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CONSTRAINED OPTIMALITY PROBLEM OF MARKOV
DECISION PROCESSES WITH BOREL SPACES
AND VARYING DISCOUNT FACTORS

Xiao Wu and Yanqiu Tang

This paper focuses on the constrained optimality of discrete-time Markov decision processes
(DTMDPs) with state-dependent discount factors, Borel state and compact Borel action spaces,
and possibly unbounded costs. By means of the properties of so-called occupation measures of
policies and the technique of transforming the original constrained optimality problem of DT-
MDPs into a convex program one, we prove the existence of an optimal randomized stationary
policies under reasonable conditions.

Keywords: constrained optimality problem, discrete-time Markov decision processes,
Borel state and action spaces, varying discount factors, unbounded costs

Classification: 90C40, 60J27

1. INTRODUCTION

This paper attempts to study the constrained optimality problem of discrete-time Markov
decision processes (DTMDPs) with varying (state-dependent) discount factors, Borel
state and compact Borel action spaces, and possibly unbounded costs functions from
above and below.

As is well known, more and more researchers focus on the discounted DTMDPs, such
as [1, 2, 10, 11], which share a common feature: the discount factor is a constant. For
a general case of varying discount factors, [6] studies the non-stationary DTMDPs with
the time- and state-dependent discount factors and proves the existence of an optimal
Markov policies under suitable conditions, [19] deals with unconstrained DTMDPs with
state-dependent discount factors and unbounded rewards/costs and also proves the ex-
istence of optimal stationary policies. Recently, [20] considers the discounted DTMDPs
in Borel state and compact action spaces with state-dependent discount factors and
unbounded rewards, and shows the existence of optimal policies. Also, there are many
works on continuous-time MDPs (CTMDPs), such as [8, 13], etc.

On the other hand, constrained DTMDPs have also been discussed widely. One
of the pioneering papers is [4], in which the author briefly mentions the constrained
case in countable state spaces. More studies on the constrained discounted DTMDPs
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arise in [1, 2] with countable state spaces and a constant discount factor. Furthermore,
the constrained discounted DTMDPs with a Borel state space and a constant discount
factor have been studied with the development of the convex analytic approach in [5,
9, 15, 16, 17]. Recently, [14] shows the existence of a constrained optimal policy for the
constrained DTMDPs with state-action dependent discount factors, denumerable state
and Borel action spaces. In addition, [3] and [7] research the convergence of the optimal
values of constrained DTMDPs and CDMDPs with denumerable states and a constant
discount factor, respectively. These convergence results are crucial for the approximation
of optimal value or optimal policies. It is worth noting that [21] develops the convex
analytic approach to the constrained DTMDPs in Borel state and action spaces with
varying discount factors and bounded costs from below and proves the existence of a
randomized stationary optimal policy under slightly stronger conditions. However, in
[21], the varying discount factors are assumed to be continuous. To the best of our
knowledge, the constrained optimality problem of DTMDPs with Borel state space,
measurable discount factors, and unbounded costs from above and below, has not been
studied yet.

Inspired by the ideas in [3, 7, 20, 21], we study the constrained optimality problem of
DTMDPs in Borel state and action spaces with possibly unbounded costs and the state-
dependent discount factors are assumed to be measurable. By introducing so-called
occupation measures of policies and studying the characterization of the occupation
measures, we prove the solvability of the constrained optimality problem of DTMDPs is
equivalent to the solvability of a convex program one, and then, establish the existence
of an optimal randomized stationary policy under reasonable conditions weaker than
those in [3, 21].

The organization of this paper is as follows. First, in Section 2, we introduce the
constrained DTMDPs with state-dependent discount factors, and state the constrained
optimality problem of the DTMDPs. After that, we study the occupation measures and
some corresponding properties in Subsection 3.1, and prove the existence of the optimal
randomized stationary policy for the constrained DTMDPs by means of the technique
of transforming the original optimality problem into a convex program in Subsection
3.2. In Section 4, we give an application example of a controlled cash-balance system
and verify the existence of an optimal stationary policy. Finally, we finish this article
with a conclusion in Section 5.

2. THE MODEL OF CONSTRAINED DTMDPS

Consider the constrained DTMDPs with varying discount factors as below:

M :=
{
S,A,A(x), Q(dy|x, a), α(x), c0(x, a),

(
cl(x, a), dl, 1≤ l≤q

)
, γ
}
, (1)

where S and A are state and action spaces, which are assumed to be Borel spaces with
Borel σ-fields B(S) and Borel σ-fields B(A) respectively, A(x) is the set of admissible
actions at state x ∈ S. Let K :=

{
(x, a)|x ∈ S, a ∈ A(x)

}
be the set of all feasible

state-action pairs, and suppose that K is a measurable Borel subset of S × A. The
transition law Q(dy|x, a) is the one-step (homogeneous) transition probability on S given
K, and the discount factor α(x) is a measurable function from S to [0, 1). In addition,
c0(x, a) and cl(x, a) (1 ≤ l ≤ q) denote the objective cost and constrained cost functions
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respectively, which are assumed to be measurable on K. Finally, The real numbers
dl (1 ≤ l ≤ q) denote the constraints, and γ denotes the initial distribution on S.

Let Hm be the family of admissible histories up to time m for each m = 0, 1, . . . , that
is, H0 := S and Hm := Km × S for m = 1, 2, . . . , and the control policies are given as
follows:

Definition 2.1. A randomized history-dependent policy is a sequence π = {πm, m =
0, 1, . . .} of stochastic kernels πm on A given Hm such that

πm(A(xm)|hm) = 1 ∀hm := (x0, a0, x1, a1, . . . , xm) ∈ Hm, m = 0, 1, . . . .

Definition 2.2. A randomized history-dependent π = {ϕm, m = 0, 1, . . .} is said to
be (randomized) stationary if ϕm(da|x0, a0, x1, a1, . . . , xm−1, am−1, xm) are independent
of m and all histories (x0, a0, x1, a1, . . . , xm−1, am−1), so that π is of the form π =
{ϕ,ϕ, ϕ, . . .} with ϕ being a stochastic kernel on A given S such that ϕm(A(x)|x) ≡ 1
on S. In this case, the policy π is denoted by ϕ. All randomized history-dependent and
stationary policies are denoted by Π and Φ, respectively.

Suppose that (Ω,F) is the measurable space, where Ω is the canonical sample space
and F is the corresponding product σ−algebra. For any initial distribution γ on S and
π = {πm} ∈ Π, by the well-known Tulcea’s theorem in [10, p.178], there exist a unique
probability Pπγ on (Ω,F), and a state-action process {im, am,m = 0, 1, . . .} defined on
this space such that, for each Γ ∈ B(S), C ∈ B(A) and m ≥ 0,

Pπγ (x0 ∈ Γ) = µ(Γ),

Pπγ (am ∈ C|hm) = πn(C|hm),

Pπγ (xm+1 ∈ Γ|hm, am) = Q(Γ|xm, am),

see, e. g., [10, p.16] for the construction of the probability measure Pπγ . If γ is con-
centrated at some state x, then we write Pπγ as Pπx . Eπγ is the expectation operation
corresponding to Pπγ , and Eπγ is denoted by Eπx when γ is concentrated at some state x.

Definition 2.3. For each π ∈ Π, 0 ≤ l ≤ q and initial distribution γ, the discounted
criteria is defined by

V l(π) := Eπγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)cl(xm, am)

]
, (2)

where, V l(π) will be replaced by V l(x, π) if γ is concentrated at some state x.

Remark 2.4. (a) In (2) and what follows, for any sequence {yj , j = 0, 1, . . . , } we use
the convention that

k∏
j=m

yj := 1 and

k∑
j=m

yj := 0 if k < m.

(b) If B = ∅ and α(·) ≡ α is a constant in (0, 1), then V l(π) in (2) becomes the standard
infinite-horizon α-discounted cost as in [3, 10, 11].
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Let U := {π ∈ Π
∣∣V l(π) ≤ dl, 1 ≤ l ≤ q} be the set of all feasible policies, which is

assumed to be nonempty. Then, the optimal value of M is given by

V 0∗(π) = inf
π∈U

V 0(π).

Thus, the corresponding constrained optimality problem (COP) of the DTMDP in (1)
is:

COP : minimize V 0(π) over π ∈ U.

Moreover, we say that π∗ is an optimal policy for COP if π∗ ∈ U minimizes V 0(π) over
π ∈ U , that is, V 0(π∗) = infπ∈U V

0(π).
Note that, since c0(x, a) is allowed to be unbounded from above and below, it can

be regarded as rewards rather than costs only, and thus the corresponding COP is to
maximize V 0(π) over π ∈ U .

Now, we introduce some notations and terminology. We say that ω : X → [1,∞) is a
strictly unbounded function on a Borel space X if there exists a nondecreasing sequence
{Γm} of compact sets such that Γm ↑ X and lim

m→∞
infx∈Γc

m
ω(x) = ∞. Let Bω(S)

be the Banach space of real-valued measurable functions u on S with the finite norm

‖u‖ω := supx∈S
|u(x)|
ω(x) .

Next, we state the hypotheses on the control model M in (1).

Assumption 2.5. (a) There exists a constant α ∈ (0, 1) such that supx∈S α(x) ≤ α;

(b) There exist nonnegative constants β (0 < β < 1
α ) and L, and a strictly unbounded

function ω ≥ 1 on S, such that∫
S

ω(x)γ(dx) <∞, sup
a∈A(x)

|cl(x, a)| ≤ Lω(x) (l = 0, 1, . . . , q)

and

sup
a∈A(x)

∫
S

Q(dy|x, a)ω(y) ≤ βω(x) ∀x ∈ S;

(c) For each x ∈ S, the set A(x) is compact;

(d) For each 0 ≤ l ≤ q, x ∈ S, and Γ ∈ B(S), the cost function cl(x, ·) and transition
law Q(Γ|x, ·) are continuous on A(x);

(e) The function
∫
S
Q(dy|x, ·)ω(y) is continuous on A(x), for each x ∈ S.

Remark 2.6. (a) Assumption 2.5(a) holds obviously for the cases α(i) ≡ α ∈ (0, 1),
and for the general state spaces case, some application examples are given in [19,
Example 4.1] and [20, Example 6.1].

(b) Assumption 2.5(c) implies that, for each x ∈ S, the space P(A(x)) with the topol-
ogy of weak convergence is compact, where P(A(x)) is the set of all probability
measures on B(A(x)). Then, by Tychonoff theorem, Φ = ×x∈SP(A(x)) is also
compact.
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(c) Assumption 2.5(b) extends the conditions of [3]Assumption 3.3, and Assumption
2.5(c)-(e) are the continuity-compactness conditions commonly assumed to proving
the solvability of optimization problems in [7, 10, 11, 19, 20].

3. MAIN STATEMENTS

In this section, we introduce the concept of an occupation measure and prove the exis-
tence of the optimal stationary policies for the constrained MDPs in (1).

3.1. Properties of occupation measures

Definition 3.1. The occupation measure µπ(dx × da) of a policy π ∈ Π is a measure
on B(S ×A) defined by

µπ(Γ× C) := Eπγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)I{xm∈Γ,am∈C}

]
, (3)

for each Γ ∈ B(S) and C ∈ B(A), where I{·} is the indicator function. The space of
occupation measures is denoted by D, and the marginal measure of µ(dx× da) on S by
µ̂(dx) := µ(dx×A).

Remark 3.2. Since µ ∈ D is concentrated on K, by Definition 3.1, we have

V l(π) =

∫
S×A

cl(x, a)µπ(dx× da) =

∫
K

cl(x, a)µπ(dx× da) ∀π ∈ Π, 0 ≤ l ≤ q.

For any policy π ∈ Π, x ∈ S and bounded measurable function g(x, a) on K, let

V (x, π, g) := Eπx

[ ∞∑
m=0

m−1∏
k=0

α(xk)g(xm, am)

]
.

Obviously, V (x, π, g) is bounded measurable function in x ∈ S. Moreover, we have the
following result.

Lemma 3.3. (a) Suppose that Assumption 2.5(a) holds. Then, for any bounded mea-
surable function g(x, a) on K and ϕ ∈ Φ, V (x, ϕ, g) is the unique bounded solution
to the following equation

u(x) = g(x, ϕ) + α(x)

∫
S

u(y)Q(dy|x, ϕ) ∀x ∈ S. (4)

(b) Suppose that Assumption 2.5(a)-(b) hold, the result of part (a) holds for any g ∈
Bω(S).

P r o o f . The proof is exactly the same as [20, Theorem 3.1] with V (x, f) in [20] is
replaced by V (x, ϕ, g). �
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Theorem 3.4. Suppose that Assumption 2.5 is satisfied. Then, the following assertions
hold.

(a) For each ϕ ∈ Φ, it follows that

µϕ(Γ× C) =

∫
Γ

µ̂ϕ(dx)ϕ(C|x) ∀Γ ∈ B(S), C ∈ B(A).

(b) For each π ∈ Π, there exists a policy ϕ̃ ∈ Φ such that

µπ(Γ× C) =

∫
Γ

µ̂π(dx)ϕ̃(C|x) = µϕ̃(Γ× C) ∀Γ ∈ B(S), C ∈ B(A).

(c) A measure µ(dx× da) on S×A is an occupation measure if and only if

µ(S ×A) ≤ 1

1− α
(5)

and

µ̂(dx) = γ(dx) +

∫
S×A

α(y)Q(dx|y, a)µ(dy × da). (6)

P r o o f . (a) For any ϕ ∈ Φ, Γ ∈ B(S) and C ∈ B(A), we have

µϕ(Γ× C) = Eϕγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)I{xm∈Γ,am∈C}

]

= Eϕγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)I{xm∈Γ}ϕ(C|xm)

]
=

∫
Γ

µ̂ϕ(dx)ϕ(C|x).

(b) For any fixed π ∈ Π, by [10]Proposition D.8, there exists ϕ̃ ∈ Φ such that

µπ(Γ× C) =

∫
Γ

ϕ̃(C|x)µ̂π(dx) ∀Γ ∈ B(S), C ∈ B(A). (7)

Next, we show that, for any Γ ∈ B(S) and C ∈ B(A), µπ(Γ× C) = µϕ̃(Γ× C).
Fix a bounded measurable function g(x, a) on K, and, for each j = 1, 2, . . ., define

Wj =

j−2∏
k=0

α(xk)g(xj−1, aj−1) +

j−1∏
k=0

α(xk)V(xj ,ϕ̃, g)−
j−2∏
k=0

α(xk)V (xj−1, ϕ̃, g).

Then, we can get

Eπγ
[ j∑
m=1

Wm

]
= Eπγ

[ j∑
m=1

Eπγ [Wm

∣∣hm−1, am−1]
]

= Eπγ

[ j∑
m=1

m−2∏
k=0

α(xk)
[
g(xm−1, am−1)

+α(xm−1)

∫
S

V (y, ϕ̃, g)Q(dy|xm−1, am−1)− V (xm−1, ϕ̃, g)
]]
.
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Since

j∑
m=1

m−2∏
k=0

α(xk)g(xm−1, am−1) =

j∑
m=1

Wm + V (x0, ϕ̃, g)−
j−1∏
k=0

α(xk)V (xj , ϕ̃, g),

it follows that

Eπγ

[ j∑
m=1

m−2∏
k=0

α(xk)g(xm−1, am−1)

]

= Eπγ

[ j∑
m=1

m−2∏
k=0

α(xk)
[
g(xm−1, am−1)

+α(xm−1)

∫
S

V (y, ϕ̃, g)Q(dy|xm−1, am−1)− V (xm−1, ϕ̃, g)
]]

+

∫
S

V (y, ϕ̃, g)γ(dy)− Eπγ
[ j−1∏
k=0

α(xk)V (xj , ϕ̃, g)
]
.

Let j →∞, then the above equality may be written

Eπγ

[ ∞∑
m=1

m−2∏
k=0

α(xi)g(xm−1, am−1)

]

=

∫
S

V (y, ϕ̃, g)γ(dy) + Eπγ

[ ∞∑
m=1

m−2∏
k=0

α(xk)
[
g(xm−1, am−1)

+α(xm−1)

∫
S

V (y, ϕ̃, g)Q(dy|xm−1, am−1)− V (xm−1, ϕ̃, g)
]]
. (8)

Now, we denote f(x, a) := g(x, a) + α(x)
∫
S
V (y, ϕ̃, g)Q(dy|x, a). It is clear that f(x, a)

is bounded and measurable on K, and then,

Eπγ

[ ∞∑
m=1

m−2∏
k=0

α(xk)f(xm−1, am−1)

]
= Eπγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)f(xm, am)

]
=

∫
S×A

f(x, a)µπ(dx× da) =

∫
S

∫
A

f(x, a)ϕ̃(da|x)µ̂π(dx)

= Eπγ
[ ∞∑
m=1

m−2∏
k=0

α(xk)

∫
A

f(xm−1, a)ϕ̃(da|xm−1)
]
, (9)

where the second to the last equality is due to (7) and the last equality is a result of the
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definition of µ̂π(dx). By (8) and (9), we have∫
S×A

g(x, a)µπ(dx× da)

=

∫
S

V (y, ϕ̃, g)γ(dy) + Eπγ

[ ∞∑
m=1

m−2∏
k=0

α(xk)f(xm−1, am−1)

]

−Eπγ
[ ∞∑
m=1

m−2∏
k=0

α(xk)V (xm−1, ϕ̃, g)

]

= Eπγ

[ ∞∑
m=1

m−2∏
k=0

α(xk)

∫
A

[
f(xm−1, a)− V (xm−1, ϕ̃, g)

]
ϕ̃(da|xm−1)

]
+

∫
S

V (y,ϕ̃, g)γ(dy)

=

∫
S

V(y,ϕ̃, g)γ(dy) = Eϕ̃γ

[ ∞∑
m=0

m−1∏
k=0

α(xk)g(xm, am)

]
=

∫
S×A

g(x, a)µϕ̃(dx×da),

where the third equality is due to Lemma 3.3. Note that the bounded measurable
function g(x, a) is arbitrarily fixed, then

µπ(Γ× C) = µϕ̃(Γ× C) ∀Γ ∈ B(S), C ∈ B(A).

So, part (b) holds.
(c) First, we prove the ‘only if’ part. By part (b), for each occupation measure µ,

there exists a stationary policy ϕ ∈ Φ such that µ(dx × da) = µϕ(dx × da). Thus, we
assume that µ = µϕ.

For any bounded measurable function g(x) on S, we have∫
S

g(x)µ̂ϕ(dx) = Eϕγ
[ ∞∑
m=0

m−1∏
k=0

α(xk)g(xm)
]

=

∫
S

g(x)γ(dx) + Eϕγ

[
Eϕγ
[ ∞∑
m=1

m−1∏
k=0

α(xk)g(xm)
∣∣hm−1, am−1

]]

= Eϕγ

[ ∞∑
m=1

m−1∏
k=0

α(xk)

∫
S

g(y)Q(dy|xm−1, am−1)

]
+

∫
S

g(x)γ(dx)

=

∫
S

g(x)γ(dx) +

∫
S×A

α(x)

∫
S

g(y)Q(dy|x, a)µϕ(dx× da),

which implies the ‘only if’ part.
Second, we prove the ‘if’ part. Suppose that µ(dx×da) is an arbitrarily fixed measure

on B(S × A) concentrated on K such that (5) and (6) hold. By [10, Proposition D.8],
there exists a policy ϕ ∈ Φ such that µ(dx × da) = µ̂(dx)ϕ(da|x). Next, we show that
µ(dx× da) = µϕ(dx× da), i. e., µ(dx× da) is an occupation measure.
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For arbitrarily fixed bounded measurable function g(x, a) on K, by Lemma 3.3, we
have ∫

S×A
g(x, a)µ(dx× da)=

∫
S×A

g(x, a)µ̂(dx)ϕ(da|x)=

∫
S

g(x, ϕ)µ̂(dx)

=

∫
S

V (x, ϕ, g)µ̂(dx)−
∫
S×A

α(x)

∫
S

V (y, ϕ, g)Q(dy|x, a)µ(dx× da),

which together with (6) yields, for the bounded measurable function V (x, ϕ, g),∫
S

V (x, ϕ, g)γ(dx)

=

∫
S

V (x, ϕ, g)µ̂(dx)−
∫
S×A

α(x)

∫
S

V (y, ϕ, g)Q(dy|x, a)µ(dx× da),

and then ∫
S×A

g(x, a)µ(dx× da)=

∫
S

V (x, ϕ, g)γ(dx)

= Eϕγ

[ ∞∑
m=0

m−1∏
k=0

α(xk)g(y)Q(dy|xm, am)

]
=

∫
S×A

g(x, a)µϕ(dx× da).

Since g(x, a) is arbitrarily fixed, it follows that µ(dx× da) = µϕ(dx× da).
Hence, part (c) holds. �

Under Assumption 2.5, it is obvious that D is convex by Theorem 3.4(c), and by
Theorem 3.4(b), here is the following results.

Corollary 3.5. (a) If a finite measure µ on S × A satisfies (5) and (6), then there
exists a stationary policy ϕ ∈ Φ such that µ = µϕ, and ϕ can be obtained from
the following decomposition: µ(dx×da) = µ̂(dx)ϕ(da|x), which will be written as
µ = µ̂ ◦ ϕ.

(b) For each policy π ∈ Π, there exists a stationary policy ϕ ∈ Φ such that V l(π) =
V l(ϕ) for all l = 0, 1, . . . , q. Furthermore, if there exists an optimal policy π ∈ Π
for COP, then there will be an optimal stationary policy ϕ ∈ Φ for COP.

Let M(K) be the set of finite measures on K and τ(M(K)) the weak topology
on it generated by the set of bounded continuous functions on K. Then, by [18],
(M(K), τ(M(K))) is metrizable. Thus, (M(K), τ(M(K))) is regarded as a metric
space below, so is (D, τ(D)).

Lemma 3.6. (a) Let {ϕm} be a sequence in Φ such that ϕm(·|x) → ϕ(·|x) for each
x ∈ S, and {νm} is a finite measure sequence in M(S) such that νm → ν weakly.
If µm := νm ◦ ϕm and µ := ν ◦ ϕ, then µm → µ weakly.

(b) If {µm} ⊂ D such that µm → µ weakly, then there exist a subsequence {µmk
} of

{µm}, a corresponding sequence {ϕmk
} ⊂ Φ and a stationary policy ϕ ∈ Φ, such

that ϕmk
→ ϕ weakly and µmk

= µ̂mk
◦ ϕmk

converges weakly to µ = µ̂ ◦ ϕ.
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P r o o f . Since the proof of part (a) is similar as part (b), next, we only give the proof
of part (b).

For the sequence {µm} ⊂ D, by [10, Proposition D.8] there exists a sequence {ϕm} ⊂
Φ such that µm(dx× da) = µ̂m(dx)ϕm(da|x).

For each x ∈ S, by the compactness of P(A(x)) there exist a subsequence {ϕmk
(·|x)}

of {ϕm(·|x)} and a policy ϕ ∈ Φ such that ϕmk
(·|x)→ ϕ(·|x) weakly. Pick an arbitrary

h ∈ Cb(K), where Cb(K) is the set of the bounded continuous functions on K, and then,
for each x ∈ S, we have

h(x, ϕmk
) =

∫
A(x)

h(x, a)ϕmk
(da|x)→

∫
A(x)

h(x, a)ϕ(da|x) = h(x, ϕ). (10)

On the other hand, for any µ̃ ∈ D, there exists ϕ̃ ∈ Φ such that

ˆ̃µ(dx) = ˆ̃µ
ϕ̃

(dx) = Eϕ̃γ
[ ∞∑
j=0

j−1∏
k=0

α(xk)I{xj∈dx}
]

= γ(dx) + Eϕ̃γ

[
Eϕ̃γ
[ ∞∑
j=1

j−1∏
k=0

α(xk)I{xj∈dx}
]∣∣hj−1, aj−1

]

= γ(dx) + [Eϕ̃γ
[ ∞∑
j=1

j−1∏
k=0

α(xk)Q(dx|xj−1, aj−1)
]

= γ(dx) +

∫
S

α(y)Q(dx|y, ϕ̃)ˆ̃µ
ϕ̃

(dy). (11)

By iteration, we can get

ˆ̃µ
ϕ

(dx) ≤ γ(dx) +

N−1∑
j=1

αj
∫
S

Qj(dx|y, ϕ̃)γ(dy) + αN
∫
S

QN(dx|y, ϕ̃)ˆ̃µ
ϕ̃

(dy),

letting N →∞ in the above inequality, and obtain

ˆ̃µ
ϕ̃

(d)≤γ(dx) +

∞∑
j=1

αj
∫
S

Qj(dx|y, ϕ̃)γ(dy). (12)

Now, let

v0(·) := γ(·) +

∞∑
j=1

αj
∫
S

Qj(·|y, ϕ)γ(dy), (13)

then, it is clear that v0 is a finite measure, and for sufficiently large k, we have µ̂mk
≤ v0

by (12) and Qj(·|y, ϕmk
)→ Qj(·|y, ϕ). Since |h(x, ϕ)| ≤ ‖h‖ <∞, it holds that∫
S

h+(x, ϕ)v0(dx) ≤
∫
S

‖h‖v0(dx) <∞.



Constrained optimality problem of MDPs with Borel spaces and varying discount factors 305

Note that µ̂mk
→ µ̂ weakly, by [12, Theorem 2.1b], we have∫

S

h+(x, ϕ)µ̂mk
(dx)→

∫
S

h+(x, ϕ)µ̂(dx),

and also
∫
S
h−(x, ϕ)µ̂mk

(dx)→
∫
S
h−(x, ϕ)µ̂(dx), which yields that∫

S

h(x, ϕ)µ̂mk
(dx)→

∫
S

h(x, ϕ)µ̂(dx). (14)

Hence, by (10) and (14), we can get∣∣ ∫
S×A

h(x, a)µmk
(dx× dda)−

∫
S×A

h(x, a)µ(dx× da)
∣∣

=
∣∣ ∫
S

h(x, ϕmk
)µ̂mk

(dx)−
∫
S

h(x, ϕ)µ̂(dx)
∣∣

≤
∣∣∫
S

h(x, ϕmk
)µ̂mk

(dx)−
∫
S

h(x, ϕ)µ̂mk
(dx)

∣∣+∣∣∫
S

h(x, ϕ)µ̂mk
(dx)−

∫
S

h(x, ϕ)µ̂(dx)
∣∣

→ 0,

that is, µmk
→ µ(= µ̂ ◦ ϕ) weakly. �

Lemma 3.7. Suppose that Assumption 2.5 holds. If {µm} ⊂ D satisfies µm → µ
weakly, then

lim
m→∞

∫
K

cl(x, a)µm(dx× da) =

∫
K

cl(x, a)µ(dx× da) l = 0, 1, . . . , q.

P r o o f . For fixed l = 0, 1, . . . , q, let fm :=
∫
K
cl(x, a)µm(dx × da) (m = 0, 1, . . .) and

{fmk
} be an arbitrary subsequence of {fm}. For the subsequence {µmk

} of {µm}, by
Lemma 3.6(b) there exist a corresponding sequence {ϕmk

} ⊂ Φ and a stationary policy
ϕ ∈ Φ such that ϕmk

→ ϕ weakly and µmk
= µ̂mk

◦ϕmk
converges weakly to µ = µ̂ ◦ϕ.

In addition, for the finite measure v0 as in (13), by Assumption 2.5, we have∫
S

ω(x)v0(dx) ≤
∫
S

ω(x)γ(dx) +

∞∑
m=1

(αβ)m
∫
S

ω(y)γ(dy)

≤ 1

1− αβ

∫
S

ω(x)γ(dx) <∞. (15)

Since, for each x ∈ S, cl(x, ·) (0 ≤ l ≤ q) and Q(Γ|x, ·) are continuous and bounded
on A(x), which yields that cl(x, ϕmk

) → cl(x, ϕ) by ϕmk
(·|x) → ϕ(·|x) weakly. And,

µ̂mk
(Γ)→ µ̂mk

(Γ) for arbitrary Γ ∈ B(S) by µ̂mk
→ µ̂ weakly, µ̂mk

≤ v0 for sufficiently
large k by (11)-(12), thus, by the Generalized Dominated Convergence Theorem for
Measures [12, Theorem 2.2], it holds that∫

S

cl(x, ϕmk
)µ̂mk

(dx)→
∫
S

cl(x, ϕ)µ̂(dx),
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i. e.,

fmk
=

∫
K

cl(x, a)µmk
(dx× da)→

∫
K

cl(x, a)µ(dx× da).

Since the subsequence {fmk
} of {fm} is arbitrary, it follows that

fm =

∫
K

cl(x, a)µm(dx× da)→
∫
K

cl(x, a)µ(dx× dda) l = 0, 1, . . . , q.

�

Definition 3.8. A family D of finite measures on K is called tight, if for arbitrary
ε > 0, there exists a compact subset Γ̃ ⊆ K such that µ(Γ̃) > 1− ε for each µ ∈ D.

Lemma 3.9. Under Assumption 2.5, the familyD of all occupation measures is compact
in the weak topology.

P r o o f . Let D̂ be the space of the marginal measures of occupation measures with the
weak topology on S. Then, by Assumption 2.5(b), (12) and (15), we have∫

S

ω(x)µ̂π(dx) =

∫
S

ω(x)µ̂ϕ(dx) ≤
∫
S

ω(x)v0(dx) <∞.

Hence, by [10, Proposition E.8], D̂ is tight. By Prokhorov’s Theorem [10, Theorem E.6],
D̂ is relatively compact. Now, we assert that D is relatively compact. In fact, for any
{µm} ⊂ D, there exists a sequence {ϕm} ⊂ Φ such that µm(dx× da) = µ̂m(dx)ϕ(da|x),
and further, there exist a subsequence {µ̂mk

} and the corresponding subsequence {ϕmk
}

such that µ̂mk
→ ν weakly in M(S) and ϕmk

(·|x)→ ϕ(·|x) weakly in Φ. Therefore, by
Lemma 3.6(a), µmk

→ ν ◦ ϕ, i. e., D is relatively compact.
Next, we prove that D is close. Choose arbitrarily a sequence {µm} ⊂ D such that

µm → µ weakly, by Lemma 3.6(b), there exist a subsequence {µmk
}, a sequence {ϕmk

} ⊂
Φ and a stationary policy ϕ ∈ Φ, such that ϕmk

→ ϕ weakly and µmk
= µ̂mk

◦ ϕmk

converges weakly to µ = µ̂ ◦ ϕ. By Theorem 3.4(c) one can obtain that µm satisfies (5)
and (6) for each m = 0, 1, . . ., and then µ satisfies (5). It remains to verify that (6) holds
for µ̂.

In fact, by (11), we have∣∣∣µ̂mk
−
(
γ(dx) +

∫
S×A

α(x)Q(dy|x, a)µ(dx× da)
)∣∣∣

=
∣∣∣ ∫
S

α(x)Q(dy|x, ϕmk
)µ̂mk

(dx)−
∫
S

α(x)Q(dy|x, ϕ)µ̂(dx)
∣∣∣

≤
∣∣∣ ∫
S

α(x)Q(dy|x, ϕmk
)µ̂mk

(dx)−
∫
S

α(x)Q(dy|x, ϕ)µ̂mk
(dx)

∣∣∣
+
∣∣∣ ∫
S

α(x)Q(d|x, ϕ)µ̂mk
(dx)−

∫
S

α(x)Q(dy|x, ϕ)µ̂(dx)
∣∣∣. (16)
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For the subsequence {µmk
}, by (12)-(13) and Qj(·|y, ϕmk

)→ Qj(·|y, ϕ), we have µ̂mk
≤

v0 for sufficiently large k. Hence, by [12, Theorem 2.1b], we can obtain∫
S

α(x)Q(dy|x, ϕ)µ̂mk
(dx)→

∫
S

α(x)Q(dy|x, ϕ)µ̂(dx),

and note that Q(dy|x, ϕmk
) → Q(dy|x, ϕ) since Q(dy|x, ·) are continuous and bounded

on A(x), which together with (16) gives

µ̂mk
→ γ(dx) +

∫
S×A

α(x)Q(dy|x, a)µ(dx× da)

Then, it follows that µ̂ = γ(dx) +
∫
S×Aα(x)Q(dy|x, a)µ(dx× da), i. e., (6) holds for µ̂.

Therefore, D is compact in the weak topology. �

3.2. Existence of the optimal policy for constrained MDPs

Let

F :=
{
µ ∈ D

∣∣ ∫
K

cl(x, a)µ(dx× da) ≤ dl, 1 ≤ l ≤ q
}
.

By Assumption 2.5, Remark 3.2, Lemma 3.9 and (2), the constrained optimality problem
COP is equivalent to the following well-defined convex program:

COP′ : minimize

∫
K

c0(x, a)µ(dx× da) over µ ∈ F.

F is called the set of all feasible policies for COP′ and the optimal value of COP′ is
denoted by inf COP′. If there exists a feasible solution µ ∈ F to COP′ such that∫

K

c0(x, a)µ(dx× da) = inf COP′,

then µ is called an optimal solution to COP′. By the standing assumption U 6= ∅ in
Section 2, it is clear that F 6= ∅.

Furthermore, for any µ ∈ F, by Assumption 2.5(b) and (12) we have∫
S×A

c0(x, a)µ(dx× da) ≤ L

∫
S×A

ω(x)µ(dx× da) ≤ L
∫
S

ω(x)µ̂(dx)

≤ L

∫
S

ω(x)v0(dx) <∞,

and then inf COP′ <∞.

Lemma 3.10. Under Assumption 2.5, the set F ⊂ D of feasible solutions to COP′ is
compact in the weak topology.
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P r o o f . Let {µmk
} be an arbitrary subsequence of {µm} ⊂ F ⊂ D. By Lemma 3.9,

there exists a subsequence of {µmk
}, still denoted as {µmk

} without loss of generality,
such that {µmk

} → µ weakly in D. Hence, it only remains to prove that µ satisfies the
constraints for COP′. Indeed, by Lemma 3.7, we have∫

K

cl(x, a)µ(dx× da)= lim
m→∞

∫
K

cl(x, a)µmk
(dx× da) ≤ dl. l = 1, 2, . . . , q.

Therefore, it holds that µ ∈ F. �

Theorem 3.11. Suppose that Assumption 2.5 holds. Then,

(a) COP′ is solvable.

(b) there exists an optimal stationary policy ϕ ∈ Φ for COP.

P r o o f . (a) Let {µm} be a minimizing sequence for COP′, that is, {µm} ⊂ F such that
{
∫
K
c0(x, a)µm(dx× da)} is a decreasing sequence and

lim
m→∞

∫
K

c0(x, a)µm(dx× dda) = inf COP′,

where inf COP′ stands for the value of COP′. Since F is compact by Lemma 3.10, it
follows that there exists a subsequence {µmk

} of {µm} in F such that µmk
→ µ weakly

in F. Then, by Lemma 3.7, we have∫
K

c0(x, a)µ(dx× da) = lim
k→∞

∫
K

c0(x, a)µmk
(dx× da) = inf COP′.

Thus, µ is an optimal solution for COP′.
(b) It is clear that the solvability of COP′ implies the solvability of COP, which

together with Corollary 3.5 yields that part (b) holds. �

4. AN EXAMPLE

In this section, we give an application example to show that all the conditions imposed
in this paper can be satisfied simultaneously, so that the results for the existence of the
optimal policy are directly applicable.

Example 4.1. (A Cash-balance system) Consider the controlled cash-balance system
M, which satisfies

xn+1 = xn + an + εn, n = 0, 1, . . . , (17)

where the state xn and action an denote the amount of cash balance, and a withdrawal
of size −an (if an < 0) of the money in cash, or a supply in the amount an (if an > 0) at
time n, respectively. Let the state space be S := (−∞,+∞). If the state of the system
is x ∈ (−∞,+∞), a decision-maker takes an action a in a given set A(x), which is
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assumed to be [−|x|, |x|]. The disturbances {εn, n ≥ 0} are assumed to be independent
standard normal random variables, that is, the transition law Q(·|x, a) is given by

Q(Γ|x, a) =

∫
Γ

1√
2π
e−

(y−x−a)2

2 dy ∀ (x, a) ∈ K, Γ ∈ B(S).

When the amount of the cash balance is x in this system, it incurs the holding cost
c0(x, a) and the running cost c1(x, a) during a stage. We assume that cl(x, a) (l = 0, 1)
are continuous on a ∈ [−|x|, |x|] and there exists a constant L > 0 such that |cl(x, a)| ≤
L(x2 + 1) for all x ∈ S, a ∈ [−|x|, |x|] and l = 0, 1. In addition, let γ be an initial

distribution on S such that
∫ +∞
−∞ x2γ(dx) < ∞, and assume that the discount factors

α(x) is measurable on S and satisfies that supx∈S α(x) < 1
4 .

A decision-maker wishes to minimize the expected discounted holding cost, while the
expected discounted running cost is maintained bounded above by a positive constant
d.

Proposition 4.2. The controlled system M in Example 4.1 verifies Assumption 2.5,
and then there exists an optimal stationary policy.

P r o o f . For x ∈ S, let ω(x) = x2 + 1. Then, it is clear that ω(x) satisfies that

ω(x) ≥ 1 on S and it is strictly unbounded. Moreover, by
∫ +∞
−∞ x2γ(dx) < ∞ we have∫

S
ω(x)γ(dx) <∞ and∫

S

ω(y)Q(dy|x, a) =

∫ +∞

−∞
ω(y)Q(dy|x, a) = (x+ a)2 + 2 < 4ω(x),

|cl(x, a)| ≤ Lω(x) ∀ x ∈ X, a ∈ A(x) and l = 0, 1.

Thus, Assumption 2.5(b) holds. In addition, it is clear that Assumption 2.5(a) and
(c)-(e) are satisfies by the [19, Proposition 4.1] and the definition ofM in Example 4.1.

�

5. CONCLUSION

This paper studies the solvability of constrained optimality problem of DTMDPs with
varying discount factors, Borel states space, compact Borel action sets, and possibly
unbounded cost functions. By means of the so-called occupation measure of policies
and its properties, we prove the existence of an optimal randomized stationary policies
(see Theorem 3.11). This result extends those of constrained DTMDPs with a constant
discount factor in [3] and constrained DTMDPs with the bounded costs from below as
in [21] under weaker conditions.
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