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SOFT VARIABLE STRUCTURE CONTROL
IN TIME-DELAY SYSTEMS WITH SATURATING INPUT

Przemys law Ignaciuk

In order to achieve a short regulation cycle, time-optimal control has been considered in the
past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the
practical systems, have incited other research directions to meet this objective. In this paper,
soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay
systems with input constraint. The desired fast convergence under a smoothly varying control
signal is obtained. The stability issues originating from the non-negligible delay are addressed
explicitly by incorporating a dead-time compensator, applicable to both structurally stable and
unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated
analytically and compared with the linear and saturating control structures.

Keywords: soft Variable Structure Control, nonlinear control, time-delay systems, delay
compensation

Classification: 93B12, 93C10, 93B52, 93A14

1. INTRODUCTION

Faced by the limitations of static architectures, dynamic controllers with explicit adapt-
ability characteristics can be used to respond to changeable operational conditions [37].
Moreover, a properly managed cooperation of two or more control structures in fulfilling
the principal objective of stability may result in new, opportune properties even when
the environmental setting does not require adjustment of the applied control scheme. As
an example, one can consider two otherwise unstable systems that, when coordinated
by a prudently selected switching strategy, besides ensuring convergence to equilibrium,
provide the uncertainty resilience in thus formed Variable Structure Control (VSC) sys-
tem [40]. Depending on the design requirements, the emphasis is placed on different
aspects and eventual properties of the constructed control system [26].

When the robustness is a priority (with the quality of the generated control signal a
secondary objective), a popular approach is to introduce a high-gain switching element
and create a sliding-mode system. Even though physical limitations do not permit
achieving the ideal sliding mode, a high degree of robustness can be achieved [9, 13, 26,
38]. However, one needs to take special precautions to avoid the detrimental impact
of chattering (switching-induced high-rate fluctuations) that may result prohibitive in
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the practical applications [21, 1], especially, in the presence of delay [36]. When a
smooth control action is of primary importance, a different class of VSC systems may be
considered – soft VSC systems [2]. By continuous adjustment of the control structure
to the current system state, soft VSC allows one to achieve a high regulatory rate,
approaching the ideal of the time-optimal controllers. Unlike sliding-mode control that
relies on the infinitely fast switching between a finite number of control structures, soft
VSC flexibly engages new structures from an infinite pool to attain fast convergence to
equilibrium. The input signal varies smoothly within the range permitted by constraints,
which is particularly well suited for mechanical systems where abrupt changes of the
control input inflict unnecessary stress and wear of the constituent components [24].

2. RELATED WORK AND CONTRIBUTION

The concept of soft VSC and the initial designs are well documented in an excellent
review paper [2]. Later works extended the fundamental ideas to saturating implicit
VSC [22], systems with simultaneous amplitude and rate constrained inputs [19], singular
[23, 25, 41], fractional-order [17], and sampled-data [14] systems. The robustness issues
were also briefly addressed in [4] and [16]. However, all those works assume that the
control action can be exerted on the plant immediately, i. e., without any latency or
time lag in the control channel. Motivated by their importance in many application
areas, e. g., networked structures [8, 12, 15, 27, 30], biological [39], mechanical [42], and
energy [43] systems, inventory and process control [10, 11, 31, 35], remote regulation and
sensing [6, 29, 44], in this paper, the possibility of using soft VSC in the systems with
non-negligible delay is investigated. In order to overcome the potentially destabilizing
effect of the delay in the feedback loop, a dead-time compensator is incorporated. The
compensator, applicable to both stable and unstable plants, mitigates the effects of
information transfer latency despite, nonlinear by nature, control structure adjustments.
The fundamental properties of thus formed compensator-based soft VSC system are
formally proved. The desired smoothness of the generated input signal and improved
convergence rate over linear control are achieved. The theoretical content is illustrated
by numerical experiments incorporating a benchmark, yet challenging for time-delay
control, open-loop unstable object [32].

The paper is organized in the following way. The model of the considered class of
systems and soft VSC fundamental concepts are introduced in Section 3. The design
procedure of soft VSC for the systems with non-negligible input-output delay is presented
in Section 4. That section covers the stability, convergence, and robustness issues,
addressed with an explicit account of the input saturation constraint. The analysis
concludes with practical tuning guidelines. The results of simulation experiments are
discussed in Section 5. The paper summary and final remarks are provided in Section 6.

Notation. The set of real numbers is denoted by R and positive reals by R+. Vectors
(lower case) and matrices (capital letters) are written in bold face. Rn represents the
space of n-dimensional real vectors, and Rn×m the space of n ×m real matrices. [·]T
denotes the transpose.
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3. PRELIMINARIES

3.1. System model

Consider the system with delayed input

ẋ = Ax(t) + bu(t− τ), (1)

where x ∈ Rn is the state vector, u ∈ R is the control input, A ∈ Rn×n and b ∈ Rn for
n ∈ N+, t is a continuous variable denoting the evolution of time and τ≥0 represents
the delay. The pair (A, b) is assumed controllable. The initial state x0 = x(0) belongs
to a bounded set X0,

x0 ∈ X0, (2)

and the initial input
u(t) = ψ(t) for t ∈ [−τ, 0). (3)

The control signal is supposed to obey the constraint

|u| ≤ u0, u0 > 0. (4)

It is assumed that the control system is feasible, i. e., one can establish control satisfying
(4) such that under initial input (3) any x0 ∈ X0 can be brought to zero despite the
non-negligible time delay in the input channel. Equivalently, one may consider only a
(nonempty) set of points X0 and initial inputs (3) for which control system (1)–(3) can
be stabilized under constraint (4). Equations (1)–(4) represent a typical class of systems
considered in the soft VSC designs [2], with the exception of the retarded argument. In
a latter part of the paper, it will be discussed how the presence of delay influences the
design choices for the dynamic soft VSC system and its closed-loop behavior.

3.2. Soft VSC - fundamental concepts

If a linear controller u(t) = −gTx(t) with a fixed gain g ∈ Rn is used to steer system
(1), the convergence rate to the origin decreases as ||x||, with ||·|| denoting the Euclidean
norm, diminishes. The transient time can be reduced by using nonlinear control, ideally,
time-optimal performance can be achieved. Unfortunately, despite significant effort in
the past [5] and recent achievements [3, 18], a time-optimal control law is difficult to
synthesize and implement. The time-optimal control system is also susceptible to uncer-
tainty (even small numerical errors can render it unstable). Moreover, the requirement
to shift the input signal instantaneously from one extremity of permitted interval to an-
other, can exert excessive stress on the physical components of a practical system thus
reducing the time of failure-free operation.

Soft VSC attempts to combine the benefits of a smooth input established by the linear
controllers and fast convergence of the time-optimal ones by a continuous adjustment of
the control structure (Figure 1). The idea is to change the dynamics of the fundamental
(typically linear) controller through flexible operation of a nonlinear switching rule so
that high regulatory rate is maintained throughout the whole control cycle of bringing x0

to zero. In the systems with input delay, however, the decisions taken by the controller,
which may be situated in a remote location [29], do not influence directly the plant
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behavior. Therefore, since the control structure adjustments can impact the system
state only after certain time elapses, special considerations are needed to guarantee the
stability and maintain the desired objectives of soft VSC, beyond those associated with
sampling and information processing latency [14].

Plant
xu

u1 = –g1
T
x

p = f(x)

Switch

up = –gp
Tx

um = –gm
Tx

Switching 
logic

Fig. 1. Multi-controller VSC system.

4. DYNAMIC SOFT VSC FOR TIME-DELAY SYSTEMS

The section begins with introducing the fundamental control configuration incorporating
a dead-time compensator. Next, the structure is extended to cover the saturation effects
and analyzed from the perspective of stability, convergence, and robustness.

4.1. Soft VS controller

The following type of control is investigated:

u(t) = −gT (t)z(t), (5)

where g(t) ∈ Rn is a time-varying control gain and z(t) ∈ Rn reflects the system state.
Function g(t) is defined as

g(t) = g1 + s(t)g2, (6)

g1, g2∈Rn are fixed gains and s(t)∈R is a time-dependent selection variable.
In order to achieve good response speed despite the presence of delay a compensator

of the form

z(t) = eAτx(t) +

t∫
t−τ

eA(t−η)bu(η) dη (7)
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is incorporated. It extends the classical Smith predictor to the case of structurally
unstable plants [20].

Differentiating the terms on both sides of the equality sign in (7), one obtains

ż = eAτ ẋ + A

t∫
t−τ

eA(t−η)bu(η) dη + bu(t)− eAτbu(t− τ). (8)

With (1) and (7) applied, (8) reduces to

ż = Az(t) + bu(t). (9)

Therefore, by using transformation (7), a delay-free system with respect to variable
z is obtained. Note that under finite-value control,

x(t) = e−Aτz(t)−
t∫

t−τ

eA(t−τ−η)bu(η) dη (10)

is finite for finite z, so stability of (9) implies stability of (1) in the sense of Lyapunov.
From the perspective of maintaining stability, the VSC design procedure that amounts
to choosing gains g1,g2, and selection variable s(t) can thus be performed equivalently
in state space (9). However, the delay will impact the closed-loop characteristics (the
degree of overshoots, the amplitude of oscillating waveforms, etc.) with respect to plant
state x, especially in the presence of uncertainty. Appropriate tuning guidelines will be
provided.

The closed-loop system under control (5) becomes

ż = [A− bgT1 − s(t)bg
T
2 ]z(t) = [A1 − s(t)bgT2 ]z(t). (11)

Gain g1 is to be chosen so that matrix A1 = A−bgT1 is Hurwitz. Moreover, the overall
system is required to have a single (asymptotically) stable equilibrium point[

z
s

]
=

[
0
0

]
. (12)

Soft VSC system with dead-time compensator (7) has been illustrated in Figure 2.

4.1.1. Choosing selection variable

A choice of selection variable s(t) so that (12) is the unique stable equilibrium for system
(9) is given in the following theorem.

Theorem 4.1. If there exist positive definite matrices P, Q∈Rn×n satisfying

AT
1 PA1 −P = −Q, (13)

for A1 = A− bgT1 , and the selection variable evolves as

ṡ =
1

q
[zTPbgT2 z− s · w(s, z)] (14)

with q∈R+ and w(s, z) ∈ R+, then (12) is the stable equilibrium of system (11).
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Fig. 2. Dynamic soft VSC with dead-time compensator for systems

with input-output delay.

P r o o f . Let us consider the Lyapunov function candidate of the form

V (t) = zT (t)Pz(t) + qs2(t), (15)

where P ∈ Rn×n is a positive definite matrix and q is a positive constant. Since P
is positive definite and q > 0, V (t) > 0 for t > 0 and V (t) = 0 at equilibrium (12).
Therefore, in order for (15) to be a Lyapunov function for system (11), the derivative

V̇ = żTPz + zTPż + 2qsṡ (16)

along the state trajectory needs to be negative.
Using (11) in (16) yields

V̇ = zT (AT
1 P + PA1)z− szT (g2b

TP + PbgT2 )z + 2qsṡ

= zT (AT
1 P + PA1)z + 2s(qṡ− zTPbgT2 z). (17)

Having substituted (14) for ṡ in (17), one arrives at

V̇ = zT (AT
1 P + PA1)z− 2s2w(s, z). (18)

It follows from assumption (13) applied to (18) that

V̇ = −zTQz− 2s2w(s, z). (19)

Since Q is positive definite and w(s, z) > 0, V̇ < 0. Consequently, V (t) given by (15) is
a Lyapunov function for system (11), and the system is stable. �
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Remark 1. Note that for a Hurwitz matrix A1, whose eigenvalues can always be
placed in the open left-half plane by selecting a suitable gain vector g1 since the pair
(A,b) is controllable, one can find a positive definite solution of Lyapunov equation (13)
for arbitrary positive-definite Q. On the other hand, any choice of function w(s, z) > 0
makes V (t) a Lyapunov function for system (11). In the next section, a procedure for
selecting w(s, z) for u(t) obeying the constraint |u|≤u0 will be presented.

4.1.2. Design considerations for saturating input

Selection variable s(t) needs to be chosen in such a way that control constraint (4) is
satisfied at all time instants t. Directly from (5) and (6), condition (4) is met whenever

− u0 ≤ −[g1 + s(t)g2]
T
z ≤ u0, (20)

which can be rewritten as the pair of inequalities:

−u0 − gT1 z

gT2 z
≤ s(t) ≤ u0 − gT1 z

gT2 z
for gT2 z > 0,

u0 − gT1 z

gT2 z
≤ s(t) ≤ −u0 − gT1 z

gT2 z
for gT2 z < 0. (21)

When z approaches the equilibrium, the bounds expressed by (21) extend to infinity.
Therefore, s needs to be further constrained as

|s| ≤ s0, s0 > 0. (22)

Combining (21) and (22), one arrives at

sL(z) ≤ s(t) ≤ sU (z), (23)

where

sL (z) =


u0−gT

1 z

gT
2 z

, if gT2 z ≤
−u0+gT

1 z
s0

,

−s0, if
−u0+gT

1 z
s0

< gT2 z <
u0+gT

1 z
s0

,
−u0−gT

1 z

gT
2 z

, if gT2 z ≥
u0+gT

1 z
s0

,

(24)

and

sU (z) =


−u0−gT

1 z

gT
2 z

, if gT2 z ≤
−u0−gT

1 z
s0

,

s0, if
−u0−gT

1 z
s0

< gT2 z <
u0−gT

1 z
s0

,
u0−gT

1 z

gT
2 z

, if gT2 z ≥
u0−gT

1 z
s0

.

(25)

Theorem 4.2. If there exist positive definite matrices P and Q satisfying (13), then
selection strategy (14) with function w(s, z) chosen as

w (s, z) =


µ
(

1− sL(z)
s

)
+ µ0

sL(z)
s , if s ≤ sL (z) ,

µ0, if sL (z) < s < sU (z) ,

µ
(

1− sU (z)
s

)
+ µ0

sU (z)
s , if s ≥ sU (z) ,

(26)
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with µ > 1, 0 < µ0 < 1, sL(z) and sU (z) given by (24) and (25), respectively, ensures
closed-loop stability of system (11) under the input restricted by (4) for the feasible set
of initial conditions (2) and (3).

P r o o f . First note that for s0 > 0, sL < 0 and sU > 0. Consequently, choosing µ > 1
and 0 < µ0 < 1 in (26), yields w > 0. The conditions specified in Theorem 4.1 are thus
satisfied and system (11) is stable. It remains to be shown that w given by (26) does
result in |u|≤u0.

It follows from (20)–(22) that inequalities (23) imply |u|≤u0. On the other hand, for s
satisfying (23), w = µ0 > 0, and according to (14), it opposes the change of s. Since only
those initial conditions that yield a feasible control system realization are considered,
s evolving according to (14) does not fall outside the range sL(y)≤s(t)≤sU (y) for any
t≥0. �

Remark 2. Expression (26) represents an anti-windup mechanism for saturating s that
changes according to (14). The selection variable is effectively constrained to interval
(23) and, as a consequence, the control input |u|≤u0. The choice of slopes µ0 and µ
(depicted in Figure 3) is discussed in Section 4.4.

s

s w

μ 

μ0 

sU
sL

Fig. 3. Saturation function.

4.2. Convergence analysis

For the purpose of exposition, assume the initial plant state x0 6=0 and the initial input
ψ≡0, which yields z(0) = eAτx0 6=0. The state is to be driven to zero. For the selection
variable s(0) ≈ 0 one has s(0)w(0) ≈0 and |s| increasing according to (14) as

ṡ ≈ q−1zTPbgT2 z. (27)
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Since w > 0, a growing value of s results in faster decrease of Lyapunov function V
(relation (19)), and thus faster system convergence to equilibrium (12) than if a linear
controller were used (with s≡0).

On the other hand, as z approaches zero, ṡ ≈ −sw/q. Then, since q, w > 0, the
selection variable will vanish with time, leaving the system predominantly under the
influence of controller g1 which by design ensures asymptotic convergence. As z→0, so
does u = −gT1 z, and consequently x→0 (relation (10)).

4.3. Robustness issues

Consider the closed-loop system

ẏ = [A + ∆A− bgT1 − s(t)bg
T
2 ]z(t) = [Ã1 − s(t)bgT2 ]z(t), (28)

where ∆A is an unknown matrix representing the cumulative effect of system uncer-
tainty.

Lemma 4.3. Define Z = ZT > 0 and its square root Z = Z1/2(Z1/2)T . Then for any
scalar α > 0 and matrix X of appropriate dimensions

α−2Z + α2XTZ−1X ≥ X + XT . (29)

P r o o f . Since Z is positive definite, its inverse Z−1 does exist. On the other hand, for
any real matrix M one has MMT≥0. In particular, for M = α−1Z1/2−αXTZ−1/2 one
has (

α−1Z1/2 − αXTZ−1/2
) (
α−1Z1/2 − αXTZ−1/2

)T
=
(
α−1Z1/2 − αXTZ−1/2

) (
α−1

(
Z1/2

)T − α (Z−1/2
)T

X
)

= α−2Z + α2XTZ−1X−X−XT ≥ 0.

(30)

After the term rearrangement in (30), inequality (29) is obtained. �

Using Lemma 4.3, a condition allowing system (28) to preserve the stability under
perturbation ∆A will be specified.

Theorem 4.4. If there exist positive definite matrices P and Q satisfying (13), then
taking selection strategy (14) with function w(s, z) given by (26) ensures closed-loop
stability of system (28) if

(1− α−2)Q > α2∆ATPQ−1P∆A. (31)

P r o o f . Consider Lyapunov function candidate (15). In uncertain system (28), V = 0
at equilibrium and V > 0 for t > 0. Let us investigate the value of V̇ . Substituting (28)
into (16), yields

V̇ = zT (ÃT
1 P + PÃ1)z− 2s2w(p, z). (32)
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Since w(s, z) > 0, V̇ will be negative if

ÃT
1 P + PÃ1 < 0. (33)

On the other hand, equation (13) may be rewritten as

(A1 + ∆A)
T
P + P(A1 + ∆A) = −(Q−∆ATP−P∆A). (34)

Thus Ã1 = A1 + ∆A will remain an asymptotically stable matrix satisfying (33) if

Q̃ = Q−∆ATP−P∆A > 0. (35)

Invoking Lemma 4.3 with Z = Q and X = P∆A, gives

α−2Q + α2∆ATPQ−1P∆A ≥ ∆ATP + P∆A. (36)

Then, using assumption (31), one obtains

Q̃ ≥ Q− α−2Q− α2∆ATPQ−1P∆A > 0, (37)

which means that the system is stable. �

4.4. Design summary and parameter selection

The designed dynamic soft VSC system employs compensator (7), to counteract the neg-
ative effects of delay, and primary plant controller (5), that needs to ensure the desired
process dynamics according to the design specifications, e. g., settling time, maximum
overshoot, etc. The operation of the primary controller depends on the gains g1 and g2

and selection strategy s(t) defined by (14). The guidelines for choosing the controller
parameters are presented below in the form of a step-by-step tuning procedure.

Step 1: Obtain the future state estimate using compensator (7). While the distributed
delay term in (7) may pose implementation difficulties, in particular for unstable plants
[28], dedicated numerical methods allow one to circumvent the internal stability issues
[45]. In order to further alleviate the impact of modelling mismatch and perturbations
besides considerations given in Section 3.5, alternative compensator structures [33] and
uncertainty reduction methods [29] can be applied.

Step 2: Set gain g1 so that matrix A1 = A − bgT1 is Hurwitz and good closed-
loop performance, taking into account the quality requirements with respect to the
dynamic response, is achieved. It is also necessary to ensure that |gT1 z(0)|≤u0. In most
engineering designs one may assume the initial input ψ≡0, which translates the input
constraint to |gT

1 e−Aτx0|≤u0.

Step 3: Set gain g2. Plotting a root locus with variable s for ż = (A−bgT1 − sbgT2 )z
provides good indication on the choice of g2, as in a delay-free system. Usually, faster
performance for the controller (g1 + g2) than in the case of g1 acting alone is preferred.
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Step 4: Choose positive-definite matrix Q, e. g., an identity matrix, and determine P
as the solution to Lyapunov equation (13).

Step 5: Adjust the parameters of the selection variable: s0, µ, µ0, and q. s0 should be
chosen large (its sole purpose is to limit unchecked growth of s). Parameters µ and µ0

govern the behavior of anti-windup scheme (26): µ should be chosen large (steep slope)
for good efficiency near the saturation and µ0 small so that parasitic dynamics are not
injected into the linear region. Parameter q influences the decay rate of V. Usually,
a large positive value yields good performance, though running simulations for various
pairs (s, w) would point out a suitable setting.

5. NUMERICAL STUDY

The properties of the developed soft VSC are illustrated in a series of tests conducted
for a benchmark – inverted pendulum-on-a-cart system (Figure 4) – to be controlled
with non-zero input-output delay. With the parameters: mass of the cart M = 0.768
[kg], mass of the pole m = 0.064 [kg], moment of inertia around the center of gravity
0.002 [kg·m2], and distance between the pole gravity center and the shaft l/2 = 0.2 [m],
the linearized (open-loop unstable) plant dynamics can be represented as the 4th-order
system:

ẋ =


0 1 0 0
0 0 0.29 0
0 0 0 1
0 0 28 0

x(t) +


0

1.17
0

−3.43

up(t). (38)

The state is chosen as x = [y ẏ θ θ̇]T with y – the cart position and θ – the pole
angular position. The input up(t) is the driving force exerted on the cart. The initial
state x(0) = [0 0 π/6 0]T is to be brought to the origin by control u satisfying the
constraint

|u| ≤ u0, u0 = 15, (39)

despite the delay of τ = 0.4 s, i. e., up(t) = u(t−0.4). The initial input ψ(t)≡0. In order
to counteract the negative influence of delay (exceeding two times the plant dominant
time constant 0.189 s), compensator (7) is applied. For preserving the numerical stability
in the implementation of the distributed delay element, the technique advocated in [45]
is employed.

In the tests, three control strategies are compared, all taking the benefit of compen-
sator (7):

a) linear controller u(t) = −gT z(t) with the gain set as g = [1.99; 2.78; 23.15; 4.28]
(which corresponds to the closed-loop eigenvalues λ∗ = −2.86);

b) linear controller with saturation u(t) = −sat[gT z(t)] imposing directly constraint
(39); the controller gain is tuned according to the guidelines given in [7] for fast
transients as g = [12.19; 10.84; 47.75; 8.94];

c) dynamic soft VSC (5) with selection variable (14): the gains g1 = [1.99; 2.78; 23.15;
4.28] (closed-loop eigenvalues λ∗ = −2.86) and g1 = [94.05; 50.17; 138.6; 25.82]
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M

m
θ

up(t)

y(t)

l

Fig. 4. Pendulum-on-a-cart system.

(closed-loop eigenvalues λ∗ = −7.5), s0 = 100, q = 104, µ = 106, µ0 = 10−2,
Q = diag{100, 1, 100, 1}.

Test 1 – Nominal system. The input signal generated by the controllers is de-
picted in Figure 5, the cart displacement in Figure 6, and the pole angular position
in Figure 7. All three controllers make x0 vanish with time. As expected, the linear
controller exhibits the slowest convergence (4.89 s). The compensator-based soft VSC
shows improved convergence time (2.1 s) while avoiding clipping the input as is the case
of saturating control. The soft nonlinearity allows one to retain a smooth input signal
throughout the entire regulation cycle.

Test 2 – Uncertain delay. In the second series of simulations, the delay is estimated
incorrectly by the controllers. The true value remains the same as in Test 1, whereas
the one used to establish the compensator output either under-, or over-estimates the
actual value. As determined through multiple simulation runs, all three controllers
show sensitivity to delay mismatch. The least robust one occurs to be the saturating
controller, which indicates a need to reduce its responsiveness. The performance of the
linear and soft VSC schemes degrades gracefully, as shown in the plots in Figs. 8–11 for
the case of 0.02 s (under-estimate) and 0.06 s (over-estimate) of the actual delay 0.04 s.
A similar outcome is observed for the delay exhibiting small temporal variations around
the estimate. In a practical implementation, the resilience to delay mismatches could
be enhanced, e. g., by using information processing techniques [29].

Test 3 – Perturbed system. In the third series of simulations, the perturbation
of the form

d(t) = 0.3 sin[t(x(t) + x(t− τ))] (40)

is introduced at the plant input (illustrated in Figure 12 for the linear system). Pertur-
bation (40) affects all state variables.
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Fig. 5. Control input.

Fig. 6. Cart position.

Fig. 7. Pole angle.
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Fig. 8. Control input – actual delay 0.04 s, estimate 0.02 s.

Fig. 9. Pole angle – actual delay 0.04 s, estimate 0.02 s.

Fig. 10. Control input – actual delay 0.04 s, estimate 0.06 s.
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Fig. 11. Pole angle – actual delay 0.04 s, estimate 0.06 s.

Fig. 12. Perturbation profile (linear system).

Fig. 13. Control input – perturbed system.
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Fig. 14. Cart position – perturbed system.

Fig. 15. Pole angle – perturbed system.



252 P. IGNACIUK

The input signal generated by the controllers is sketched in Figure 13, the cart dis-
placement in Figure 14, and the pole angular position in Figure 15. Convergence to the
origin is no longer guaranteed, yet bounded stability is achieved. The linear controller
results the least sensitive one to the slowly-varying disturbance (for t < 8 s). The sat-
urating controller enters into an oscillatory mode, which persists throughout the entire
simulation interval. The soft VSC shows a similar degree of robustness as the linear
controller with a smaller amplitude of oscillations, yet an increased frequency for the
highly fluctuating disturbance (for t > 8 s). Nevertheless, the soft nonlinearity allows
one to retain a smooth input signal at all times.

6. CONCLUSIONS

The paper elaborates on the perspectives of applying soft VSC in the settings with input
delay, e. g., in remote regulation and steering applications. In order to tackle the issues
related to non-negligible loop delay, a dead-time compensator has been incorporated into
the control structure. Stability conditions have been formally established and robust-
ness issues discussed. Moreover, guidelines for the control gain selection and dynamics
adjustment have been given.

It has been shown that the proposed control structure is suitable for the application
in the systems involving delayed input channels. It follows from the conducted tests
that the designed nonlinear controller provides faster convergence to equilibrium than
the linear strategy and improved robustness over saturating control, at the same time
retaining a smooth input signal. The price to pay is a more complex structure to be im-
plemented, involving two sub-controllers and a selection variable. However, indications
for parameter selection within well-established tuning techniques have been provided.

The properties of the designed control system are demonstrated formally for the
constant delay case. However, as shown in the simulation experiments, the soft VSC can
maintain stability also under delay mismatch. It follows from the conducted tests that
while each evaluated controller is sensitive to delay uncertainty, unlike the saturating
control, the performance of the soft VSC scheme degrades gracefully. Still though, the
formal analysis of the impact of delay variations, as well as modeling inaccuracies and
structural uncertainty, need to be performed separately, e. g., by adopting the approach
from [34].

(Received October 27, 2019)
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