Czechoslovak Mathematical Journal

Pham Hoang Ha; Dang Dish Hanh; Nguyen Thanh Loan; Ngoc Diep Sham Spanning trees whose reducible stems have a few branch vertices

Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 3, 697-708

Persistent URL: http://dml.cz/dmlcz/149051

Terms of use:

© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SPANNING TREES WHOSE REDUCIBLE STEMS HAVE A FEW BRANCH VERTICES

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham, Hanoi

Received February 22, 2020. Published online June 30, 2021.

Abstract

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. The set of leaves of T is denoted by $L(T)$ and the set of branch vertices of T is denoted by $B(T)$. For two distinct vertices u, v of T, let $P_{T}[u, v]$ denote the unique path in T connecting u and v. Let T be a tree with $B(T) \neq \emptyset$. For each leaf x of T, let y_{x} denote the nearest branch vertex to x. We delete $V\left(P_{T}\left[x, y_{x}\right]\right) \backslash\left\{y_{x}\right\}$ from T for all $x \in L(T)$. The resulting subtree of T is called the reducible stem of T and denoted by R_Stem (T). We give sharp sufficient conditions on the degree sum for a graph to have a spanning tree whose reducible stem has a few branch vertices.

Keywords: spanning tree; independence number; degree sum; reducible stem MSC 2020: 05C05, 05C07, 05C69

1. Introduction

In this paper, we consider only finite simple graphs. Let G be a graph with the vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, we use $N_{G}(v)$ and $\operatorname{deg}_{G}(v)$ (or $N(v)$ and $\operatorname{deg}(v)$ if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by $|X|$ the cardinality of X. Sometime, we denote it by $|G|$ instead of $|V(G)|$. We define $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$ and $\operatorname{deg}_{G}(X)=\sum_{x \in X} \operatorname{deg}_{G}(x)$. For $k \geqslant 1$, we put $N_{k}(X)=\{x \in V(G):|N(x) \cap X|=k\}$. We use $G-X$ to denote the graph obtained from G by deleting the vertices in X together with their incident edges. We introduce $G-u v$ to be the graph obtained from G by deleting the edge $u v \in E(G)$, and $G+u v$ to be the graph obtained from G by adding a new edge $u v$ joining two non-adjacent
vertices u and v of G. For two vertices u and v of G, the distance between u and v in G is denoted by $d_{G}(u, v)$. We use K_{n} to denote the complete graph on n vertices. We write $A:=B$ to rename B as A.

For an integer $m \geqslant 2$, let $\alpha^{m}(G)$ denote the number defined by
$\alpha^{m}(G)=\max \left\{|S|: S \subseteq V(G), d_{G}(x, y) \geqslant m\right.$ for all distinct vertices $\left.x, y \in S\right\}$.
For an integer $p \geqslant 2$, we put

$$
\sigma_{p}^{m}(G)=\min \left\{\operatorname{deg}_{G}(S): S \subseteq V(G),|S|=p, d_{G}(x, y) \geqslant m\right.
$$

$$
\text { for all distinct vertices } x, y \in S\}
$$

For convenience, we set $\sigma_{p}^{m}(G)=\infty$ if $\alpha^{m}(G)<p$. We note that $\alpha^{2}(G)$ is often written as $\alpha(G)$, which is the independence number of G, and $\sigma_{p}^{2}(G)$ is often written as $\sigma_{p}(G)$, which is the minimum degree sum of p independent vertices.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. The set of leaves of T is denoted by $L(T)$ and the set of branch vertices of T is denoted by $B(T)$. The subtree $T-L(T)$ of T is called the stem of T and is denoted by $\operatorname{Stem}(T)$. For two distinct vertices u, v of T, let $P_{T}[u, v]$ denote the unique path in T connecting u and v. We define that the orientation of $P_{T}[u, v]$ is from u to v. For each vertex $x \in V\left(P_{T}[u, v]\right)$, we denote by x^{+}and x^{-}the successor and predecessor of x in $P_{T}[u, v]$, respectively, if they exist. We refer to [4] for terminology and notation not defined here.

Figure 1. Tree T and R_Stem (T)
For a leaf x of T, let y_{x} denote the nearest branch vertex to x. For each leaf x of T, we remove the path $P_{T}\left[x, y_{x}\right)$ from T, where $P_{T}\left[x, y_{x}\right)$ denotes the path connecting x to y_{x} in T but not containing y_{x}. Moreover, the path $P_{T}\left[x, y_{x}\right)$ is called the leafbranch path of T incident to x and denoted by $\operatorname{lb} P_{T}(x)$. The resulting subtree of T
is called the reducible stem of T and denoted by R_Stem (T) (see Figure 1 for an example of T and R_Stem $(T))$. Then R_Stem $(T)=T-\underset{x \in L(T)}{\bigcup} V\left(\operatorname{lb} P_{T}(x)\right)$. A leaf of R_Stem (T) is also called a peripheral branch vertex of T, see [6], [13].

There are several sufficient conditions (such as the independence number conditions and the degree sum conditions) for a graph G to have a spanning tree with a bounded number of leaves or branch vertices (see the survey paper [15] and the references cited therein for details). Win in [17] obtained the following theorem, which confirms a conjecture of Las Vergnas (see [12]), and Broersma and Tuinstra in [1] gave the following sufficient condition for a graph to have a spanning tree with at most k leaves.

Theorem 1.1 ([17]). Let $l \geqslant 1$ and $k \geqslant 2$ be integers and let G be an l-connected graph. If $\alpha(G) \leqslant k+l-1$, then G has a spanning tree with at most k leaves.

Theorem 1.2 ([1]). Let G be a connected graph and let $k \geqslant 2$ be an integer. If $\sigma_{2}(G) \geqslant|G|-k+1$, then G has a spanning tree with at most k leaves.

Recently, many researchers studied spanning trees in connected graphs whose stems have a bounded number of leaves or branch vertices, see [8], [9], [16] and [18] for more details. We introduce here some results on spanning trees whose stems have a few leaves or branch vertices.

Theorem 1.3 ([16]). Let G be a connected graph and let $k \geqslant 2$ be an integer. If $\sigma_{3}(G) \geqslant|G|-2 k+1$, then G has a spanning tree whose stem has at most k leaves.

Theorem 1.4 ([8]). Let G be a connected graph and let $k \geqslant 2$ be an integer. If either $\alpha^{4}(G) \leqslant k$ or $\sigma_{k+1}(G) \geqslant|G|-k-1$, then G has a spanning tree whose stem has at most k leaves.

Theorem 1.5 ([18]). Let G be a connected graph and $k \geqslant 0$ be an integer. If one of the conditions
(a) $\alpha^{4}(G) \leqslant k+2$,
(b) $\sigma_{k+3}^{4}(G) \geqslant|G|-2 k-3$
holds, then G has a spanning tree whose stem has at most k branch vertices.
Furthermore, by considering the graph G restricted in some special graph classes, many analogous researches have been introduced, see [2], [3], [5], [7], [10], [11] and [14] for example.

Recently, Ha, Hanh and Loan in [6] have introduced a new concept of spanning trees and gave a sufficient condition for a graph to have a spanning tree possessing such a property. Namely, they obtained the following theorem.

Theorem 1.6 ([6]). Let G be a connected graph and let $k \geqslant 2$ be an integer. If one of the conditions
(i) $\alpha(G) \leqslant 2 k+2$,
(ii) $\sigma_{k+1}^{4}(G) \geqslant\left\lfloor\frac{1}{2}(|G|-k)\right\rfloor$
holds, then G has a spanning tree with at most k peripheral branch vertices. Here, the notation $\lfloor r\rfloor$ stands for the floor, i.e., the largest integer not exceeding the real number r.

In this paper, we would like to study sufficient conditions for a graph to have a spanning tree T such that R_Stem (T) has a bounded number of branch vertices. In particular, we prove the following theorem.

Theorem 1.7. Let G be a connected graph and let $k \geqslant 2$ be an integer. If the condition

$$
\sigma_{k+3}^{4}(G) \geqslant\left\lfloor\frac{|G|-2 k-2}{2}\right\rfloor
$$

holds, then G has a spanning tree T whose reducible stem has at most k branch vertices.

Figure 2. Graph G

To show that our result is sharp, we will give the following example. Let $k \geqslant 2$ and $m \geqslant 1$ be integers, and let $R_{0}, R_{1}, \ldots, R_{k+2}$ and $H_{0}, H_{1}, \ldots, H_{k+2}$ be $2 k+6$ disjoint copies of the complete graph K_{m} of order m. Let $y_{0}, y_{1}, \ldots, y_{k+2}, x_{1}, x_{2}, \ldots, x_{k+1}$ be the $2 k+4$ vertices not contained in $R_{0} \cup R_{1} \cup \ldots \cup R_{k+2} \cup H_{0} \cup H_{1} \cup \ldots \cup H_{k+2}$. Join y_{i} to all the vertices of $R_{i} \cup H_{i}$ for every $0 \leqslant i \leqslant k+2$. Add the two edges $x_{1} y_{0}$,
$x_{k+1} y_{k+2}$ and join x_{i} to y_{i} for each $1 \leqslant i \leqslant k+1$. Let G denote the resulting graph, see Figure 2. Then $\alpha^{4}(G)=k+3$. Moreover, we also obtain

$$
\sigma_{k+3}^{4}(G)=\sum_{i=1}^{k+3} \operatorname{deg}_{G}\left(a_{i}\right)=(k+3) m=\left\lfloor\frac{|G|-2 k-4}{2}\right\rfloor,
$$

where a_{i} is any vertex of H_{i} for each $0 \leqslant i \leqslant k+2$.
But G has no spanning tree whose reducible stem has at most k branch vertices. Then, our main result is sharp.

2. Proof of Theorem 1.7

Firstly, we recall the following useful lemma.
Lemma 2.1. Let T be a tree. Then the number of leaves in T is

$$
|L(T)|=\sum_{x \in B(T)}\left(\operatorname{deg}_{T}(x)-2\right)+2 .
$$

Pr o of of Theorem 1.7. Suppose to the contrary that there does not exist a spanning tree T of G such that $\mid B($ R_Stem $(T))) \mid \leqslant k$. Then every spanning tree T of G satisfies $\left|B\left(\mathrm{R}_{-} \operatorname{Stem}(T)\right)\right| \geqslant k+1$.

Choose a maximal tree T of G that satisfies
(C0) $\mid B($ R_Stem $(T)) \mid=k+1$,
(C1) $\mid L($ R_Stem $(T)) \mid$ is as small as possible subject to (C0),
(C2) $|L(T)|$ is as small as possible subject to (C1),
(C3) \mid R_Stem $(T) \mid$ is as small as possible subject to (C2).
Claim 2.2. There does not exist a tree S in G such that $V(S)=V(T)$ and $\mid B($ R_Stem $(S)) \mid \leqslant k$.

Proof. Indeed, assume that there exists a tree S in G such that $V(S)=V(T)$ and $\mid B($ R_Stem $(S)) \mid \leqslant k$. Since $\mid B($ R_Stem $(S)) \mid \leqslant k, S$ is not a spanning tree of G. Then there exists $u \in V(G)-V(S)$ such that u is adjacent to a vertex $v \in S$. Let S_{1} be a tree obtained from S by adding the edge $u v$. Then S_{1} is a tree in G such that $\left|V\left(S_{1}\right)\right|=|V(T)|+1$ and $\left|B\left(\mathrm{R}_{-} \operatorname{Stem}\left(S_{1}\right)\right)\right| \leqslant k+1$.

If $\mid B\left(\right.$ R_Stem $\left.\left(S_{1}\right)\right) \mid=k+1$, then S_{1} contradicts the maximality of T (since $\left.\left|V\left(S_{1}\right)\right|=|V(S)|+1=|V(T)|+1>|V(T)|\right)$. So we may assume that

$$
\mid B\left(\mathrm{R} _ \text {Stem }\left(S_{1}\right)\right) \mid \leqslant k
$$

By repeating this process, we can recursively construct a set of trees $\left\{S_{i}: i \geqslant 1\right\}$ in G such that S_{i} satisfies that $\left|B\left(\mathrm{R} _S t e m\left(S_{i}\right)\right)\right| \leqslant k$ and $\left|V\left(S_{i+1}\right)\right|=\left|V\left(S_{i}\right)\right|+1$ for each $i \geqslant 1$. Since G has no spanning tree T with at most k branch vertices of R_Stem (T) and $|V(G)|$ is finite, the process must terminate after a finite number of steps, i.e., there exists some $h \geqslant 1$ such that S_{h+1} is a tree in G with $\left|B\left(\operatorname{R} _\operatorname{Stem}\left(S_{h+1}\right)\right)\right|=k+1$. But this contradicts the maximality of T. So the claim holds.

Let $B($ R_Stem $(T))=\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}$ and $L($ R_Stem $(T))=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{l}\right\}$. Then $l \geqslant k+3$ by Lemma 2.1. By the definition of the leaf of R_Stem (T), we have the following claim.

Claim 2.3. For each $y_{i}, 1 \leqslant i \leqslant l$, there exist at least two leaves T which are connected to y_{i} by paths in T. Namely, T has at least two leaf-branch paths connecting y_{i} to leaves of T.

Claim 2.4. For each $y_{i}, 1 \leqslant i \leqslant l$, there exist $a_{i}, b_{i} \in L(T)$ such that $\operatorname{lb} P_{T}\left(a_{i}\right)$ and $\operatorname{lb} P_{T}\left(b_{i}\right)$ connect a_{i} and b_{i} to y_{i}, respectively, and
$N_{G}\left(a_{i}\right) \cap\left(V(\right.$ R_Stem $\left.(T))-\left\{y_{i}\right\}\right)=\emptyset \quad$ and $\quad N_{G}\left(b_{i}\right) \cap\left(V(\right.$ R_Stem $\left.(T))-\left\{y_{i}\right\}\right)=\emptyset$.

Proof. Assume that there exists $y_{s}, 1 \leqslant s \leqslant l$ for which the claim does not hold. Then each leaf-branch path $P_{T}\left[z_{j}, y_{s}\right), 1 \leqslant j \leqslant m$, except at most one such a path, satisfies $N_{G}\left(z_{j}\right) \cap\left(V(\right.$ R_Stem $\left.(T))-\left\{y_{s}\right\}\right) \neq \emptyset$. For each $z_{j}, 1 \leqslant$ $j \leqslant m$, take a vertex $t_{j} \in N_{G}\left(z_{j}\right) \cap\left(V\left(\operatorname{R_ Stem}(T)\right)-\left\{y_{s}\right\}\right)$ and let $v_{j}=N_{T}\left(y_{s}\right) \cap$ $V\left(P_{T}\left[z_{j}, y_{s}\right)\right)$. Then $T^{\prime}:=T+\left\{z_{j} t_{j}: 1 \leqslant j \leqslant m\right\}-\left\{y_{s} v_{j}: 1 \leqslant j \leqslant m\right\}$ satisfies $V\left(T^{\prime}\right)=V(T), \mid L\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|\leqslant| L($ R_Stem $(T))\left|,\left|L\left(T^{\prime}\right)\right|=|L(T)|\right.$ and \mid R_Stem $\left(T^{\prime}\right)|<|$ R_Stem $(T) \mid$, since y_{s} is not a vertex of R_Stem $\left(T^{\prime}\right)$. This gives a contradiction. Therefore, Claim 2.4 holds.

Set $U=\left\{a_{i}, b_{i}: 1 \leqslant i \leqslant l\right\}$.
Claim 2.5. U is an independent set in G.
Proof. Suppose that there exist two vertices $u, v \in U$ such that $u v \in E(G)$. Without lost of generality, we assume that $v=a_{i}$ for some $i \in\{1,2, \ldots, l\}$. Set $v_{i} \in N_{T}\left(y_{i}\right) \cap V\left(\operatorname{lb} P_{T}\left(a_{i}\right)\right)$. Consider the tree $T^{\prime}:=T+u a_{i}-v_{i} y_{i}$. Then the number of vertices of T^{\prime} remains unchanged, i.e., equal to that of $T,\left|B\left(\mathrm{R}_{-} \operatorname{Stem}\left(T^{\prime}\right)\right)\right| \leqslant$ $\mid B($ R_Stem $(T))|| L,\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|\leqslant| L($ R_Stem $(T)) \mid$ and $\left|L\left(T^{\prime}\right)\right|<|L(T)|$. This contradicts either Claim 2.2 or the condition (C1) or the condition (C2). The proof of Claim 2.5 is completed.

Claim 2.6. For each $i, j \in\{1,2, \ldots, k+1\}$ with $i \neq j$, it follows that $N_{G}\left(a_{i}\right) \cap$ $\operatorname{lb} P_{T}\left(a_{j}\right)=\emptyset$ and $N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}\left(b_{j}\right)=\emptyset$.

Proof. As a_{i} and b_{i} play the same role, we only need to prove $N_{G}\left(a_{i}\right) \cap$ $\operatorname{lb} P_{T}\left(a_{j}\right)=\emptyset$. Suppose the assertion of the claim is false. Then there exists a vertex $x \in N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{j}\right)$. Set $T^{\prime}:=T+x a_{i}$. Then T^{\prime} is a subgraph of G including a unique cycle C, which contains both y_{i} and y_{j}.

Since $\mid B($ R_Stem $(T)) \mid \geqslant 1$. Then there exists a branch vertex u of R_Stem (T) contained in C. Let e be an edge of C incident with u. By removing the edge e from T^{\prime} we obtain a tree $T^{\prime \prime}$ of G satisfying $V\left(T^{\prime \prime}\right)=V(T), \mid B\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right) \mid \leqslant$ $\mid B($ R_Stem $(T)) \mid$ and $\mid L\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right)|<| L($ R_Stem $(T)) \mid$, since y_{i} and y_{j} are not leaves of R_Stem $\left(T^{\prime \prime}\right)$. This contradicts either Claim 2.2 or the condition (C1). So Claim 2.6 is proved.

Claim 2.7. For each $1 \leqslant i \neq j \leqslant l, d_{G}\left(s_{i}, s_{j}\right) \geqslant 4$ for $s_{i} \in\left\{a_{i}, b_{i}\right\}$ and $s_{j} \in$ $\left\{a_{j}, b_{j}\right\}$.

Proof. By the symmetry of a_{i} and b_{i}, it suffices to show that $d_{G}\left(a_{i}, a_{j}\right) \geqslant 4$. Let $P\left[a_{i}, a_{j}\right]$ be a shortest path connecting a_{i} and a_{j} in G. Assume that all the vertices of $P\left[a_{i}, a_{j}\right]$ are contained in $(V(G)-$ R_Stem $(T)) \cup\left\{y_{i}, y_{j}\right\}$.

Let t_{i} be the vertex of $\operatorname{lb} P_{T}\left(a_{i}\right) \cap P\left[a_{i}, a_{j}\right]$ closest to y_{i}, and t_{j} be the vertex of $\operatorname{lb} P_{T}\left(a_{j}\right) \cap P\left[a_{i}, a_{j}\right]$ closest to y_{j}. Then $P\left[a_{i}, a_{j}\right]=P_{G}\left[a_{i}, t_{i}\right] \cup P_{G}\left[t_{i}, t_{j}\right] \cup P_{G}\left[t_{j}, a_{j}\right]$, where $P_{G}\left[t_{i}, t_{j}\right]$ passes only through vertices contained in $(V(G-$ R_Stem $(T))) \cup$ $\left\{y_{i}, y_{j}\right\}$.

Figure 3. Tree $T^{\prime \prime}$

For each leaf-branch path $\operatorname{lb} P_{T}(p)$ of T such that $\operatorname{lb} P_{T}(p) \cap P\left[t_{i}, t_{j}\right] \neq \emptyset$, remove the edge of $\operatorname{lb} P_{T}(p)$ incident to R_Stem (T) and add $P\left[t_{i}, t_{j}\right]$. Then the resulting subgraph T^{\prime} of G includes a unique cycle C, which contains two vertices y_{i} and y_{j}. Because $\mid B\left(\right.$ R_Stem $\left.^{\prime}(T)\right) \mid \geqslant 1$, there exists a branch vertex u of R_Stem (T) contained in C. Let e be an edge in C incident with u. Denote by $T^{\prime \prime}$ the tree obtained from T by removing the edge e, see Figure 3 for an example. Then $V(T) \subseteq V\left(T^{\prime}\right)=V\left(T^{\prime \prime}\right), \mid B\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right)|\leqslant| B($ R_Stem $(T)) \mid$ and
$\mid L\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right)|<| L($ R_Stem $(T)) \mid$, where y_{i} and y_{j} are not leaves of R_Stem $\left(T^{\prime \prime}\right)$. This contradicts either the maximality of T or Claim 2.2 or the condition (C1). Therefore, $P\left[a_{i}, a_{j}\right] \cap\left(\right.$ R_Stem $\left.(T)-\left\{y_{i}, y_{j}\right\}\right) \neq \emptyset$. Set $v \in P\left[a_{i}, a_{j}\right] \cap($ R_Stem $(T)-$ $\left.\left\{y_{i}, y_{j}\right\}\right)$. Hence, by combining with Claim 2.4, we obtain

$$
d_{G}\left(a_{i}, a_{j}\right)=d_{P\left[a_{i}, a_{j}\right]}\left(a_{i}, a_{j}\right)=d_{P\left[a_{i}, a_{j}\right]}\left(a_{i}, v\right)+d_{P\left[a_{i}, a_{j}\right]}\left(v, a_{j}\right) \geqslant 2+2=4 .
$$

This completes the proof of Claim 2.7.
By Claim 2.7 we obtain that $\alpha^{4}(G) \geqslant l \geqslant k+3$.
Claim 2.8. $\quad \sum_{y \in U}\left|N_{G}(y) \cap \mathrm{lb} P_{T}(p)\right| \leqslant\left|\mathrm{lb} P_{T}(p)\right|-1$ for every $p \in L(T)-U$.
Proof. Let $p \in L(T)-U$ and let v_{p} be the nearest branch vertex of T to p. Then $P_{T}\left[p, v_{p}\right) \cap B(T)=\emptyset$.

Subclaim 2.8.1. $\left\{p, v_{p}^{-}\right\} \cap N_{G}(U)=\emptyset$.
Proof. Indeed, to the contrary, without loss of generality, assume that $q \in$ $N_{G}\left(a_{i}\right)$ for some $a_{i} \in U$ and $q \in\left\{p, v_{p}^{-}\right\}$. We consider the tree $T^{\prime}:=T+$ $a_{i} q-v_{p} v_{p}^{-}$. Hence, T^{\prime} is a tree with $\left|V\left(T^{\prime}\right)\right|=|V(T)|, \mid B\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right) \mid=k+1$, $\mid L\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|=| L($ R_Stem $(T)) \mid$ and $\left|L\left(T^{\prime}\right)\right|<|L(T)|$. This contradicts the condition (C2). Therefore, $\left\{p, v_{p}^{-}\right\} \cap N_{G}(U)=\emptyset$.

Subclaim 2.8.2. If every $x \in \operatorname{lb} P_{T}(p)$ then x is adjacent to at most 2 vertices in U.

Figure 4. Tree $T^{\prime \prime}$
Proof. Indeed, we first prove that if $x \in N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}(p)$, then $x \notin N_{G}\left(a_{j}\right) \cup$ $N_{G}\left(b_{j}\right)$ for all $1 \leqslant i \neq j \leqslant l$. In particular, $N_{3}(U) \cap \operatorname{lb} P_{T}(p)=\emptyset$. To the contrary, without loss of generality, assume that there exist $1 \leqslant i \neq j \leqslant k+1$ such that $x \in N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}(p)$ and $x \in N_{G}\left(a_{j}\right)$. Set $T^{\prime}:=T+\left\{x a_{i}, x a_{j}\right\}-v_{p} v_{p}^{-}$. Then T^{\prime} is
a subgraph of G including a unique cycle C, which contains two vertices, y_{i} and y_{j}. Since $\mid B($ R_Stem $(T)) \mid \geqslant 1$, there exists a branch vertex in R_Stem (T) contained in C. Let e be an edge of C incident with u. By removing the edge e we obtain a tree $T^{\prime \prime}$ of G, see Figure 4 for an example. Then $\left|V\left(T^{\prime \prime}\right)\right|=|V(T)|, \mid B\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right) \mid \leqslant$ $\mid B($ R_Stem $(T)) \mid$ and $\mid L\left(\right.$ R_Stem $\left.\left(T^{\prime \prime}\right)\right)|<| L($ R_Stem $(T)) \mid$, where y_{i} and y_{j} are not leaves of R_Stem $\left(T^{\prime \prime}\right)$. This contradicts either Claim 2.2 or the condition (C1). Therefore, we obtain $\left|U \cap N_{G}(x)\right| \leqslant 2$.

For convenience, let $a_{l+j}:=b_{j}$ for all $1 \leqslant j \leqslant l$, and thus $U=\left\{a_{1}, a_{2}, \ldots, a_{2 l}\right\}$.
Subclaim 2.8.3. For each $i \in\{1,2, \ldots, 2 l\}$, if $x \in N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}(p)$ then $x^{+} \notin$ $N_{G}\left(U-\left\{a_{i}\right\}\right) \cap \operatorname{lb} P_{T}(p)$.

Proof. Suppose that there exists $x^{+} \in N_{G}(z) \cap \operatorname{lb} P_{T}(p)$ with $z \in U-\left\{a_{i}\right\}$. Let $T^{\prime}:=T+\left\{x a_{i}, x^{+} z\right\}-\left\{x x^{+}, v_{p} v_{p}^{-}\right\}$. Then, T^{\prime} is a tree with $\left|V\left(T^{\prime}\right)\right|=|V(T)|$, $\mid B\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|=k+1| L,\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|=| L($ R_Stem $(T)) \mid$ and $\left|L\left(T^{\prime}\right)\right|<|L(T)|$. This contradicts the condition (C 2).

Now, by Subclaims 2.8.2 and 2.8.3 we conclude that $\{p\}, N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}(p)$, $\left(N_{G}\left(U-\left\{a_{i}\right\}\right) \cap \mathrm{lb} P_{T}(p)\right)^{+}$and $\left(N_{2}(U)-N\left(a_{i}\right)\right) \cap \mathrm{lb} P_{T}(p)$ are pairwise disjoint subsets in $\operatorname{lb} P_{T}(p)$ for each $1 \leqslant i \leqslant 2 l$. Note that if $z \in\left(N_{2}(U)-N\left(a_{i}\right)\right) \cap \operatorname{lb} P_{T}(p)$, then $z \in N_{G}\left(a_{k}\right) \cap N_{G}\left(b_{k}\right)$ for some $1 \leqslant k \neq i \leqslant l$ and $z^{-} \notin N(U)$. Recall that $N_{3}(U) \cap \operatorname{lb} P_{T}(p)=\emptyset$ by Subclaim 2.8.2. Then by combining with Subclaim 2.8.1 we obtain

$$
\begin{aligned}
\left|\mathrm{lb} P_{T}(p)\right|-1 \geqslant & \left|N\left(a_{i}\right) \cap \mathrm{lb} P_{T}(p)\right|+\left|\left(N\left(U-\left\{a_{i}\right\}\right) \cap \mathrm{lb} P_{T}(p)\right)^{+}\right| \\
& +\left|\left(N_{2}(U)-N\left(a_{i}\right)\right) \cap \mathrm{lb} P_{T}(p)\right| \\
= & \left|N\left(a_{i}\right) \cap \mathrm{lb} P_{T}(p)\right|+\left|N\left(U-\left\{a_{i}\right\}\right) \cap \mathrm{lb} P_{T}(p)\right| \\
& +\left|\left(N_{2}(U)-N\left(a_{i}\right)\right) \cap \mathrm{lb} P_{T}(p)\right| \\
= & \sum_{y \in U}\left|N_{G}(y) \cap \operatorname{lb} P_{T}(p)\right| .
\end{aligned}
$$

Claim 2.8 is proved.
Claim 2.9. For each $1 \leqslant i \leqslant l$, it is $\sum_{y \in U}\left|N_{G}(y) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right| \leqslant\left|\mathrm{lb} P_{T}\left(a_{i}\right)\right|-1$ and
$\sum_{G}(y) \cap \operatorname{lb} P_{T}\left(b_{i}\right)\left|\leqslant \operatorname{lb} P_{T}\left(b_{i}\right)\right|-1.4$ $\sum_{y \in U}\left|N_{G}(y) \cap \operatorname{lb} P_{T}\left(b_{i}\right)\right| \leqslant\left|\mathrm{lb} P_{T}\left(b_{i}\right)\right|-1 .{ }^{y \in U}$

Proof. As a_{i} and b_{i} play the same role, we only need to prove $\sum_{y \in U} \mid N_{G}(y) \cap$
$P_{T}\left(a_{i}\right)\left|\leqslant\left|\operatorname{lb} P_{T}\left(a_{i}\right)\right|-1\right.$. $\operatorname{lb} P_{T}\left(a_{i}\right)\left|\leqslant\left|\mathrm{lb} P_{T}\left(a_{i}\right)\right|-1\right.$.

By Claim 2.6, we conclude that $N_{G}(U) \cap \operatorname{lb} P_{T}\left(a_{i}\right)=N_{G}\left(\left\{a_{i}, b_{i}\right\}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)$.

Subclaim 2.9.1. For $y_{i}^{-} \in \operatorname{lb} P_{T}\left(a_{i}\right), y_{i}^{-} \notin N_{G}\left(b_{i}\right)$.
Proof. Assume that y_{i}^{-}is adjacent to b_{i} in G. Consider the tree $T^{\prime}=T+$ $b_{i} y_{i}{ }^{-}-y_{i}{ }^{-} y_{i}$. Then T^{\prime} is a tree of G such that $V\left(T^{\prime}\right)=V(T), \mid B\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right) \mid \leqslant$ $\mid B($ R_Stem $(T))|| L,\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|\leqslant| L($ R_Stem $(T)) \mid$ and $\left|L\left(T^{\prime}\right)\right|<|L(T)|$. This contradicts either Claim 2.2 or the condition (C1) or the condition (C2).

Subclaim 2.9.2. If $x \in N_{G}\left(a_{i}\right) \cap \mathrm{lb} P_{T}\left(a_{i}\right)$, then $x^{-} \notin N_{G}\left(b_{i}\right)$.
Proof. Suppose that there exists $x \in N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)$ such that $x^{-} \in N_{G}\left(b_{i}\right) \cap$ $\operatorname{lb} P_{T}\left(a_{i}\right)$. Set $T^{\prime}:=T+\left\{x a_{i}, b_{i} x^{-}\right\}-\left\{x x^{-}, y_{i}^{-} y_{i}\right\}$, where $y_{i}^{-} \in \operatorname{lb} P_{T}\left(a_{i}\right)$. Hence, T^{\prime} is a tree of G such that $V\left(T^{\prime}\right)=V(T), \mid B\left(\operatorname{R}\right.$ _Stem $\left.\left(T^{\prime}\right)\right)|\leqslant| B(\operatorname{R}$ _Stem $(T)) \mid$, $\mid L\left(\right.$ R_Stem $\left.\left(T^{\prime}\right)\right)|\leqslant| L($ R_Stem $(T)) \mid$ and $\left|L\left(T^{\prime}\right)\right|<|L(T)|$. This contradicts either Claim 2.2 or the condition (C1) or the condition (C2). Subclaim 2.9.2 holds.

By Subclaims 2.9.1 and 2.9.2 and Claim 2.6 we conclude that $\left\{a_{i}\right\}, N_{G}\left(a_{i}\right) \cap$ $\mathrm{lb} P_{T}\left(a_{i}\right)$ and $\left(N_{G}\left(b_{i}\right) \cap \mathrm{lb} P_{T}\left(a_{i}\right)\right)^{+}$are pairwise disjoint subsets in $\operatorname{lb} P_{T}\left(a_{i}\right)$. Then

$$
\begin{aligned}
\sum_{y \in U}\left|N_{G}(y) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right| & =\left|N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right|+\left|N_{G}\left(b_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right| \\
& =\left|N_{G}\left(a_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right|+\left|\left(N_{G}\left(b_{i}\right) \cap \operatorname{lb} P_{T}\left(a_{i}\right)\right)^{+}\right| \\
& \leqslant\left|\operatorname{lb} P_{T}\left(a_{i}\right)\right|-1 .
\end{aligned}
$$

This completes the proof of Claim 2.9.
By Claims 2.4, 2.6, 2.8 and 2.9, we obtain that

$$
\begin{aligned}
\operatorname{deg}_{G}(U)= & \sum_{i=1}^{l}\left(\operatorname{deg}_{G}\left(a_{i}\right)+\operatorname{deg}_{G}\left(b_{i}\right)\right) \\
\leqslant & \sum_{i=1}^{l}\left(\left|\mathrm{lb} P_{T}\left(a_{i}\right)\right|-1\right)+\sum_{i=1}^{l}\left(\left|\mathrm{lb} P_{T}\left(b_{i}\right)\right|-1\right)+2\left|\left\{y_{i}: 1 \leqslant i \leqslant l\right\}\right| \\
& +\sum_{p \in L(T)-U}\left|\mathrm{lb} P_{T}(p)-1\right| \\
\leqslant & \sum_{i=1}^{l}\left(\left|\operatorname{lb} P_{T}\left(a_{i}\right)\right|\right)+\sum_{i=1}^{l}\left(\left|\operatorname{lb} P_{T}\left(b_{i}\right)\right|\right)+\sum_{p \in L(T)-U}\left|\operatorname{lb} P_{T}(p)\right| \\
= & |G|-|\operatorname{RZStem}(T)|^{l}
\end{aligned}
$$

On the other hand, we note that $\left|\mathrm{R} _\operatorname{Stem}(T)\right| \geqslant l+k+1 \geqslant 2 k+4$. Hence,

$$
\begin{aligned}
\sum_{i=1}^{l} \operatorname{deg}_{G}\left(a_{i}\right)+\sum_{i=1}^{l} \operatorname{deg}_{G}\left(b_{i}\right) & \leqslant|G|-2 k-4 \Rightarrow \min \left\{\sum_{i=1}^{l} \operatorname{deg}_{G}\left(a_{i}\right), \sum_{i=1}^{l} \operatorname{deg}_{G}\left(b_{i}\right)\right\} \\
& \leqslant\left\lfloor\frac{|G|-2 k-4}{2}\right\rfloor
\end{aligned}
$$

Combining the above inequality with Claim 2.7 , we obtain

$$
\sigma_{l}^{4}(G) \leqslant \min \left\{\sum_{i=1}^{l} \operatorname{deg}_{G}\left(a_{i}\right), \sum_{i=1}^{l} \operatorname{deg}_{G}\left(b_{i}\right)\right\} \leqslant\left\lfloor\frac{|G|-2 k-4}{2}\right\rfloor .
$$

Moreover, $l \geqslant k+3$ and we conclude that

$$
\sigma_{k+3}^{4}(G) \leqslant \sigma_{l}^{4}(G) \leqslant\left\lfloor\frac{|G|-2 k-4}{2}\right\rfloor .
$$

This gives a contradiction of the assumption of Theorem 1.7.
The proof of Theorem 1.7 is completed.
Acknowledgment. We would like to thank the referees for their valuable comments that helped us improve this research, especially for notations and terminologies.

References

[1] H. Broersma, H. Tuinstra: Independence trees and Hamilton cycles. J. Graph Theory 29 (1998), 227-237.

Zbl MR doi
[2] Y. Chen, G. Chen, Z. Hu: Spanning 3 -ended trees in k-connected $K_{1,4}$-free graphs. Sci. China, Math. 57 (2014), 1579-1586.
zbl MR doi
[3] Y. Chen, P. H. Ha, D. D. Hanh: Spanning trees with at most 4 leaves in $K_{1,5}$-free graphs. Discrete Math. 342 (2019), 2342-2349.
[4] R. Diestel: Graph Theory. Graduate Texts in Mathematics 173. Springer, Berlin, 2005.
[5] P. H. Ha, D. D. Hanh: Spanning trees of connected $K_{1, t}$-free graphs whose stems have a few leaves. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2373-2383.
zbl MR doi
[6] P.H.Ha, D. D. Hanh, N. T. Loan: Spanning trees with few peripheral branch vertices. Taiwanese J. Math. 25 (2021), 435-447.
[7] M. Kano, A.Kyaw, H. Matsuda, K. Ozeki, A.Saito, T. Yamashita: Spanning trees with a bounded number of leaves in a claw-free graph. Ars Combin. 103 (2012), 137-154.
[8] M. Kano, Z. Yan: Spanning trees whose stems have at most k leaves. Ars Combin. 117 (2014), 417-424.
zbl MR
[9] M. Kano, Z. Yan: Spanning trees whose stems are spiders. Graphs Comb. 31 (2015), 1883-1887.
zbl MR
zbl MR doi
[10] A. Kyaw: Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs. Discrete Math. 309 (2009), 6146-6148.
zbl MR doi
[11] A. Kyaw: Spanning trees with at most k leaves in $K_{1,4}$-free graphs. Discrete Math. 311 (2011), 2135-2142.
[12] M. Las Vergnas: Sur une propriété des arbres maximaux dans un graphe. C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1297-1300. (In French.)
zbl MR doi

13] S.-i. Maezawa, R. Matsubara, H. Matsuda: Degree conditions for graphs to have spanning trees with few branch vertices and leaves. Graphs Comb. 35 (2019), 231-238.
[14] M. M. Matthews, D. P. Sumner: Hamiltonian results in $K_{1,3}$-free graphs. J. Graph Theory 8 (1984), 139-146.
zbl MR doi
[15] K. Ozeki, T. Yamashita: Spanning trees: A survey. Graphs Comb. 27 (2011), 1-26. Zbl MR doi
[16] M. Tsugaki, Y. Zhang: Spanning trees whose stems have a few leaves. Ars Comb. 114 (2014), 245-256.
zbl MR
[17] S. Win: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Result. Math. 2 (1979), 215-224.
zbl MR doi
[18] Z. Yan: Spanning trees whose stems have a bounded number of branch vertices. Discuss. Math., Graph Theory 36 (2016), 773-778.
zbl MR doi

Authors' addresses: Pham Hoang Ha (corresponding author), Department of Mathematics, Hanoi National University of Education, 136 XuanThuy Str., Hanoi, Vietnam, e-mail: ha.ph@hnue.edu.vn; Dang Dinh Hanh, Department of Mathematics, Hanoi Architectural University, Km10 NguyenTrai Str., Hanoi, Vietnam, e-mail: hanhdd@hau. edu. vn; Nguyen Thanh Loan, Institute of Mathematics, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam, e-mail: ntloan@math.ac.vn Ngoc Diep Pham, Nguyen Hue High School for Gifted Students, 560B QuangTrung Str., HaDong Distr., Hanoi, Vietnam, e-mail: ngocdiep23394@gmail.com.

