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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 57 (2021), 299–311

AN UPPER BOUND OF A GENERALIZED UPPER
HAMILTONIAN NUMBER OF A GRAPH

Martin Dzúrik

Abstract. In this article we study graphs with ordering of vertices, we define
a generalization called a pseudoordering, and for a graph H we define the
H-Hamiltonian number of a graph G. We will show that this concept is a
generalization of both the Hamiltonian number and the traceable number. We
will prove equivalent characteristics of an isomorphism of graphs G and H
using H-Hamiltonian number of G. Furthermore, we will show that for a fixed
number of vertices, each path has a maximal upper H-Hamiltonian number,
which is a generalization of the same claim for upper Hamiltonian numbers
and upper traceable numbers. Finally we will show that for every connected
graph H only paths have maximal H-Hamiltonian number.

1. Introduction

In this article we study a part of graph theory based on an ordering of vertices.
We define a generalization called a pseudoordering of a graph. We will show how
to generalize a Hamiltonian number, for a graph H we define the H-Hamiltonian
number of a graph G and we will show that this concept is a generalization of both
the Hamiltonian number and the traceable number. We get them by a special choice
of graph H. Furthermore, we will study a maximalization of upper H-Hamiltonian
number for a fixed number of vertices. We will show that, for a fixed number
of vertices, each path has a maximal upper H-Hamiltonian number. From the
definition it will be obvious that a lower bound of the H-Hamiltonian number is
the number of edges |E(H)| and the graph G has a minimal lower H-Hamiltonian
number if and only if H is a subgraph of G. Now we can say that G having
a maximal upper H-Hamiltonian number is dual to H being a subgraph of G.
Furthermore, by above for every two finite graphs G and H such that G is connected
satisfying |V (G)| = |V (H)| and |E(G)| = |E(H)|, we get that G ∼= H if and only
if the lower H-Hamiltonian number of G is |E(H)|.

In [2] it is proved that G has a maximal upper traceable number if and only if
G is a path. The same is proved for Hamiltonian number. We will show that for
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H connected G has a maximal H-Hamiltonian number if and only if G is a path.
This shows that this generalization of ordering of vertices is natural.

This article is based on the bachelor thesis [1]. The author would like to thank
Jiří Rosický for many helpful discussions.

In this article we will study a generalization of Hamiltonian spectra of undirected
finite graphs. Recall that, a graph G is a pair

G =
(
V (G), E(G)

)
,

where V (G) is a finite set of vertices of G and E(G) ⊆ V (G)× V (G), a symmetric
Antireflexive relation, is a set of edges. We will denote an edge between v and u by
{v, u}.

Recall that, an ordering on the graph G is a bijection
f : {1, 2, . . . , |V (G)|} → V (G) ,

we denote

s(f,G) =
|V (G)|∑
i=1

ρG
(
f(i), f(i+ 1)

)
,

s̄(f,G) =
|V (G)|−1∑
i=1

ρG
(
f(i), f(i+ 1)

)
,

where ρG(x, y) is the distance of x, y in the graph G and f(|V (G)|+ 1) := f(1),
for better notation. We will write only s(f), s̄(f) if the graph is clear from context.
Then

{s(f,G) | f ordering on G}
{s̄(f,G) | f ordering on G}

are the Hamiltonian spectrum of the graph G and the traceable spectrum of the
graph G, respectively.

We want to generalize the notion of an ordering of a graph.

Definition 1.1. Let G, H be graphs such that |V (G)| = |V (H)| and
f : V (H)→ V (G) is a bijection, then we call f a pseudoordering on the graph G
(by H), denote

sH(f,G) =
∑

{x,y}∈E(H)

ρG
(
f(x), f(y)

)
,

where ρG(x, y) is the distance of x, y in the graph G. We will call sH(f,G) the
sum of the pseudoordering f . Then

{sH(f,G) | f pseudoordering on G by H}
is the H-Hamiltonian spectrum of the graph G.

The minimum and the maximum of a Hamiltonian spectrum and of a traceable
spectrum are called the (lower) Hamiltonian number and the upper Hamiltonian
number, respectively. Furthermore, the (lower) traceable number and the upper
traceable number of a graph G are denoted by
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h(G) = min{s(f,G) | f ordering on G} ,

h+(G) = max{s(f,G) | f ordering on G} ,

t(G) = min{s̄(f,G) | f ordering on G} ,

t+(G) = max{s̄(f,G) | f ordering on G} .
Now we define generalized versions.

Definition 1.2.
hH(G) = min{sH(f,G) | f pseudoordering on G},

h+
H(G) = max{sH(f,G) | f pseudoordering on G} .

We will call them the lower H-Hamiltonian number and the upper H-Hamiltonian
number of a graph G, respectively.

Now take H = C|V (G)|, where Cn is the cycle with n vertices. When we denote
the vertices of C|V (G)| by {1, 2, . . . , |V (G)|} we can see that

s(f,G) = sC|V (G)|(f,G) .
Analogously for H = P|V (G)|−1, where Pn−1 is the path of length n− 1, we get

that
s̄(f,G) = sP|V (G)|−1(f,G) .

Remark 1.3. The C|V (G)|-Hamiltonian spectrum of a graph G is equal to the
Hamiltonian spectrum of G for |V (G)| ≥ 3, and the P|V (G)|−1-Hamiltonian spec-
trum of G is equal to the traceable spectrum of G for |V (G)| ≥ 2.

Lemma 1.4. Let G be a connected finite graph and H be a graph such that
|V (G)| = |V (H)|, then hH(G) = |E(H)| if and only if H is isomorphic to some
subgraph of G.

Proof. Let f : V (H) → V (G) be a pseudoordering satisfying s(f,G) = |E(H)|,
then f is an injective graph homomorphism. The opposite implication is obvious. �

Lemma 1.5. Let G be a connected finite graph and H be a graph such that
|V (G)| = |V (H)| and |E(G)| = |E(H)|, then hH(G) = |E(H)| if and only if H is
isomorphic to the graph G.

Proof. The graph H is isomorphic to a subgraph of G and furthermore |V (G)| =
|V (H)|, |E(G)| = |E(H)|, hence H ∼= G. The opposite implication is obvious. �

2. Maximalization of the upper H-Hamiltonian number of a graph G

In this section we will prove that for every pair of connected graphs H,G and
each pseudoordering f there exists a pseudoordering

g : V (H)→ {1, 2, . . . , |V (G)|}
such that

sH(f,G) ≤ sH(g, P|V (G)|−1) .
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At first, let G be a tree. We will only work with graphs which have at least 2 vertices.

Definition 2.1. LetG andH be graphs such thatG is connected, |V (G)| = |V (H)|
and f : V (H)→ V (G) is a pseudoordering. Furthermore, let a, b ∈ V (G), we define
a ∼H,f b if and only if {f−1(a), f−1(b)} ∈ E(H).

Definition 2.2. Let G be a tree such that G is not a path. Denote three pairwise
distinct leaves by l, k, v ∈ V (G). Because G is not a path then G has at least 3
leaves, connect l, k with a path l = x1, x2, . . . , xm = k. Connect v, l with a path l
v = y1, y2, . . . , ys = l and take the minimum of a set

im = min{i | ∃j ∈ {1, . . . ,m}, yi = xj} .
Take jm such that yim = xjm . Now we define u = yim , w = yim−1, u+ = xjm−1,
u− = xjm+1.

Example.

Remark 2.3. l 6= u 6= k.

Definition 2.4. Define a set K(v,G) ⊆ V (G) as a set of vertices z ∈ V (G) such
the path between z and l uses the edge {w, u}.

Remark 2.5. K(v,G) is the connected component of
(
V (G), E(G) \ {w, u}

)
, G

without edge {w, u}, which contains v.

Lemma 2.6. (i) Paths between vertices from K(v,G) don’t use the edge {w, u}.
(ii) Paths between vertices from V (G) \K(v,G) don’t use the edge {w, u}.
(iii) Paths joining a vertex from V (G) \K(v,G) to a vertex from K(v,G) use the

edge {w, u}.

Proof. Because G is a tree, there is a unique path between each pair of vertices,
then it is obvious by remark 2.5. �
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Definition 2.7. Define graphs
Ḡ =

(
V (G), E(G) \ {{w, u}} ∪ {{w, l}}

)
,

G̃ =
(
V (G), E(G) \ {{w, u}} ∪ {{w, k}}

)
.

Lemma 2.8. Ḡ and G̃ are trees.

Proof. At first we show connectivity, let a, b ∈ V (G), connect them with a path.
If both are in K(v,G) or in V (G) \K(v,G), then by Lemma 2.6, the path in G
uses only edges which are also in Ḡ, G̃. Hence it is path also there.

Let a ∈ K(v,G) and b ∈ V (G)\K(v,G). We can see w ∈ K(v,G), by Lemma 2.6
a path between a and w, a = a1, a2, . . . , ap = w, doesn’t use {w, u} and all vertices
of this path are in K(v,G). If not, there is a path between vertices from K(v,G) and
V (G) \K(v,G) which doesn’t use {w, u}, that is a contradiction with Lemma 2.6.
Connect l and b with a path, l = b1, b2, . . . , bq = b. It doesn’t use {w, u} and all
vertices are in V (G) \K(v,G). Then a = a1, a2, . . . , ap = w, l = b1, b2, . . . , bq = b

is a path between a, b in the graph Ḡ, analogously for G̃.
Now we show that they don’t contain a cycle, for contradiction suppose that Ḡ

contains a cycle C ⊆ Ḡ. If C doesn’t use the edge {w, l}, then C ⊆ G, but G is a
tree, this is a contradiction. If C uses {w, l}, then there exists a path in G between
w, l, which doesn’t use the edge {w, l}. Then there exists a path in G between w, l,
which doesn’t use the edge {w, u}, but w ∈ K(v,G) and l ∈ V (G) \K(v,G), that
is contradiction with Lemma 2.6. Analogously for G̃. �

We want to show that
sH(G, f) ≤ sH(Ḡ, f)

or

sH(G, f) ≤ sH(G̃, f) .

Lemma 2.9.
a, b ∈ K(v,G), then ρG(a, b) = ρḠ(a, b) = ρG̃(a, b) ,

a, b ∈ V (G) \K(v,G), then ρG(a, b) = ρḠ(a, b) = ρG̃(a, b) .

Proof. A path in G between a, b, by Lemma 2.6, doesn’t use {u,w} , hence it is a
path in Ḡ and G̃ too, then the distance of a, b is the same in G, Ḡ and G̃. �

Definition 2.10. Define subsets
F+, F−, F 0 ⊆ K(v,G)×

(
V (G) \K(v,G)

)
such that (a, b) ∈ F+ if a path between a, b uses the edge {u, u+}. (a, b) ∈ F− if
a path between a, b uses the edge {u, u−} and (a, b) ∈ F 0 if a path between a, b
doesn’t use neither {u, u−} nor {u, u+}.

Lemma 2.11. F+, F−, F 0 are pairwise disjoint and
F+ ∪ F− ∪ F 0 = K(v,G)×

(
V (G) \K(v,G)

)
.
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Proof. From the definition of F+, F−, F 0 we have F− and F 0, F+ and F 0 are
disjoint. Let (a, b) ∈ F+∩F−, then the path between a, b uses edges {u, u−}, {u, u+}
and by lemma 2.6, it also uses the edge {w, u}. Hence it is a path which has a
vertex of degree 3 and that is contradiction. �

Lemma 2.12. Let x, x̄ ∈ K(v,G) and y, ȳ ∈ V (G)\K(v,G) such that (x, y) ∈ F+

and (x̄, ȳ) ∈ F−. Then

ρḠ(x, y) + ρḠ(x̄, ȳ) ≥ ρG(x, y) + ρG(x̄, ȳ) ,

ρG̃(x, y) + ρG̃(x̄, ȳ) ≥ ρG(x, y) + ρG(x̄, ȳ) .
Moreover, both sides are equal, in the first inequality, if and only if y = l and, in
the second inequality, if and only if ȳ = k.

Proof. Let z denote the first common vertex of paths Q : l = y1, y2, . . . , ys = k
and P : y = x1, x2, . . . , xm = x. Consider

im = min{i | ∃j ∈ {1, . . . ,m}, yi = xj}

and therefore z = yim , let T be the path from z to l, we will show that z is the
only one common vertex of T and P , vertices from P split into the 4 subpaths,
P1 from y to z, P2 from z to u, edge {u,w} and P3 from w to x. Vertices from P1
are not in Q (except for z) from the definition of z. Vertices from P2 are not in T
(except for z) from the uniqueness of paths in trees and vertices from P3 belong
to K(v,G) and every vertex of T belongs to V (G) \K(v,G). By composition of
paths P1, T, {l, w}, P3, we get a path from y to x in the graph Ḡ.

Let P̄ denote the path from ȳ to x̄, analogously define z̄ as the first common
vertex of paths P̄ and Q (first in the direction from ȳ to x̄ ). We split P̄ into the
subpaths P̄1 from ȳ to z̄ , P̄2 from z̄ to u, edge {u,w} and P̄3 from u to x̄. Let T̄
be the path from u to l, analogously we get that u is the only one common vertex
of P̄ and T̄ . Hence P̄1, P̄2, T̄ , {l, w}, P̄3 is a path between ȳ, x̄ in the graph Ḡ.

And for paths from u to z and from u to z̄, u is the only one common vertex,
by uniqueness of path in trees.

Now we can calculate

ρG(x, y) = ρG(x,w) + 1 + ρG(u, z) + ρG(z, y) ,

ρG(x̄, ȳ) = ρG(x̄, w) + 1 + ρG(u, z̄) + ρG(z̄, ȳ) ,

ρḠ(x, y) = ρG(x,w) + 1 + ρG(l, z) + ρG(z, y) ,

ρḠ(x̄, ȳ) = ρG(x̄, w) + 1 + ρG(l, z) + ρG(z, u) + ρG(u, z̄) + ρG(z̄, ȳ) ,

hence

ρḠ(x̄, ȳ) + ρḠ(x, y) = ρG(x̄, ȳ) + ρG(x, y) + 2ρG(l, z) .

Now we get our inequality and we see that both are equal if and only if l = z. But
l is a leaf, hence z is a leaf, then y = z = l. For G̃ analogously. �

Example. Paths between x, y and x̄, ȳ in graphs G and Ḡ.
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x x̄

y

ȳ

z

z̄

x x̄

z

ȳz̄

y

G Ḡ

1

Lemma 2.13. Let (x, y) ∈ F 0 then

ρḠ(x, y) > ρG(x, y) ,

ρG̃(x, y) > ρG(x, y) .

Proof. Let P be a path from x to y and Q be a path from l to k in G, for P and Q,
u is the only one common vertex because (x, y) ∈ F 0. Hence x→ w − l→ u→ y
is a path in Ḡ, where paths of type a→ b are subpaths of P and Q and − denotes
an edge. Now we can calculate the following

ρḠ(x, y) = ρG(x, u) + 1 + ρG(l, u) + ρG(u, y) = ρG(x, y) + ρG(l, u)
and from l 6= u we have inequality.

For G̃ analogously. �

Lemma 2.14.
ρḠ(x, y) > ρG(x, y) for (x, y) ∈ F− ,

ρG̃(x, y) > ρG(x, y) for (x, y) ∈ F+ .

Proof. We will prove the first inequality. As well as in lemma 2.12 denote z the
first common vertex of paths from y to x and from k to l, formally we can define it
as well as in lemma 2.12. Now we consider a path
x→ w − l→ u→ z → y. Hence

ρḠ(x, y) = ρG(x,w) + 1 + ρG(l, u) + ρG(u, z) + ρG(z, y)
= ρG(x, y) + ρG(l, u)

and from l 6= u we have inequality.
For second inequality analogously. �

Definition 2.15. Let G be a tree and H be a graph such that
|V (G)| = |V (H)|

and
f : V (H)→ V (G)
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is a pseudoordering, we define a set

L =
{

(x, y) ∈ K(v,G)×
(
V (G) \K(v,G)

)
| x ∼H,f y

}
,

where K(v,G) is the set from Definition 2.4.

Lemma 2.16. Let G be a tree and H be a graph such that, |V (G)| = |V (H)| and
f : V (H)→ V (G)

is a pseudoordering. Then
sH(f, Ḡ) ≥ sH(f,G)

or

sH(f, G̃) ≥ sH(f,G) ,
the first case occurs when

|L ∩ F+| ≤ |L ∩ F−| ,

the second case occurs when

|L ∩ F+| ≥ |L ∩ F−| .

Proof. Denote n+ = |L ∩ F+|, n− = |L ∩ F−|, m = |L ∩ F 0|,

m̄ =
∣∣{(x, y) ∈

(
K(v,G)2) ∪ ((V (G) \K(v,G)

)2) | x ∼H,f y}∣∣
2 ,

where square K(v,G)2 means K(v,G)×K(v,G). m̄ is number of edges {x, y} ∈
E(H), which satisfy that f(x) and f(y) lie in the same component of

(V (G), E(G) \ {w, u}) .
Let n+ ≥ n−, the second case is analogous, we rearrange the sum sH(f,G) in

this way

sH(f,G) =
n−∑
i=1

(
ρG(xi, yi) + ρG(x̄i, ȳi)

)
+

n+∑
i=n−+1

ρG(xi, yi)

+
m∑
i=1

ρG(ai, bi) +
m̄∑
i=1

ρG(ci, di) ,

where
(xi, yi) ∈ F+, (x̄i, ȳi) ∈ F−, (ai, bi) ∈ F 0,

(ci, di) ∈
{

(x, y) ∈
(
K(v,G)2) ∪ ((V (G) \K(v,G)

)2) | x ∼H,f y} .
Now, by Lemma 2.12

ρG(xi, yi) + ρG(x̄i, ȳi) ≤ ρG̃(xi, yi) + ρG̃(x̄i, ȳi) ,
by Lemma 2.14

ρG(xi, yi) ≤ ρG̃(xi, yi) ,
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by Lemma 2.13
ρG(ai, bi) ≤ ρG̃(ai, bi)

and by Lemma 2.9
ρG(ci, di) = ρG̃(ci, di) .

Hence

sH(f,G) ≤
n−∑
i=1

(ρG̃(xi, yi) + ρG̃(x̄i, ȳi))

+
n+∑

i=n−+1

ρG̃(xi, yi) +
m∑
i=1

ρG̃(ai, bi) +
m̄∑
i=1

ρG̃(ci, di)

= sH(f, G̃) .

�

Lemma 2.17. Let G be a tree and H be a graph such that, |V (G)| = |V (H)|
and f : V (H)→ V (G) is a pseudoordering. Then there exists a pseudoordering

g : V (H)→ {x1, x2, . . . , x|V (G)|} = V (P|V (G)|−1) such that

sH(f,G) ≤ sH(g, P|V (G)|−1) .

Proof. We denote
α(G) =

∑
v∈V (G)

degG v≥3

degG v,

from the definition of u, l and k we know that degG u ≥ 3 and degG l = degG k = 1.
From the construction of Ḡ and G̃ we have degḠ u = degG̃ u ≤ degG u, degḠ l =
degG̃ k = 2 and all other vertices have the same degree as before. Hence

α(Ḡ) < α(G) ,

α(G̃) < α(G) .
Let S be a tree, which is not a path, we choose any three pairwise distinct leaves
in V (S) and define S∗ as one of graphs S̄, S̃, which satisfy sH(f, S∗) ≥ sH(f, S).
Denote G0 = G and for i ≥ 0 denote Gi+1 = G∗i if Gi is not a path, otherwise
define Gi+1 = Gi. For contradiction we assume that the tree Gi is not a path for
every i ∈ N0. We know α(Gi) ∈ N0 for every i and

α(Gi+1) ≤ α(Gi)− 1 ,

hence

α(Gα(G0)+1) ≤ α(G0)− α(G0)− 1 = −1

and this is contradiction. Therefore there exists some j such that Gj is a path,
from Lemma 2.16 we get

sH(f,Gi+1) ≥ sH(f,Gi)
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and hence

sH(f,Gj) ≥ sH(f,G) .

�

Theorem 2.18. Let G and H be graphs such that G is connected, |V (G)| = |V (H)|
and f : V (H)→ V (G) is a pseudoordering, then there exists a pseudordering

g : V (H)→ {x1, x2, . . . , x|V (G)|} = V (P|V (G)|−1) such that

sH(f,G) ≤ sH(g, P|V (G)|−1) .

Proof. Let K be any spanning tree of G, x, y ∈ V (G), we connect x and y with a
path in graph K, this path is also a path in G. Hence

ρG(x, y) ≤ ρK(x, y)

for every x, y, hence
sH(f,G) ≤ sH(f,K),

by Lemma 2.17 there exists a pseudoordering

g : V (H)→ {x1, x2, . . . , x|V (G)|} = V (P|V (G)|−1) such that

sH(f,G) ≤ sH(f,K) ≤ sH(g, P|V (G)|−1) .

�

Corollary 2.19. Let G and H be graphs such that G is connected, |V (G)| = |V (H)|,
then

h+
H(G) ≤ h+

H(P|V (G)|−1) .

3. Graphs with a maximal upper H-Hamiltonian number

In this section we will prove that if in Corollary 2.19 the graph H is connected,
then in the inequality in Corollary 2.19 both sides are equal.

Remark 3.1. For easier writing, we will denote vertices of H the same as vertices
of G, we will rename them in this way v ∈ H 7→ f(v). We can naturally see it as
graph with two sets of edges.

In inequalities in Lemma 2.16 both sides are equal under specific conditions, if
L∩ F 0 6= ∅, then in Lemma 2.13 there is a strict inequality and then also the same
happens in Theorem 2.18.

If (L \K(v,G)× {l}) ∩ F+ 6= ∅, then in Lemma 2.12 there is a strict inequality
and then also the same happens in Theorem 2.18. Analogously if

(L \K(v,G)× {k}) ∩ F− 6= ∅ .

Overall we get that the only nontrivial case is

(1) L ⊆ K(v,G)× {k, l} .

Remark 3.2. Remark 3.1 holds for every triple of distinct leaves k, l, v in G.
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Lemma 3.3. Let G be a tree, H connected graph such that |V (G)| = |V (H)| and
f : V (H)→ V (G) is a pseudoordering, which satisfy

sH(f,G) = h+
H(P|V (G)|−1) ,

then G is path.

Proof. For contradiction suppose that G is not a path, then there exist three
pairwise distinct leaves k, l, v, we denote in the same way as before, vertex u and
set of vertices K(v,G). Because graph H is connected there exists a vertex x such
that {u, x} ∈ E(H). Let X ⊆ V (G) be a set of vertices of components of graph
G \ u, containing x. G \ u has, by definition of u, at least 3 components. Let now v̄
be an arbitrary leaf (leaf in G) in X. Choose k̄, l̄ as arbitrary leaves in pairwise
distinct components of G \ u and different from X.

Now (x, u) ∈ L̄, where L̄ is alternative of L for k̄, l̄, v̄ and by Remark 3.1 for k̄,
l̄, v̄ and by k 6= u 6= l we get contradiction.

�

Example. We show the idea of the last proof in the following picture.

x x
u v̄

l̄

k̄

K(v̄, G)

u

l

k

v

1

Remark 3.4. Let G be a graph with a maximal H-Hamiltonian number, then
every spanning tree of G has a maximal H-Hamiltonian number, therefore every
spanning tree is a path. We will show that the only graphs with this property are
cycles and paths.

Lemma 3.5. Let G be a connected graph such that |V (G)| ≥ 2, then there is a
vertex, which is not an articulation point.

Proof. Consider a block-cut tree of G and a block B, which is a leaf of the block-cut
tree or if this tree has only one vertex, then B = G. B is, by definition of a block,
2-connected. Because B is leaf we get that in B there is only one articulation and
in B there are at least 2 vertices. Hence in B there is at least one vertex, which is
not an articulation point. �

Lemma 3.6. Let G be a finite connected graph such that |V (G)| ≥ 2 and every
spanning tree of G is a path, then G is a path or a cycle.
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Proof. We will prove it by induction with respect to the number of vertices. Let
n be the number of vertices, for n = 2 and n = 3 it is obviously true. Let it be
true for n ≥ 3, let G be a graph with n+ 1 vertices such that every spanning tree
of G is a path. Let v ∈ V (G) be a vertex, which is not an articulation point, by
lemma 3.5 it exists. We denote G′ the subgraph induced by the set of vertices
V (G) \ {v}. G′ is connected, we will show that every spanning tree of G′ is a path.
Let there exist a spanning tree which is not a path, let u ∈ V (G) be a vertex such
that {v, u} ∈ E(G). Now when we add this edge to the spanning tree, we get a
spanning tree of G, which is not a path and it is a contradiction. By induction
hypothesis G′ is a path or a cycle, we denote A = {u ∈ V (G)|{v, u} ∈ E(G)}. For
contradiction we assume G′ is a cycle and let u ∈ A, in G′ be an edge e such that u
is not incident to e. Consider the subgraph B of G, B = (V (G), E(G′) \ e∪ {v, u}),
and this is a spanning tree of G which is not a path, contradiction.

Therefore G′ is a path, let x, y be endpoints of this path, for contradiction
we assume that there exists some another vertex u ∈ A. Hence G′ together with
{u, v} form a spanning tree which is not a path. Hence A ⊆ {x, y}, because G is
connected we get also A 6= ∅. Finally there are the two cases for G, if |A| = 1, then
G will be a path and if |A| = 2, then G will be a cycle. �

Theorem 3.7. Let G and H be connected finite graphs such that |V (G)| = |V (H)|,
then

h+
H(G) ≤ h+

H(P|V (G)|−1) ,

moreover, both sides are equal if and only if G is a path.

Proof. The first part follows from Theorem 2.18, let G be a graph, f be a
pseudoordering such that

sH(f,G) = h+
H(G) = h+

H(P|V (G)|−1) .

From the proof of Theorem 2.18 we know that every spanning tree also satisfies
the equation above. Hence, by Lemma 3.3, every spanning tree of G is a path. By
Lemma 3.6 G is a path or a cycle, for contradiction we assume, that it is a cycle.
We denote n = |V (G)|, we will show that there are two vertices v, u ∈ V (G) such
that v ∼H,f u and ρG(u, v) < n

2 .
Because G is cycle, |V (H)| = n ≥ 3 and H is connected we see that there is a

vertex of degree at least 2. Let v be a vertex such that degH(v) ≥ 2, there exists at
least two vertices u such that v ∼H,f u. There exists at most one vertex such that
ρG(u, v) ≥ n

2 , hence at least one of them satisfies ρG(u, v) < n
2 .

Now we connect v and u with a shorter path in G. Let e be some edge on this
path, we define a graph Ḡ =

(
V (G), E(G) \ e

)
, it is a path, where every distance

is greater or equal as in G. But ρG(u, v) < ρḠ(u, v) and then

sH(f, Ḡ) = sH(f, Ḡ) > h+
H(P|V (G)|−1) ,

and this is contradiction with Theorem 2.18. �
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4. Conclusion

When we use following equations which can be found for example in [2, Theorem
1.3] and [2, Corollary 2.2]

h+(P|V (G)|−1) =
⌊
|V (G)|2

2

⌋
, t+(P|V (G)|−1) =

⌊
|V (G)|2

2

⌋
− 1 .

This result is also calculated in [1] and when we use Theorem 3.7 for H = P|V (G)|−1
and for H = C|V (G)| we get the following theorem.

Theorem 4.1 ([2]).

h+(G) ≤
⌊
|V (G)|2

2

⌋
, t+(G) ≤

⌊
|V (G)|2

2

⌋
− 1 .

Moreover, both sides are equal if and only if G is a path.

First part is [2, Corollary 2.2] and second part is [2, Theorem 4.2]. Now we can
see, that Theorem 3.7 is generalization of Theorem 4.1 which is from article [2].
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