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ROBUST OBSERVER-BASED FINITE-TIME H∞ CONTROL
DESIGNS FOR DISCRETE NONLINEAR SYSTEMS WITH
TIME-VARYING DELAY

Yali Dong, Huimin Wang, and Mengxiao Deng

This paper investigates the problem of observer-based finite-time H∞ control for the un-
certain discrete-time systems with nonlinear perturbations and time-varying delay. The Lu-
enberger observer is designed to measure the system state. The observer-based controller is
constructed. By constructing an appropriated Lyapunov-.Krasovskii functional, sufficient con-
ditions are derived to ensure the resulting closed-loop system is H∞ finite-time bounded via
observer-based control. The observer-based controller for the finite-time H∞ control problem
is developed. Finally, a numerical example illustrates the efficiency of proposed methods.

Keywords: observer-based control, H∞ finite-time boundedness, Lyapunov–Krasovskii
functional, discrete-time systems, time-varying delay

Classification: 93D15, 93D09, 93C10, 93B35, 93B52

1. INTRODUCTION

Feedback control is a long-standing topic and has been one of the key research areas
in control theory [7, 8, 16]. State feedback control is developed on the premise that
the complete state information of the system is available. But often this is not true
in practice, and the current state must be estimated by another dynamical system, a
state observer [10, 17, 18, 20]. In recent years, observer-based control has attracted the
attention of scholars, and some results have been obtained [3, 10, 15]. In [10], the design
of observer-based feedback control was presented for a class of discrete-time nonlinear
systems. Ahmad et al. [3] considered the observer-based control for one-sided Lipschitz
systems.

In many practical applications, it is necessary to consider the behavior of the system
in a fixed finite time interval. Within a given finite time interval, the state of the system
will not exceed a bound. Therefore, the concepts of finite-time stability and finite-time
boundedness were proposed in [4, 11]. In recent years, finite-time stability, finite-time
boundedness and related control problems have attracted the attention of researchers,
and many results have been reported in [4, 5, 9, 14, 21]. Zhang et al. [21] investigated
finite-time stability and stabilization of uncertain continuous-time delay system. Amato
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et al. [4] considered the finite-time control of linear system. In [5], finite-time H∞
filtering problem for discrete-time Markovian jump systems was investigated.

On the other hand, in practical systems, the phenomenon of time delay is inevitable.
The existence of time delay can deteriorate system performance or lead to system in-
stability. Therefore, the stability and control of time-delay systems have attracted wide
attention in academic circles. In recent years, many results about time-delay systems
have been presented [6, 7, 9, 10, 12, 13, 19]. In [6], the observer design of neutral neu-
ral networks with discrete and distributed time-varying delays was given. Stojanovic
[19] investigated the robust finite-time stability for discrete-time systems with interval
time-varying delays and nonlinear perturbations. Lin et al. [13] considered the finite-
time boundedness and L2 gain analysis for switched delay systems. However, as far as
we know, for uncertain discrete-time systems with nonlinear perturbations and time-
varying delays, finite-time boundedness and observer-based finite-time H∞ stabilization
have not been thoroughly studied.

In this paper, we investigate the observer-based finite-time control for discrete uncer-
tain nonlinear systems with time-varying delay. The main contributions of this paper
are as follows: First, by constructing an appropriate Lyapunov–Krasovsky functional,
utilizing sector-bounded conditions and observer-based control, the sufficient conditions
are derived in term of matrices inequality technique which ensure that the closed-loop
system obtained is finite-time bounded with H∞ performance. Then, the observer-based
finite-time H∞ control is designed to guarantee the closed-loop system has desired per-
formance. Finally, a numerical example is given to demonstrate the effectiveness of the
proposed method.

This paper is organized as follows. In Section 2, the system description and prelim-
inaries are introduced. In Section 3, based on matrix inequalities and observer-based
control, sufficient conditions for H∞ finite-time stabilization of uncertain discrete-time
systems are developed, and H∞ finite-time observer-based control is given. In Section
4, we give an example to show the performance of our method. Conclusions are drawn
in Section 5.

2. PROBLEM FORMULATION

Consider the following uncertain discrete-time system

x(k + 1) = (A+ ∆A)x(k) + (Ad + ∆Ad)x(k − τ(k)) +Du(k) +Gf(x(k))
+Hg(x(k − τ(k))) + (B + ∆B)ω(k),

y(t) = Cx(k),
z(k) = N1x(k) +N3x(k − τ(k)) +N2ω(k),
x(θ) = ϕ(θ), θ = −τM , −τM + 1, . . . , 0,

(1)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the measured output, z(k) ∈ Rq is the
control output, ϕ(θ) is an initial function, u(k) ∈ Rm is the control input. ω(k) ∈ Rl is
the exogenous disturbance. A,Ad, B,C,D,N1, N2, N3, G,H are appropriate dimension
constant matrices. The positive integer τ(k) is the time -varying delay satisfying

0 < τm ≤ τ(k) ≤ τM , (2)
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where τm, τM are positive integers. Assume that the admissible uncertainties ∆A,∆Ad
and ∆B satisfy

[∆A, ∆Ad, ∆B] = ΓY (k)[Ka, Kd, Kb],

where Γ,Ka,Kd,Kb are known real constant matrices, Y (k) is unknown time-varying
matrix satisfying

Y T (k)Y (k) ≤ I, ∀K ∈ N+.

The nonlinear functions f(·) and g(·) are assumed to be continuous and satisfy f(0) =
0, g(0) = 0 and satisfy the following sector-bounded conditions:

[f(x)− f(y)− F1(x− y)]
T

[f(x)− f(y)− F2(x− y)] ≤ 0, ∀x, y ∈ Rn,
[g(x)− g(y)− U1(x− y)]

T
[g(x)− g(y)− U2(x− y)] ≤ 0, ∀x, y ∈ Rn,

(3)

where F1, F2, U1, U2 are real matrices of appropriate dimensions. ω(k) ∈ Rl is the
exogenous disturbance which satisfies

M∑
k=0

ωT (k)ω(k) < d2. (4)

We construct an observer-based controller for system (1) as follows

x̂(k + 1) = Ax̂(k) +Adx̂(k − τ(k)) +Du(k) + L(y − Cx̂(k)) +Gf(x̂(k))
+Hg(x̂(k − τ(k))),

u(k) = Kx̂(k),
(5)

where x̂(k) is the estimated state, L ∈ Rp is the observer gain required to be designed
later. Let e(k) = x(k)− x̂(k). The error dynamic system is

e(k + 1) = (A− LC)e(k) +Ade(k − τ(k)) + ∆Ax(k) + ∆Adx(k − τ(k))
+G(f(x(k))− f(x̂(k))) +H(g((k − τ(k))− g(x̂(k − τ(k)))).

(6)

Let η(k) = [xT (k), eT (k)]
T

, then by (1),(4)and(5), we can get the following closed-loop
system

η(k + 1) = Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k))),
z(k) = N̄1η(k) + N̄3η(k − τ(k)) +N2ω(k),

(7)

where

Ā = Ă+ ∆Ā, Ă =

[
A+DK −DK

0 A− LC

]
, ∆Ā =

[
∆A 0
∆A 0

]
= Γ̄Y (k)K̄a,

Γ̄ =

[
Γ
Γ

]
, Ăd =

[
Ad 0
0 Ad

]
, ∆Ād =

[
∆Ad 0
∆Ad 0

]
= Γ̄Y (k)K̄d,

Ād = Ăd + ∆Ād, K̄a = [Ka 0], K̄d = [Kd 0], N̄1 = [N1 0],

N̄3 = [N3 0], Ḡ =

[
G 0
0 G

]
, H̄ =

[
H 0
0 H

]
, B̄ = B̆ + ∆B̄,

B̆ =

[
B
B

]
, ∆B̄ =

[
∆B
∆B

]
= Γ̄Y (k)K̄b, f̄(η(k)) =

[
f(x(k))

f(x(k))− f(x̂(k))

]
,

ḡ(x̄(k − τ(k))) =

[
g(x(k − τ(k)))

g(x(k − τ(k)))− g(x̂(k − τ(k)))

]
.
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Definition 1. The closed-loop system (7) is said to be finite-time bounded via observer-
based control with respect to (γ1, γ2, d, R,M) with 0 < γ1 < γ2, R > 0,M ∈ Z+, if

sup
θ∈{−τM ,−τM+1,...,0}

{ηT (θ)Rη(θ)} ≤ γ1 ⇒ ηT (k)Rη(k) < γ2, ∀k ∈ {1, . . . ,M},

for all disturbance ω(k) satisfying (4).

Definition 2. The closed-loop system (7) is said to be H∞ finite-time bounded via
observer-based control with respect to (γ1, γ2, d, R,M, γ) with 0 < γ1 < γ2, R > 0,M ∈
Z+, if the system (7) is finite-time bounded via observer-based control with respect to
(γ1, γ2, d, R,M), and under zero-initial condition, for any exogenous disturbance ω(k)
satisfying (4), the output z(k) satisfies

M∑
k=0

zT (k)z(k) ≤ γ2
M∑
k=0

ωT (k)ω(k).

The main task of this paper is to design an observer-based control to ensure that the
discrete systems (7) is H∞ finite-time bounded.

3. MAIN RESULTS

In this section, we give sufficient conditions which guarantee that the resultant closed-
loop system (7) is H∞ finite-time bounded via observer-based control.

Theorem 1. For given integers 0 < τm ≤ τM , the closed-loop system (7) is H∞ finite-
time bounded via observer-based control with respect to (γ1, γ2, d, R,M, γ), if there exist
matrices P̄ = diag(P, P ) > 0, R̄ = diag(R1, R2) > 0, positive scalars µ1, µ2, ε such that
the following conditions hold:

Σ̄ =



Σ̄11 0 0 −µ1F̄2 0 ĂT P̄ N̄T
1 0 K̄T

a

∗ −R̄− µ2Ū1 0 0 −µ2Ū2 ĂTd P̄ N̄T
3 0 K̄T

d

∗ ∗ −γI 0 0 B̆T P̄ N̄T
2 0 K̄T

b

∗ ∗ ∗ −µ1I 0 ḠT P̄ 0 0 0
∗ ∗ ∗ ∗ −µ2I H̄T P̄ 0 0 0
∗ ∗ ∗ ∗ ∗ −P̄ 0 P̄ Γ̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −εI 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 −ε−1I


< 0,

(9)

γ1[λmax(H1) + (τM + (τM + τm − 1)(τM − τm)/2)λmax(H2)] + γd2 < γ2λmin(H1),
(10)
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where

Ă =

[
A+DK −DK

0 A− LC

]
, Γ̄ =

[
Γ
Γ

]
, Ăd =

[
Ad 0
0 Ad

]
, Ḡ =

[
G 0
0 G

]
,

H̄ =

[
H 0
0 H

]
, B̆ =

[
B
B

]
, K̄a = [Ka 0], K̄d = [Kd 0], N̄1 = [N1 0],

N̄3 = [N3 0], F̄1 = I ⊗ [(FT1 F2 + FT2 F1)/2], F̄2 = −I ⊗ [(F1 + F2)/2],
Ū1 = I ⊗ [(UT1 U2 + UT2 U1)/2], Ū2 = −I ⊗ [(U1 + U2)/2], τ̄ = τM − τm + 1,
H1 = R−1/2P̄R−1/2, H2 = R−1/2R̄R−1/2, Σ̄11 = τ̄ R̄− P̄ − µ1F̄1.

P r o o f . Construct the Lyapunov–Krasovskii functional candidate

V (k) = ηT (k)P̄ η(k) +
k−1∑

i=k−τ(k)
ηT (i)R̄η(i) +

−τm∑
j=−τM+1

k−1∑
i=k−1+j

ηT (i)R̄η(i), (11)

where P̄ = diag(P, P ) > 0, R̄ = diag(R1, R2) > 0.
The difference of V (k) along the solution of the closed-loop system (7) is given by

∆V (k) = V (k + 1)− V (k)

= [Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
T
P̄

×[Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]

−ηT (k)P̄ η(k) +
k∑

i=k+1−τ(k+1)

ηT (i)R̄η(i)−
k−1∑

i=k−τ(k)
ηT (i)R̄η(i)

+
−τm∑

j=−τM+1

(
k∑

i=k+j

ηT (i)R̄η(i)−
k−1∑

i=k+j−1
ηT (i)R̄η(i))

≤ [Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
T
P̄

×[Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
−ηT (k)P̄ η(k) + ηT (k)R̄η(k)− ηT (k − τ(k))R̄η(k − τ(k))

+
k−τm∑

i=k+1−τM
ηT (i)R̄η(i) +

−τm∑
j=−τM+1

(ηT (k)R̄η(k)− ηT (k + j)R̄η(k + j))

= [Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
T
P̄

×[Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]

−ηT (k)P̄ η(k)− ηT (k − τ(k))R̄η(k − τ(k)) +
k−τm∑

i=k+1−τM
ηT (i)R̄η(i)

+(τM − τm + 1)ηT (k)R̄η(k)−
k−τm∑

i=k+1−τM
ηT (i)R̄η(i).

(12)
From (3), it follows that[

η(k)
f̄(η(k))

]T [
F̄1 F̄2

F̄T2 I

] [
η(k)

f̄(η(k))

]
≤ 0,[

η(k − τ(k))
ḡ(η(k − τ(k)))

]T [
Ū1 Ū2

ŪT2 I

] [
η(k − τ(k))
ḡ(η(k − τ(k)))

]
≤ 0,

(13)
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where
F̄1 = I ⊗ [(FT1 F2 + FT2 F1)/2], F̄2 = −I ⊗ [(F1 + F2)/2],
Ū1 = I ⊗ [(UT1 U2 + UT2 U1)/2], Ū2 = −I ⊗ [(U1 + U2)/2].

From (13) and (14), we get

∆V (k) ≤ [Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
T
P̄

×[Āη(k) + Ādη(k − τ(k)) + B̄ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k)))]
−ηT (k)P̄ η(k)− ηT (k − τ(k))R̄η(k − τ(k)) + (τM − τm + 1)ηT (k)R̄η(k)

−µ1

[
η(k)

f̄(η(k))

]T [
F̄1 F̄2

F̄T2 I

] [
η(k)

f̄(η(k))

]
−µ2

[
η(k − τ(k))
ḡ(η(k − τ(k)))

]T [
Ū1 Ū2

ŪT2 I

] [
η(k − τ(k))
ḡ(η(k − τ(k)))

]
= ςT (k)Θς(k),

(14)
where

ςT (k) = [ηT (k) ηT (k − τ(k)) ωT (k) f̄T (η(k)) ḡT (η(k − τ(k)))],

Θ =


Θ11 ĀT P̄ Ād ĀT P̄ B̄ ĀT P̄ Ḡ− µ1F̄2 ĀT P̄ H̄
∗ Θ22 ĀTd P̄ B̄ ĀTd P̄ Ḡ ĀTd P̄ H̄ − µ2Ū2

∗ ∗ B̄T P̄ B̄ B̄T P̄ Ḡ B̄T P̄ H̄
∗ ∗ ∗ −µ1I + ḠT P̄ Ḡ ḠT P̄ H̄
∗ ∗ ∗ ∗ −µ2I + H̄T P̄ H̄

 ,
Θ11 = τ̄ R̄− P̄ + ĀT P̄ Ā− µ1F̄1,
Θ22 = −R̄− µ2Ū1 + ĀTd P̄ Ād,
τ̄ = τM − τm + 1.

Let

J(z(k), ω(k)) = γωT (k)ω(k)− γ−1zT (k)z(k).

We have

∆V (k)− J(z(k), ω(k)) ≤ ζT (k)Θ̃ζ(k),

where

Θ̃ =


Π11 Π12 ĀT P̄ B̄ + γ−1N̄T

1 N̄2 ĀT P̄ Ḡ− µ1F̄2 ĀT P̄ H̄
∗ Π22 ĀTd P̄ B̄ + γ−1N̄T

3 N̄2 ĀTd P̄ Ḡ ĀTd P̄ H̄ − µ2Ū2

∗ ∗ B̄T P̄ B̄ + γ−1N̄T
2 N̄2 − γI B̄T P̄ Ḡ B̄T P̄ H̄

∗ ∗ ∗ −µ1I + ḠT P̄ Ḡ ḠT P̄ H̄
∗ ∗ ∗ ∗ −µ2I + H̄T P̄ H̄

 ,
Π11 = (τM − τm + 1)R̄− P̄ + ĀT P̄ Ā− µ1F̄1 + γ−1N̄T

1 N̄1,
Π12 = ĀT P̄ Ād + γ−1N̄T

1 N̄3,
Π22 = −R̄− µ2Ū1 + ĀTd P̄ Ād + γ−1N̄T

3 N̄3.

It follows that Θ̃ < 0 imply that

∆V (k)− J(z(k), ω(k)) ≤ 0.
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Applying Schur complement, we have that Θ̃ < 0 if and only if

Σ =



τ̄ R̄− P̄ − µ1F̄1 0 0 −µ1F̄2 0 ĀT P̄ N̄T
1

∗ −R̄− µ2Ū1 0 0 −µ2Ū2 ĀTd P̄ N̄T
3

∗ ∗ −γI 0 0 B̄T P̄ N̄T
2

∗ ∗ ∗ −µ1I 0 ḠT P̄ 0
∗ ∗ ∗ ∗ −µ2I H̄T P̄ 0
∗ ∗ ∗ ∗ ∗ −P̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI


< 0.

Σ can be written as
Σ = Σ1 + Σ2,

where

Σ1 =



τ̄ R̄− P̄ − µ1F̄1 0 0 −µ1F̄2 0 ĂT P̄ N̄T
1

∗ −R̄− µ2Ū1 0 0 −µ2Ū2 ĂTd P̄ N̄T
3

∗ ∗ −γI 0 0 B̆T P̄ N̄T
2

∗ ∗ ∗ −µ1I 0 ḠT P̄ 0
∗ ∗ ∗ ∗ −µ2I H̄T P̄ 0
∗ ∗ ∗ ∗ ∗ −P̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI


,

Σ2 =



0 0 0 0 0 ∆ĀT P̄ 0
∗ 0 0 0 0 ∆ĀTd P̄ 0
∗ ∗ 0 0 0 ∆B̄T P̄ 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


= Ψ1Y (k)O +OTY T (k)ΨT

1 ,

Ψ1 = [0 0 0 0 0 (P̄ Γ̄)T 0]
T
,

O = [K̄a K̄d K̄b 0 0 0 0].

So, one has
Σ = Σ1 + Ψ1Y (k)O +OTY T (k)ΨT

1 .

We have that Σ < 0 is equivalent to

Ξ = Σ1 + ε−1Ψ1ΨT
1 + εOTO < 0. (15)

Applying Schur complement, it follows that Ξ < 0 if and only if

Σ̄ =



Σ̄11 0 0 −µ1F̄2 0 ĂT P̄ N̄T
1 0 K̄T

a

∗ −R̄− µ2Ū1 0 0 −µ2Ū2 ĂTd P̄ N̄T
3 0 K̄T

d

∗ ∗ −γI 0 0 B̆T P̄ N̄T
2 0 K̄T

b

∗ ∗ ∗ −µ1I 0 ḠT P̄ 0 0 0
∗ ∗ ∗ ∗ −µ2I H̄T P̄ 0 0 0
∗ ∗ ∗ ∗ ∗ −P̄ 0 P̄ Γ̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1I


< 0,

(16)
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where Σ̄11 = τ̄ R̄− P̄ − µ1F̄1.
It follows from (9) that Ξ < 0. So, we get that

∆V (k)− γωT (k)ω(k) + γ−1z̄T (k)z̄(k) < 0.

Then
∆V (k)− γωT (k)ω(k) < 0. (17)

One has

V (k) < V (0) +
k−1∑
l=0

γωT (l)ω(l).

From (4), we get that
V (k) < V (0) + γd2. (18)

From (11), we obtain

V (k) ≥ ηT (k)R1/2R−1/2P̄R−1/2R1/2η(k). (19)

One has

V (0) ≤ λmax(H1)ηT (0)Rη(0) + λmax(H2)
−1∑

j=−τM
ηT (j)Rη(j)

+λmax(H2)
−τm−1∑
i=−τM

−1∑
j=−1+i

ηT (j)Rη(j)

≤ γ1[λmax(H1) + (τM + (τM + τm − 1)(τM − τm)/2)λmax(H2)],

(20)

where H1 = R−1/2P̄R−1/2, H2 = R−1/2R̄R−1/2.
From (18) – (20), one obtains

λmin(H1)ηT (k)Rη(k) ≤ V (k)
< γ1[λmax(H1) + (τM + (τM + τm − 1)(τM − τm)/2)λmax(H2)] + γd2

< γ2λmin(H1).

So, from (10), we have

ηT (k)Rη(k) < 1
λmin(H1)

{γ1[λmax(H1) + (τM + (τM + τm − 1)(τM − τm)/2)

×λmax(H2)] + γd2}
< γ2.

Thus, the system (7) is finite-time bounded via observer-based control with respect to
(γ1, γ2, d, R,M).

Under the zero-initial condition, one obtains

M∑
k=0

∆V (k) = V (M + 1)− V (0) > 0.

One has

M∑
l=0

(γωT (l)ω(l)− γ−1zT (l)z(l)) ≥ 0⇒
M∑
l=0

zT (l)z(l) ≤
M∑
l=0

γ2ωT (l)ω(l),
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which means that the system (7) is H∞ finite-time bounded via observer-based control
with respect to (γ1, γ2, d, R,M, γ). This completes the proof of the theorem. �

Next, sufficient conditions which guarantee time-delay system (7) is H∞ observer-
based finite-time bounded via observer-based control are proposed, and the controller
gain and observer gain are given.

Theorem 2. For given integers 0 < τm ≤ τM , the closed-loop system (7) is H∞ finite-
time bounded via observer-based control with respect to (γ1, γ2, d, R,M, γ), if there
exist matrices 0 < X = diag(X1, X2) ∈ R2n×2n, 0 < Z ∈ R2n×2n, and positive scalars
µ1, µ2, ε, and any matrix K̄, L̄ such that the following conditions hold:

Π11 0 0 −µ1XF̄2 0 Π16 XN̄T
1 0 XK̄T

a

∗ Π22 0 0 −µ2XŪ2 XĂTd XN̄T
3 0 XK̄T

d

∗ ∗ −γI 0 0 B̆T N̄T
2 0 K̄T

b

∗ ∗ ∗ −µ1I 0 ḠT 0 0 0
∗ ∗ ∗ ∗ −µ2I H̄T 0 0 0
∗ ∗ ∗ ∗ ∗ −X 0 Γ̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1I


< 0,

(21)

γ1[λmax(H1) + (τM + (τM + τm − 1)(τM − τm)/2)λmax(H2) + γd2] < γ2λmin(H1),
(22)

X1C
T = CT X̆1, (23)

where

Π11 = τ̄Z −X + µ1(F̄−T1 − 2X), Π22 = −Z + µ2(Ū−T1 − 2X),

Π16 =

[
X1A

T + K̄DT 0
−K̄DT X1A

T − CT L̄

]
, Ăd =

[
Ad 0
0 Ad

]
, Ḡ =

[
G 0
0 G

]
,

H̄ =

[
H 0
0 H

]
, B̆ =

[
B
B

]
, N̄1 = [N1 0], N̄3 = [N3 0],

F̄1 = I ⊗ [(FT1 F2 + FT2 F1)/2], F̄2 = −I ⊗ [(F1 + F2)/2],
Ū1 = I ⊗ [(UT1 U2 + UT2 U1)/2], Ū2 = −I ⊗ [(U1 + U2)/2],
τ̄ = τM − τm + 1, K̄a = [Ka 0], K̄d = [Kd 0],
H1 = R−1/2X−1R−1/2, H2 = R−1/2R̄R−1/2, Z = XR̄X.

Furthermore, if the conditions (21)-(23) have feasible solutions, the controller gain K
and observer gain L can be given by

K = K̄TX−11 , L = L̄T X̆−T1 .

P r o o f . Let Φ = diag(P̄−1, P̄−1, I, I, I, P̄−1, I, I, I), X = P̄−1. Pre- and post-multiplying
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(9) by ΦT and Φ, we have

Σ̂ =



Σ̂11 0 0 −µ1XF̄2 0 XĂT XN̄T
1 0 XK̄T

a

∗ Σ̂22 0 0 −µ2XŪ2 XĂTd XN̄T
3 0 XK̄T

d

∗ ∗ −γI 0 0 B̆T N̄T
2 0 K̄T

b

∗ ∗ ∗ −µ1I 0 ḠT 0 0 0
∗ ∗ ∗ ∗ −µ2I H̄T 0 0 0
∗ ∗ ∗ ∗ ∗ −X 0 Γ̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1I


< 0,

(24)
where

Σ̂11 = τ̄XR̄X −X − µ1XF̄1X,

Σ̂22 = −XR̄X − µ2XŪ1X.

Since
−µ1XF̄1X ≤ µ1(F̄−T1 − 2X),

−µ2XŪ1X ≤ µ2(Ū−T1 − 2X),
(25)

then Σ̂ < 0 if

Σ̂1 =



Σ̂11 0 0 −µ1XF̄2 0 XĂT XN̄T
1 0 XK̄T

a

∗ Σ̂22 0 0 −µ2XŪ2 XĂTd XN̄T
3 0 XK̄T

d

∗ ∗ −γI 0 0 B̆T N̄T
2 0 K̄T

b

∗ ∗ ∗ −µ1I 0 ḠT 0 0 0
∗ ∗ ∗ ∗ −µ2I H̄T 0 0 0
∗ ∗ ∗ ∗ ∗ −X 0 Γ̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1I


< 0,

where
Σ̂11 = τ̄Z −X + µ1(F̄−T1 − 2X),

Σ̂22 = −Z + µ2(Ū−T1 − 2X), Z = XR̄X.

Let X1 = P−1, K̄ = X1K
T , L̄ = X̆1L

T . From (21) and (23), we get that Σ̄ < 0. So,
according to Theorem 1, the system (7) is H∞ finite-time bounded via observer-based
control with respect to (γ1, γ2, d, R,M, γ). This completes the proof of the theorem.

�

Consider system (1) with f(x(k)) = 0, g(x(k−τ(k))) = 0, then the closed-loop system
(7) can be written as

η(k + 1) = Āη(k) + Ādη(k − τ(k)) + B̄ω(k),
z(k) = N̄1η(k) + N̄3η(k − τ(k)) +N2ω(k).

(26)
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Theorem 3. For given integers 0 < τm ≤ τM , the system (26) is H∞ finite-time
bounded via observer-based control with respect to (γ1, γ2, d, R,M, γ), if there exist
matrices 0 < X = diag(X1, X1) ∈ R2n×2n, 0 < Z ∈ R2n×2n, and a scalar ε > 0, and any
matrix K̄ and L̄ such that (22),(23) and the following conditions hold:

τ̄Z −X 0 0 Π14 XN̄T
1 0 XK̄T

a

∗ −Z 0 XĂTd XN̄T
3 0 XK̄T

d

∗ ∗ −γI B̆T NT
2 0 K̄T

b

∗ ∗ ∗ −X 0 Γ̄ 0
∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −ε−1I


< 0, (27)

where

Π14 =

[
X1A

T + K̄DT 0
−K̄DT X1A

T − CT L̄

]
, Ăd =

[
Ad 0
0 Ad

]
, B̆ =

[
B
B

]
,

N̄1 = [N1 0], N̄3 = [N3 0],
τ̄ = τM − τm + 1, K̄a = [Ka 0], K̄d = [Kd 0],
H1 = R−1/2X−1R−1/2, H2 = R−1/2R̄R−1/2, Z = XR̄X.

Furthermore, if the conditions (22),(23) and (27) have feasible solutions, the controller
gain K and observer gain L can be given by

K = K̄TX−11 , L = L̄T X̆−T1 .

P r o o f . The proof is similar to that for Theorem 1 and is omitted here. �

Consider the following system

x(k + 1) = Ax(k) +Adx(k − τ(k)) +Du(k) +Gf(x(k)) +Hg(x(k − τ(k))) +Bω(k),
y(k) = Cx(k),
z(k) = N1x(k) +N3x(k − τ(k)) +N2ω(k),
x(θ) = ϕ(θ), θ = −τM ,−τM + 1, . . . , 0.

(28)
We construct an observer-based controller for system (28) of the following form

x̂(k + 1) = Ax̂(k) +Adx̂(k − τ(k)) +Du(k) + L(y − Cx̂(k)) +Gf(x̂(k))
+Hg(x̂(k − τ(k))),

u(k) = Kx̂(k).
(29)

Let η(k) = [xT (k) eT (k)]
T
, then by (28) and (29), we get the closed-loop system as

follows:

η(k + 1) = Ăη(k) + Ădη(k − τ(k)) + B̆ω(k) + Ḡf̄(η(k)) + H̄ḡ(η(k − τ(k))),
z(k) = N̄1η(k) + N̄3η(k − τ(k)) +N2ω(k).

(30)
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Theorem 4. For given integers 0 < τm ≤ τM , the system (30) is H∞ finite-time
bounded via observer-based control with respect to (γ1, γ2, d, R,M, γ), if there exist
scalars µ1 > 0, µ2 > 0, matrices 0 < X = diag(X1, X1) ∈ R2n×2n, 0 < Z ∈ R2n×2n, and
any matrix K̄ and L̄ such that (22),(23) and the following conditions hold:

Π̂11 0 0 −µ1XF̄2 0 Π16 XN̄T
1

∗ −Z + µ2(U−T1 − 2X) 0 0 −µ2XŪ2 XĂTd XN̄T
3

∗ ∗ −γI 0 0 B̆T NT
2

∗ ∗ ∗ −µ1I 0 ḠT 0
∗ ∗ ∗ ∗ −µ2I H̄T 0
∗ ∗ ∗ ∗ ∗ −X 0
∗ ∗ ∗ ∗ ∗ ∗ −γI


< 0,

(31)
where

Π̂11 = τ̄Z −X + µ1(F̄−T1 − 2X),

Π16 =

[
X1A

T + K̄DT 0
−K̄DT X1A

T − CT L̄

]
, Ăd =

[
Ad 0
0 Ad

]
, Ḡ =

[
G 0
0 G

]
,

H̄ =

[
H 0
0 H

]
, B̆ =

[
B
B

]
, N̄1 = [N1 0], N̄3 = [N3 0],

F̄1 = I ⊗ [(FT1 F2 + FT2 F1)/2], F̄2 = −I ⊗ [(F1 + F2)/2],
Ū1 = I ⊗ [(UT1 U2 + UT2 U1)/2], Ū2 = −I ⊗ [(U1 + U2)/2],
τ̄ = τM − τm + 1, H1 = R−1/2X−1R−1/2,
H2 = R−1/2R̄R−1/2, Z = XR̄X.

Furthermore, if the conditions (22),(23) and (31) have feasible solutions, the controller
gain K and observer gain L can be given by

K = K̄TX−11 , L = L̄T X̆−T1 .

P r o o f . The proof is similar to that for Theorem 1 and is omitted here. �

4. NUMERICAL EXAMPLE

Consider the system (1) with the following parameters:

A =

[
−0.2 0.01
0.01 −0.3

]
, Ad =

[
−0.1 −0.01
0.01 −0.2

]
, B =

[
0.1 0.1
0.2 −0.1

]
,

C =

[
0.2 0
0 0.2

]
, G =

[
0.01 0

0 −0.2

]
, H =

[
−0.2 0

0 0.1

]
,

D =

[
0.3 0.1
0.1 −0.1

]
, Γ =

[
−0.1 0.1

0 0.2

]
, N1 =

[
0.02 0
0.01 −0.03

]
,

N2 =

[
0.1 0
0.01 −0.02

]
, N3 =

[
0 0
0 0

]
, R =

[
1 0
0 1

]
,

Ka =

[
−0.05 0
0.01 −0.02

]
, Kd =

[
0.01 0.01

0 0.01

]
, Kb =

[
−0.02 0.03

0 0.01

]
,
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τM = 3, τm = 1, γ = 0.4, d = 4, µ1 = 0.01, µ2 = 0.02, τ(k) = 2 + sin(kπ2 ),

f(x) =

[
0.5x1 + 0.1 sin(x1)
0.3x2 + 0.1 sin(x2)

]
, ω(k) =

[
0.1 sin(k)
0.2 sin(k)

]
, F1 =

[
0.6 0
0 0.4

]
,

F2 =

[
0.4 0
0 0.2

]
, g(x) =

[
0.4x1 + 0.2 sin(x1)
0.3x2 + 0.2 sin(x2)

]
,

U1 =

[
0.6 0
0 0.5

]
, U2 =

[
0.2 0
0 0.1

]
.

By using Matlab LMI control Toolbox to solve inequalities (21) and (22), we get

X =

[
X1 0
0 X1

]
=


62.3540 4.3215 0 0
4.3215 85.7378 0 0

0 0 62.3540 4.3215
0 0 4.3215 85.7378

 ,

Z =

[
Z1 0
0 Z2

]
=


14.6949 1.9785 0 0
1.9785 19.9356 0 0

0 0 14.6751 1.3906
0 0 1.3906 21.0228

 ,
K̄ =

[
12.1045 28.7151
28.7151 −98.1268

]
, L̄ =

[
−63.0796 −0.1727
−0.1727 −130.0344

]
,

γ2 = 6.41, ε = 226.0842.

The controller gain K and observer gain L are

K =

[
0.1715 0.3263
0.5417 −1.1718

]
, L =

[
−1.0150 0.0491
0.1027 −1.5218

]
.

According to Theorem 2, the system (1) is H∞ finite-time stabilization with respect to
(γ1, γ2, d, R,M, γ) under the observer-based control (5). Figure 1 and 2 show the states
and estimate states of the closed-loop system. From Figure 1 and 2, it is easy to see
that the closed-loop system is finite-time bounded.
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Fig. 1. The trajectories of x1(k), x̂1(k) and e1(k).
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Fig. 2. The trajectories of x2(k), x̂2(k) and e2(k).

Remark 1. In [2], the finite-time stabilization of linear systems was dealt. Amato et
al.[1] dealt with the finite-time boundedness (FTB) of linear time-varying systems. How-
ever, in [2, 22], the nonlinear system was not considered. In this paper, we investigated
the finite-time boundedness of nonlinear system with H∞ performance.

Remark 2. In [22], the problem of finite-time stability for linear discrete-time systems
with time-varying delay was considered and the state feedback control was used. The
availability of all the state variables for direct measurement is a rare occasion in practice.
In most cases, a reliable estimation of the unmeasurable state variables is needed. In
this paper, we given the state observer, and design the observer-based finite-time H∞
control to guarantee the closed-loop system is H∞ finite-time bounded. Compared with
[22], our design has a wider application range.

5. CONCLUSION

Observer-based finite-time H∞ control for the uncertain discrete-time systems with non-
linear perturbations and time-varying delay is investigated in this paper. By constructing
the Lyapunov–Krasovskii functional and using the matrix inequality technique, we estab-
lish the sufficient conditions in terms of matrix inequalities to guarantee that the result-
ing closed-loop system is H∞ finite-time bounded via observer-based control. We design
the observer-based control to ensure that the resulting closed-loop system is observer-
based H∞ finite-time bounded. Finally, a numerical example is given to demonstrate
the validity of the proposed results. How to extend the main results to the discrete
nonlinear switched systems with time-varying delay and the singular discrete nonlin-
ear systems with interval time-varying delay, are very meaningful topics that deserves
further exploration.
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