+ B̄K)

T
P−1(Ā+ B̄K)− P−1

]
x̄(k)

+ 2x̄T (k)(Ā+ B̄K)TP−1(Ād + B̄L)x̄(k − d(k)) + 2x̄T (k)(Ā+ B̄K)TP−1D̄φ(ỹ)

+ x̄T (k − d(k))(Ād + B̄L)TP−1(Ād + B̄L)x̄(k − d(k))

+ 2x̄T (k − d(k))(Ād + B̄L)TP−1D̄φ(ỹ) + φT (ỹ)D̄TP−1D̄φ(ỹ).
(27)

Then ∆V2(k) is given by

V2(k) =

k∑
i=k+1−d(k+1)

x̄T (i)Q−1x̄(i)−
k−1∑

i=k−d(k)

x̄T (i)Q−1x̄(i)

=

k−d1∑
i=k+1−d(k+1)

x̄T (i)Q−1x̄(i) +

k−1∑
i=k−d1+1

x̄T (i)Q−1x̄(i) + x̄T (k)Q−1x̄(k)

−
k−1∑

i=k−d(k)+1

x̄T (i)Q−1x̄(i)− x̄T (k − d(k))Q−1x̄(k − d(k)).



Preview tracking control for disturbed Lur’e systems with time-delay 87

Due to the fact that d(k) ≥ d1, thus
∑k−1

i=k−d1+1 x̄
T (i)Q−1x̄(i)−

∑k−1
i=k−d(k)+1 x̄

T (i)Q−1x̄(i)
≤ 0. Hence,

∆V2(k) ≤
k−d1∑

i=k+1−d(k+1)

x̄T (i)Q−1x̄(i) + x̄T (k)Q−1x̄(k)− x̄T (k − d(k))Q−1x̄(k − d(k)).

(28)

Consider the forward difference of function V3(k):

∆V3(k) =

−d1∑
i=−d2+1

k∑
j=k+1+i

x̄T (j)Q−1x̄(j) −
−d1∑

i=−d2+1

k−1∑
j=k+i

x̄T (j)Q−1x̄(j)

=

−d1∑
i=−d2+1

 k−1∑
j=k+1+i

x̄T (j)Q−1x̄(j)+x̄T (k)Q−1x̄(k)−
k−1∑

j=k+1+i

x̄T (j)Q−1x̄(j)−x̄T (k+i)Q−1x̄(k+i)


=

−d1∑
i=−d2+1

[
x̄T (k)Q−1x̄(k) − x̄T (k + i)Q−1x̄(k + i)

]

= (d2 − d1)x̄T (k)Q−1x̄(k) −
k−d1∑

i=k−d2+1

x̄T (i)Q−1x̄(i).

(29)

Because d(k) ≤ d2, one obtains from (28) and (29) that

∆V2(k) + ∆V3(k) ≤ (d2 − d1 + 1)x̄T (k)Q−1x̄(k)− x̄T (k − d(k))Q−1x̄(k − d(k)). (30)

From (26), (27) and (30), the following inequality can be derived:

∆V (k) ≤ x̄T (k)
[
(Ā+ B̄K)

T
P−1(Ā+ B̄K)− P−1

]
x̄(k)

+ 2x̄T (k)(Ā+ B̄K)TP−1(Ād + B̄L)x̄(k − d(k)) + 2x̄T (k)(Ā+ B̄K)TP−1D̄φ(ỹ)

+ x̄T (k − d(k))(Ād + B̄L)TP−1(Ād + B̄L)x̄(k − d(k))

+ (d2 − d1 + 1)x̄T (k)Q−1x̄(k)− x̄T (k − d(k))Q−1x̄(k − d(k))

+ 2x̄T (k − d(k))(Ād + B̄L)TP−1D̄φ(ỹ) + φT (ỹ)D̄TP−1D̄φ(ỹ).
(31)

For a given matrix Z = diag(µ1, µ2, . . . , µp) > 0, according to the condition (10), it
is straightforward to show that

φ(ỹ)TZφ(ỹ)− 2ỹTZK∆φ(ỹ) ≤ 0. (32)
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Therefore, the upper bound of ∆V (k) can be estimated as

∆V (k) ≤ x̄T (k)
[
(Ā+ B̄K)

T
P−1(Ā+ B̄K)− P−1 + (d2 − d1 + 1)Q−1

]
x̄(k)

+ 2x̄T (k)(Ā+ B̄K)TP−1(Ād + B̄L)x̄(k − d(k)) + 2x̄T (k)(Ā+ B̄K)TP−1D̄φ(ỹ)

+ x̄T (k − d(k))((Ād + B̄L)TP−1(Ād + B̄L)−Q−1)x̄(k − d(k))

+ 2x̄T (k − d(k))(Ād + B̄L)TP−1D̄φ(ỹ) + φT (ỹ)D̄TP−1D̄φ(ỹ)

− φT (ỹ)Zφ(ỹ) + 2x̄T (k)C̃TZK∆φ(ỹ)

=
[
x̄T (k) x̄T (k − d(k)) φT (ỹ)

]
Π
[
x̄T (k) x̄T (k − d(k)) φT (ỹ)

]T
,

where

Π=

 Π11 ∗ ∗
(Ād + B̄L)

T
P−1(Ā+ B̄K) (Ād + B̄L)

T
P−1(Ād + B̄L)−Q−1 ∗

D̄TP−1(Ā+ B̄K) +K∆ZC̃ D̄TP−1(Ād + B̄L) D̄TP−1D̄ − Z


with Π11=(Ā+ B̄K)TP−1(Ā+ B̄K)− P−1 + (d2 − d1 + 1)Q−1.

Now, we prove that condition (22) of Theorem 4.2 leads to Π < 0.
Applying Lemma 2.4, condition (22) ensures

−STP−1S ∗ ∗ ∗ ∗ ∗ ∗
0 −Sd

TQ−1Sd ∗ ∗ ∗ ∗ ∗
K∆ZC̃S 0 −Z ∗ ∗ ∗ ∗

0 0 0 −γ2I ∗ ∗ ∗
ĀS + B̄U ĀdSd + B̄V D̄ Ē −P ∗ ∗
MS +NU NV 0 0 0 −I ∗

S 0 0 0 0 0 −(d2 − d1 + 1)
−1
Q


< 0.

(33)
For convenience, denote

Γ1 =


0 0 0 I
0 I 0 0
0 0 I 0
I 0 0 0

 .
Performing the congruence transformation on the matrix inequality (33), that is,

pre-multiplying and post-multiplying Block−diag(S−T , Sd
−T , I,Γ1) and its transpose,

respectively, and by using K = US−1 and L = V Sd
−1, one can obtain that

−P−1 ∗ ∗ ∗ ∗ ∗ ∗
0 −Q−1 ∗ ∗ ∗ ∗ ∗

K∆ZC̃ 0 −Z ∗ ∗ ∗ ∗
I 0 0 −(d2 − d1 + 1)

−1
Q ∗ ∗ ∗

Ā+ B̄K Ād + B̄L D̄ 0 −P ∗ ∗
M +NK NL 0 0 0 −I ∗

0 0 0 0 ĒT 0 −γ2I


< 0. (34)
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Then, we can derive from inequality (34) that
−P−1 0 C̃TZK∆ I (Ā+ B̄K)

T

0 −Q−1 0 0 (Ād + B̄L)
T

K∆ZC̃ 0 −Z 0 D̄T

I 0 0 −(d2 − d1 + 1)
−1
Q 0

Ā+ B̄K Ād + B̄L D̄ 0 −P

 < 0. (35)

Applying Lemma 2.3 again, it can be inferred that Π < 0. Thus, according to
Lyapunov stability theory, system (24) is asymptotically stable.

Next, guaranteed cost control with H∞ disturbance attenuation is considered.
For the simplicity of the vector and matrix presentation, we define

X(k) =
[
x̄T (k) x̄T (k − d(k)) φT (ỹ) ω̃T (k)

]T
,

Ω11 = (Ā+ B̄K)TP−1(Ā+ B̄K)− P−1 + (d2 − d1 + 1)Q−1 + (M +NK)T (M +NK),

Ω21 = (Ād + B̄L)TP−1(Ā+ B̄K) + LTNT (M +NK),

Ω22 = (Ād + B̄L)TP−1(Ād + B̄L)−Q−1 + LTNTNL,

Ω =


Ω11 ∗ ∗ ∗
Ω21 Ω22 ∗ ∗

D̄TP−1(Ā+ B̄K) +K∆ZC̃ D̄TP−1(Ād + B̄L) D̄TP−1D̄ − Z ∗
ĒTP−1(Ā+ B̄K) ĒTP−1(Ād + B̄L) ĒTP−1D̄ ĒTP−1Ē − γ2I

 .
Using Lemmas 2.3 and 2.4, it can be easily proven that condition (22) guarantees

Ω < 0. We still consider the Lyapunov–Krasovskii functional (25). Through some
mathematical manipulation, we obtain that

XT (k)ΩX(k) = ∆V (k) + zT (k)z(k)− γ2ω̃T (k)ω̃(k) ≤ 0.

Furthermore, we see that

zT (k)z(k) ≤ −∆V (k) + γ2ω̃T (k)ω̃(k).

Summing both sides of the above inequality from 0 to ∞, and taking d(0) ≤ d2 into
account, it follows that

J = ‖z‖22 ≤ γ
2 ‖ω̃‖22 + x̄T (0)P−1x̄(0) +

−1∑
i=−d2

x̄T (i)Q−1x̄(i) +

−d1∑
i=−d2+1

−1∑
j=i

x̄T (j)Q−1x̄(j).

This implies that the H∞ norm from ω̃(k) to z(k) is less than the prescribed level

γ, and the term x̄T (0)P−1x̄(0)+
∑−1

i=−d2
x̄T (i)Q−1x̄(i)+

∑−d1

i=−d2+1

∑−1
j=i x̄

T (j)Q−1x̄(j)
represents the upper bound of the cost function J when ω̃(k) = 0; thus, guaranteed
cost control is achieved. Additionally, when the initial state x̄(i) = 0, i = −d2,−d2 +

1, . . . ,−1, 0, we have ‖z‖22 ≤ γ2 ‖ω̃‖22, that is, classical H∞ control is achieved. This
completes the proof.

�
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Remark 4.3. In Theorem 4.2, the matrix inequality condition (22) is established for
asymptotic stability of system (21) with guaranteed cost performance. When the diago-
nal matrix Z is fixed beforehand, this inequality is a linear matrix inequality, which can
be solved numerically by resorting to MATLAB LMI toolbox. Moreover, it should be
mentioned that the Lyapunov–Krasovskii functional (25) may not be the best choice for
stability analysis. For the discrete-time Lur’e nonlinear time-delay systems considered
in this paper, we could further reduce the possible conservatism of the theoretical results
by making an effort towards the construction of Lyapunov–Krasovskii functionals with
more general forms that contain more information about time delays (see, e. g., [30]),
which is an interesting research issue for further investigation.

Let

J∗ = x̄T (0)P−1x̄(0) +

−1∑
i=−d2

x̄T (i)Q−1x̄(i) +

−d1∑
i=−d2+1

−1∑
j=i

x̄T (j)Q−1x̄(j).

Then, equation (23) can be written as

J ≤ γ2 ‖ω̃‖22 + J∗. (36)

It is noted that the bound J∗ in Theorem 4.2 depends explicitly upon the initial con-
ditions of system (21). To remove this dependence on the initial condition, we adopt the
method generally used in the literature (see, e. g., [9]). Suppose that the initial state is ar-
bitrary but belongs to the set ς =

{
x̄(i) : x̄(i) = Gυi, υ

T
i υi ≤ 1, i = −d2,−d2 + 1, . . . , 0

}
,

where G is a given matrix; then, the cost bound leads to

J∗ = x̄T (0)P−1x̄(0) +

−1∑
i=−d2

x̄T (i)Q−1x̄(i) +

−d1∑
i=−d2+1

−1∑
j=i

x̄T (j)Q−1x̄(j)

≤ υT0 GTP−1Gυ0 +

−1∑
i=−d2

υTi G
TQ−1Gυi +

−d1∑
i=−d2+1

−1∑
j=i

υTj G
TQ−1Gυj

≤ λmax(GTP−1G)υT0 υ0 +

−1∑
i=−d2

λmax(GTQ−1G)υTi υi +

−d1∑
i=−d2+1

−1∑
j=i

λmax(GTQ−1G)υTj υj

≤ λmax(GTP−1G) +

−1∑
i=−d2

λmax(GTQ−1G) +

−d1∑
i=−d2+1

−1∑
j=i

λmax(GTQ−1G).

(37)

Theorem 4.4. Suppose that Assumptions 1-4 are satisfied. If for a given Z > 0 there
exist matrices P > 0, Q > 0, S, Sd, U and V , and scalars α and β such that the
optimization problem
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minα+ [d2 + (d2−d1)(d2+d1−1)
2 ]β

s.t. (I) LMI(22),

(II)

[
−αI GT

G −P

]
< 0,

(III)

[
−βI GT

G −Q

]
< 0,

obtains a solution (α, β, P, Q, S, Sd, U, V ), then the resulting closed-loop system
(21) is asymptotically stable and J satisfies

J = ‖z‖22 ≤ γ
2 ‖ω̃‖22 + α+ [d2 +

(d2 − d1)(d2 + d1 − 1)

2
]β. (38)

Furthermore, the controller gains can be obtained by K = US−1 and L = V Sd
−1.

P r o o f . According to Theorem 4.2, (I) guarantees that the closed-loop system (21) is
asymptotically stable and the cost function J satisfies (23). By Lemma 2.3, (II) and
(III) are equivalent to GTP−1G < αI and GTQ−1G < βI, respectively. Then, it follows
from (37) that

J∗ ≤ λmax(GTP−1G) +

[
d2 +

(d2 − d1)(d2 + d1 − 1)

2

]
λmax(GTQ−1G)

≤ α+ [d2 +
(d2 − d1)(d2 + d1 − 1)

2
]β.

By using (36), we can obtain (38). This completes the proof. �

Remark 4.5. If the H∞ performance level γ is fixed in advance, then a suitable guar-
anteed cost controller can be derived by solving the optimization problem in Theorem
4.4. Otherwise, denote λ = γ2 and solve the following optimization problem:

minλ
s.t. LMI(22)

If the optimization problem mentioned above obtains a solution (P, Q, S, Sd, U, V ),
then the optimal H∞ performance level γ∗ =

√
λ under a certain cost function can be

obtained.

Theorem 4.4 presents the design method of the controller gain matrices that ensure
the asymptotic stability of the closed-loop system. Indeed, if the closed-loop system
is asymptotically stable, then we obtain x(k) → x(∞) and v(k) → v(∞) as k → ∞,
furthermore we obtain

lim
k→∞

e(k) = lim
k→∞

(v(k + 1)− v(k)) = 0,

which implies that the asymptotic output tracking is achieved.
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To clarify the proposed tracking controller structure, we partition the gain matrices
K = US−1 and L = V Sd

−1 determined in Theorem 4.4 as

K =
[
Kx Kr Kv

]
, (39)

Kr =
[
kr(0) kr(1) . . . kr(Mr)

]
, (40)

L =
[
Lx Lr Lv

]
, (41)

Lr =
[
lr(0) lr(1) . . . lr(Mr)

]
. (42)

Thus, the controller (20) can be expressed as

ũ(k) = Kxx̃(k) +Krxr(k) +Kv ṽ(k) +Lxx̃(k− d(k)) +Lrxr(k− d(k)) +Lv ṽ(k− d(k)).

From (14), we can derive that ṽ(k) =
∑k−1

i=0 e(i) + ṽ(0). Recalling the definition (6)
of ũ(k), the main result in this paper is derived immediately.

Theorem 4.6. Suppose that Assumptions 1-4 are satisfied. If the optimization problem
in Theorem 4.4 is solvable, then the preview controller for system (1) is

u(k) = Kx(x(k)− x(∞)) +

Mr∑
i=0

kr(i)(r(k + i)− r) +Kv(

k−1∑
i=0

e(i) + v(0)− v(∞))

+ Lx(x(k − d(k))− x(∞)) +

Mr∑
i=0

lr(i)(r(k − d(k) + i)− r)

+ Lv(

k−d(k)−1∑
i=0

e(i) + v(0)− v(∞)) + u(∞),

(43)

where the related controller gain matrices Kx, Kv, Lx, Lv, kr(i), lr(i) (i = 0, . . . ,Mr)
are determined by (39) – (42). Under this controller scheme, the output vector y(k) can
achieve asymptotic tracking of the reference signal r(k).

Remark 4.7. It is worth pointing out that in the designed controller (43), the terms∑Mr

i=0 kr(i)r(k + i) and
∑Mr

i=0 lr(i)r(k − d(k) + i) represent the preview compensation
action with respect to the reference signal. The introduction of these two terms is
the key reason for the tracking performance improvement of the closed-loop system,
which has not been taken into account in [14, 19, 24, 42]. In addition, in [39], the
authors investigated the tracking control with preview action for continuous-time Lur’e
nonlinear systems with external disturbances, and they did not consider discrete-time
systems and the time delay factor. In this paper, for the first time, a preview tracking
controller with guaranteed cost H∞ control performance is proposed for discrete-time
Lur’e systems with disturbances and time-varying delays.



Preview tracking control for disturbed Lur’e systems with time-delay 93

5. NUMERICAL SIMULATIONS

Example 1 Consider system (1) with

A=

[
1.33 0
−0.3 0.55

]
, Ad =

[
0.2 0
0 0.07

]
, B =

[
0.3
0.5

]
,

D =

[
0.01

0

]
, E =

[
0.05

0

]
, C =

[
0.5 −1

]
.

The nonlinearity is f(y) = 0.5(|y + 1| − |y − 1|), and the time delay is assumed to be
d(k) = Round (sin(0.01k) + 2), where Round(x) denotes the nearest integer to the real
number x.

It is easy to check that f(y) satisfies Assumption 1 with k = 0 and k̄ = 1. Meanwhile,

Assumption 2 also holds since rank
[

A+Ad − I B
C 0

]
= 3. Furthermore, assume that

the external disturbance and the reference signal verify Assumptions 3 and 4. Thus, the
basic requirements of this paper are satisfied.

For the purpose of the simulation, the external disturbance ω(k) is taken as ω(k) =
e−2.5(k+1). Set γ = 8, R = 0.05 and Qv = 0.05. By resorting to the MATLAB LMI
toolbox, the solution of the optimization problem in Theorem 4.4 can be computed. To
quantify the effect of the preview action on output tracking performance, the following
three cases are taken into consideration.

Case 1©. When Mr = 0 (no preview), the controller gain matrices are

Kx= [− 11.1156 2.4603], Kv = −1.0680,

Lx = [−1.4769 0.1724], Lv = 4.9707× 10−9.

Case 2©. When Mr = 2, the controller gain matrices are

Kx= [− 7.5131 1.1958], Kv = −0.4796,

Kr = [0.4794 0.4794 0.5053],

Lx = [−1.0352 0.0879], Lv = 1.5584× 10−10,

Lr = 10−9 × [0.1776 0.0591 0.0114].

Case 3©. When Mr = 5, the controller gain matrices are

Kx= [− 7.5102 1.1946], Kv = −0.4789,

Kr = [0.4789 0.4789 0.5051 0.4731 0.4131 0.3493],

Lx = [−1.0356 0.0880], Lv = −5.0040× 10−10,

Lr = 10−9 × [− 0.2310 0.1318 0.1362 0.1054 0.0533 0.0202].
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Simulations are performed with the following two reference signals.

(i) The reference signal is taken as

r(k) =

{
3, k ≥ 30
0, k < 30.

(44)

Figure 1 depicts the output trajectories of the closed-loop system. Figure 2 plots the
time response of the tracking error. The time responses of the closed-loop states and
the control input are illustrated in Figures 3 and 4, respectively.
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Fig. 1. Time response of the closed-loop output and reference signal

(44).

From Figure 1, we can see that the controllers designed in these three cases can force
the system output to track the desired reference signal, and compared to the traditional
controller without preview (i.e., Mr = 0), the preview controller causes the system to
produce a better transient responses. To be more specific, the overshoot of the output
is dramatically reduced and the settling time is shortened. From Figure 2, the proposed
preview controller can significantly decrease the output tracking error, thereby improv-
ing the tracking precision of the closed-loop system. Moreover, the tracking behaviour
can be further improved by appropriately increasing the preview length. However, such
manipulation may incur some computational complexity. In fact, due to the introduc-
tion of Mr-step preview information about the reference signal, the dimension of the
augmented error system is increased, which undoubtedly results in the requirement of
some additional computations for solving the LMI problem. Fortunately, since the se-
lected preview length is usually not very large, the impact caused by such computations
can be almost ignored. Numerical simulation shows that the solving time for the case
with preview is slightly longer than that of the case without preview, but no significant
time difference occurs. Figure 3 shows that the improvement in system performance



Preview tracking control for disturbed Lur’e systems with time-delay 95

k

0 10 20 30 40 50 60

e

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

e(k),M
r
=0

e(k),M
r
=2

e(k),M
r
=5

Fig. 2. Time response of the tracking error.
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Fig. 3. Time response of the control input.

via the preview controller is not at the expense of increasing the input amplitude. Fur-
thermore, it can be computed from (5) that the steady-state values x(∞) and u(∞) in

this example are x(∞) =

[
0.8180
−2.5910

]
and u(∞) = −1.4783. As shown in Figures 3

and 4, the control signal and states of the closed-loop system ultimately tend to their
steady-state values. Therefore, the simulation results are completely consistent with the
theoretical conclusions.
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Fig. 4. Time response of the closed-loop states.

(ii) The reference signal is taken as

r(k) =

 0, k < 30
0.15(k − 30), 30 ≤ k ≤ 50
3, k > 50.

(45)

Figure 5 shows the output response of the closed-loop system. The time responses of
the tracking error and the control input are illustrated in Figures 6 and 7, respectively.
The closed-loop state response is demonstrated in Figure 8.

As shown in Figure 5, the controllers proposed in these three cases cause the system
output to track the reference signal accurately, despite the existence of external distur-
bances and time delays. The difference lies in the fact that the preview controller exhibits
superior tracking quality, produces faster responses, and achieves lower overshoots than
those of the traditional controller. This is mainly because the preview controller not only
possesses a certain disturbance attenuation ability, but also includes a preview compen-
sator used to improve the output tracking effect. Figure 6 reveals that the tracking
error using the preview control method is noticeably smaller, and the output tracking
behaviour is quite perfect. It can also be seen from Figure 7 that the incorporation of
the preview action can still ensure that the control input is maintained within a certain
range. In other words, the control signal possesses a reasonable amplitude. Meanwhile,
Figures 7 and 8 also illustrate that the input vector and state vector of the closed-loop
system ultimately tend to their steady-state values, which shows the effectiveness of the
proposed method.
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Fig. 5. Time response of the closed-loop output and signal (45).
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6. CONCLUSIONS

The problem of preview tracking control for a class of discrete-time Lur’e time-delay
systems with external disturbance is studied in this paper. First, the translation tech-
nique using the steady-state values is adopted to derive the augmented error system
with tracking error and reference preview information. In order to avoid the static error
phenomenon, a discrete integrator is introduced. Following Lyapunov stability theory,
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Fig. 7. Time response of the control input.
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Fig. 8. Time response of the closed-loop states.

the design of a memory state feedback controller ensuring asymptotic stability and guar-
anteed cost H∞ control performance of the closed-loop system is formulated in terms
of linear matrix inequalities. Based on this, the preview control scheme for the original
Lur’e system is presented. Finally, numerical simulation results are displayed to show
the effectiveness of the proposed preview controller. A challenging and interesting fu-
ture topic is how to generalize the results of this paper to more types of discrete-time
nonlinear systems by employing some novel techniques in [1, 9].
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