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A CONTINUOUS MAPPING THEOREM FOR
THE ARGMIN-SET FUNCTIONAL WITH APPLICATIONS
TO CONVEX STOCHASTIC PROCESSES

Dietmar Ferger

For lower-semicontinuous and convex stochastic processes Zn and nonnegative random vari-
ables εn we investigate the pertaining random sets A(Zn, εn) of all εn-approximating minimizers
of Zn. It is shown that, if the finite dimensional distributions of the Zn converge to some Z and
if the εn converge in probability to some constant c, then the A(Zn, εn) converge in distribution
to A(Z, c) in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several
argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do
not require that the limit process has a unique minimizing point. In the non-unique case the
limit-distribution is replaced by a Choquet-capacity.

Keywords: convex stochastic processes, sets of approximating minimizers, weak conver-
gence, Vietoris hyperspace topologies, Choquet-capacity

Classification: 60B05, 60B10, 60F99

1. INTRODUCTION AND MAIN RESULTS

Let (Ω,A,P) be a probability space and let Z : Ω×Rd → R be a bivariate function with
values in the extended real line R endowed with the Borel-σ algebra B. Such a function
is called stochastic process or integrand, if Z(·, t) : (Ω,A) → (R,B) is measurable for
every t ∈ Rd. It is convenient to identify a stochastic process with a function-valued

map Z : Ω → RRd

. So, Z(ω) ≡ Z(ω, ·) is a function from Rd into R, which is called
the trajectory or path of Z pertaining to the sample point ω ∈ Ω. It takes the value
Z(ω)(t) ≡ Z(ω, t) at point t ∈ Rd. Occasionally it is practical to write Z(t) instead of
Z(·, t) for this ambiguity in the notation explains in the context.

In this paper we focus on integrands Z which are lower-semicontinuous (lsc) and
convex. For a lsc function f : Rd → R and a real number r ∈ R+ = [0,∞) let

A(f, r) := {t ∈ Rd : f(t) ≤ inf
s∈Rd

f(s) + r}

and
Argmin(f) := {t ∈ Rd : f(t) = inf

s∈Rd
f(s)}.
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Thus A(f, r) is the set of all r-approximating minimizers of f and Argmin(f) consists
of all minimizers of f . Obviously, Argmin(f) = A(f, 0). By lower-semicontinuity A(f, r)
is a closed subset of Rd (possibly empty), see Lemma 4.1 in the appendix. Consider the
space S of all lower-semicontinuous functions from Rd into the extended real line R, i. e.

S := {f : Rd → R; f lsc}.

Then the assignment (f, r) 7→ A(f, r) defines a map

A : S × R+ → Fd,

where
Fd := F(Rd) := {F ⊆ Rd : F is closed }

is the family of all closed subsets of Rd. For a fixed lsc integrand Z and a nonnegative
random real variable ε on (Ω,A) we have that A(Z, ε) := A ◦ (Z, ε) is a map from (Ω,A)
into Fd, or in other words a Fd−valued random element.

Now, let (Zn) be a sequence of lsc and convex stochastic processes accompanied by
a sequence (εn) of nonnegative random variables. Assume that

(Zn(t1), . . . , Zn(tk))
D−→ (Z(t1), . . . , Z(tk)) in Rk as n→∞, (1)

for all t1, . . . , tk ∈ D, where D is any countable and dense subset of Rd (convergence

of the finite-dimensional distributions on D). This is denoted by Zn
fd−→D Z. Further,

assume that the sequence (εn) converges in probability:

εn
P→ c, (2)

where c ≥ 0 is a real constant.
We now state our main results. For that purpose let Fd = F(Rd) be endowed with

either the Vietoris topology τV = τV (Fd) or the upper Vietoris topology τuV = τuV (Fd).
Here, the Vietoris topology τV (Fd) is generated through the system SV := {M(F ) :
F ∈ Fd} ∪ {H(G) : G ∈ Gd}, where Gd denotes the class of all open subsets in Rd,
M(E) := {F ∈ Fd : F ∩ E = ∅} is the collection of all missing sets of a set E ⊆ Rd
and H(E) := {F ∈ Fd : F ∩ E 6= ∅} is the collection of all hitting sets of E. The upper
Vietoris topology τuV is generated by the sub-system SuV := {M(F ) : F ∈ Fd}, whence
it is coarser than the Vietoris topology.

The issue is to give minimal conditions such that our basic assumptions (1) and
(2) ensure distributional convergence of A(Zn, εn) to A(Z, c) in the topological space
(Fd, τuV ) or (Fd, τV ), respectively. These conditions concern the path properties of Z
and Zn. For their description recall that a function f : Rd → R is called proper if
f(t) > −∞ for all t ∈ Rd and f(t) <∞ for at least one t ∈ Rd. The set dom f := {t ∈
Rd : f(t) < ∞} is called the effective domain of f . Further, f is level-bounded, if for
every α ∈ R the level-set {t ∈ Rd : f(t) ≤ α} is bounded (possibly empty). This is the
same as having f(t)→∞ as |t| → ∞, where |· | is the euclidian norm on Rd. Henceforth,
we can introduce the subspaces S0 := {f ∈ S : f convex, proper and int(dom f) 6= ∅},
where int(E) denotes the interior of E ⊆ Rd and S1 := {f ∈ S0 : f level-bounded}. It
is easy to see that S0 = {f ∈ S : f convex and finite on some non-empty open subset},
see Lemma 4.4 in the appendix.
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Theorem 1.1. Assume that Z and every Zn have trajectories in S0 and that Z ∈ S1 P-

almost surely (a.s.) . Then Zn
fd−→D Z and εn

P→ c yield

A(Zn, εn) �∼ A(Z, c) in (Fd, τuV ), (3)

where �∼ denotes convergence in Borel law. Moreover, A(Z, c) is a.s. non-empty and
compact.

Convergence in Borel law is introduced and investigated by Hoffmann-Jørgensen
[10]. Now, SuV is actually a base of τuV , because ∩ni=1M(Fi) = M(∪ni=1Fi) when-
ever F1, . . . , Fn are closed (or even arbitrary) subsets of Rd. Therefore it follows from
the Borel Law Portmanteau Theorem of [10] that (3) is equivalent to

lim sup
n→∞

P∗
( ⋂
F∈F ′

{A(Zn, εn) ∩ F 6= ∅}
)
≤ P∗

( ⋂
F∈F ′

{A(Z, c) ∩ F 6= ∅}
)

(4)

for every sub-collection F ′ ⊆ Fd of closed sets in Rd. Here, P∗ and P∗ denote the outer
and inner probability of P. An essential feature of convergence in Borel law is that the
involved random elements are simply maps from Ω into Fd without any measurability
requirement. In fact, there is no σ−algebra on Fd so far. So, let us endow Fd with
the Borel-σ-algebra BuV := BuV (Fd) := σ(τuV (Fd)) pertaining to the upper Vietoris
topology. The following result sharpens the Borel law convergence (3) to classical weak
convergence under the additional assumption that the Zn in Theorem 1.1 are level
bounded as well.

Theorem 1.2. Assume that Z and every Zn have trajectories in S1. Then Zn
fd−→D Z

and εn
P→ c entail

A(Zn, εn)
D−→ A(Z, c) in (Fd, τuV ) as n→∞. (5)

Furthermore, A(Z, c) and all A(Zn, εn) are non-empty and compact.

Note that (Fd, τuV ) is a topological space, which is not metrizable. Therefore, we need
to say a few words about the meaning of (5). Firstly it means that the A(Zn, εn) and
A(Z, c) are A − BuV measurable maps from Ω into Fd and secondly that the induced
distributions P ◦ A(Zn, εn)−1 converge in the weak topology to P ◦ A(Z, c)−1. The
classical Portmanteau Theorem, see Gänssler and Stute [6], Proposition 8.4.9, or Topsøe
[21], Theorem 8.1, then gives that (5) is equivalent to

lim sup
n→∞

P
( ⋂
F∈F ′

{A(Zn, εn, ) ∩ F 6= ∅}
)
≤ P

( ⋂
F∈F ′

{A(Z, c) ∩ F 6= ∅}
)

for all F ′ ⊆ Fd.

(6)
Our Theorems 1.1 and 1.2 can be viewed as Continuous Mapping Theorems for the

functional A. They can easily be extended to asymptotic subsets Cn of A(Zn, εn). By
this we mean a sequence (Cn) of Fd− valued random elements such that

lim inf
n→∞

P∗(Cn ⊆ A(Zn, εn)) = 1, (7)
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which in fact is the same as

lim
n→∞

P∗(Cn ⊆ A(Zn, εn)) = 1. (8)

For example, if Cn ⊆ A(Zn, εn) a.s. for eventually all n ∈ N, then the sequence (Cn)
consists of asymptotic subsets.

Corollary 1.3. Let the assumptions of Theorem 1.1 be fulfilled. If Cn, n ∈ N, are
asymptotic subsets of A(Zn, εn), then

Cn �∼ A(Z, c) in (Fd, τuV ). (9)

If additionally the Cn are A− BuV measurable and Z ∈ S1, then actually

Cn
D−→ A(Z, c) in (Fd, τuV ). (10)

Measurability of Cn is guaranteed for instance, if Cn is a convex and bounded ran-
dom closed set, see Proposition 2.11 below. (The notion of random closed set will be
explained later on). Also, we show that Cn is A − BuV measurable, if it consists of
finitely many random variables in Rd, see Lemma 4.6 in the appendix.

Next, we ask for convergence in Borel law if Fd is equipped with the Vietoris-topology
τV . Since τV is finer (stronger) than the upper Vietoris-topology τuV it does not surprise
that here additional assumptions are necessary. In short we need that c = 0 and that Z
has at most one minimizing point with probability one.

Theorem 1.4. Let the assumptions of Theorem 1.1 be fulfilled with c = 0. Further,
assume that

Argmin(Z) ⊆ {ξ} a.s. for some random variable ξ. (11)

Then actually

Argmin(Z) = {ξ} a.s. (12)

and

A(Zn, εn) �∼ Argmin(Z) in (Fd, τV ). (13)

If the Zn in Theorem 1.4 are level-bounded one might expect that (13) could be sharp-
ened to classical weak convergence. However, for this we needed that the underlying
random sets are A−BV measurable, which is not self-evident and in fact questionable.
Therefore we consider the Fell-topology τF = τF (Fd) on Fd, which is generated by the
system SF := {M(K),K ∈ Kd}∪{H(G), G ∈ Gd}, where Kd is the family of all compact
sets in Rd. Since SF ⊆ SV the Fell-topology is coarser than the Vietoris-topology. The
hyperspace (Fd, τF ) is known to be compact, second-countable and Hausdorff and hence
it is metrizable. In fact one can specify a metrization δ, e. g., the Painlevé–Kuratowski-
metric, see Pflug [17].
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Theorem 1.5. Let the assumptions of Theorem 1.2 be fulfilled with c = 0 and assume
that (11) holds. Then (12) is true and

A(Zn, εn)
D−→ Argmin(Z) in (Fd, τF ). (14)

In applications, e. g., in statistics or in stochastic optimization, one considers mea-
surable selections ξn of A(Zn, εn), that means ξn : (Ω,A)→ (Rd,Bd) is measurable with
ξn ∈ A(Zn, εn) a.s. Here, Bd = B(Rd) is the Borel-σ algebra on Rd.

Theorem 1.6. Assume that Zn ∈ S0 for every n ∈ N and Z ∈ S1. For every n ∈ N let

ξn be a measurable selection of A(Zn, εn). Then Zn
fd−→D Z and εn

P→ c ensure that

{ξn}
D−→ A(Z, c) in (Fd, τuV ). (15)

Moreover, it follows that

lim sup
n→∞

P(ξn ∈ F ) ≤ T (F ) for all closed subsets F ⊆ Rd, (16)

where T is the Choquet-capacity functional of the random closed set A(Z, c), that is

T (F ) = P(A(Z, c) ∩ F 6= ∅), F ∈ Fd. (17)

Here, a random closed set (in Rd) is a measurable map C : (Ω,A) → (Fd,BuF ),
where BuF = BuF (Fd) is the Borel−σ algebra induced by the upper Fell-topology τuF =
τuF (Fd). This is the topology on Fd generated by {M(K) : K ∈ Kd} ⊆ SuV . Thus τuF
is coarser than τuV , whence BuF ⊆ BuV . Therefore A(Z, c) is a random closed set in Rd,
since it is even A−BuV measurable by Theorem 1.2. As any capacity functional our T
can be extended to the Borel-σ algebra Bd such that (17) holds for all Borel-sets F ∈ Bd,
see, e. g., Molchanov [16]. So, formally (16) looks exactly like the characterization of
weak convergence given in the Portmanteau-Theorem. However, T : Bd → [0, 1] in
general is not a probability measure, since it lacks additivity. Consequently, we can
not deduce weak convergence for the random points ξn at least as long as T is not a
probability measure. On the other hand, if c = 0 and A(Z, 0) =Argmin(Z) consists of a
single random variable ξ, which means that Z has a unique minimizer, then T is equal

to the distribution of ξ and (16) is the same as ξn
D→ ξ. To sum up, in the unique case

we obtain classical weak convergence, whereas in the non-unique case the ξn converge
weakly to a Choquet-capacity under which we exactly mean (16), see Ferger [5] for a
detailed characterization of this generalized concept of weak convergence. A distinction
between the two cases is no longer necessary when considering the sets {ξn} instead of
the single points ξn. In either case we have weak convergence of the singletons {ξn}
in the hyperspace Fd endowed with the upper Vietoris topology. Thus this topology
matches perfectly in our framework.

As our short discussion of Theorem 1.6 reveals the special case c = 0 plays a peculiar
role. The uniqueness condition occurring there can be slightly weakened:
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Theorem 1.7. Let Z and Zn, n ∈ N, be with trajectories in S0. Further assume that
Z ∈ S1 a.s. and that

Argmin(Z) ⊆ {ξ} a.s. for some random variable ξ. (18)

If Zn
fd−→D Z and εn

P→ 0, then for every sequence (ξn) of random variables with
ξn ∈ A(Zn, εn) a.s. we can infer that

ξn
D−→ ξ in Rd. (19)

Notice: If Zn ∈ S1 then A(Zn, εn) is non-empty and A−BuV measurable by Theorem
1.2. In particular, it is a non-empty random closed set. The Fundamental selection
theorem, see Molchanov [16], then guarantees the existence of a measurable selection ξn.

Special cases of Theorem 1.7 include former results of the literature. We start with:

Corollary 1.8. (Geyer [7]) Let Z and Zn, n ∈ N, be with trajectories in S0, where Z a.s.
possesses the random variable ξ as its unique minimizing point. Consider non-negative
constants cn converging to zero and random variables ξn which are the cn-approximating

minimizers of Zn. Then Zn
fd−→D Z implies

ξn
D−→ ξ in Rd. (20)

This result goes back to Geyer [7]. It is well-known in the statistical literature and
has been cited in more than 100 contributions even though the paper of Geyer [7]
is an unpublished manuscript. For the special choice cn = 0 the ξn in (20) are the
minimizers of the Zn. The great utility of Corollary 1.8 has been demonstrated, e. g., by
Chernozhukov [3], Geyer [7], Knight [12], [13], [14] or Wagener and Dette [22] to mention
only a few. For example Knight [14] rediscovers Smirnov’s [20] four types of all possible
limiting distributions for quantile-estimators. Here, it is inevitable that the limit process
Z may assume the value infinity. Indeed, stochastic processes taking the value infinity
arise canonically in stochastic optimization problems with constraints, see Pflug [17],
[18] and Knight [13]. In contrast, Davis, Knight and Liu [4] exclude this profitable case,
since they only investigate real-valued stochastic processes Zn, Z : Ω × Rd → R with
convex trajectories.

Corollary 1.9. (Davis et al. [4]) Let Z and Zn, n ∈ N, be real-valued and convex
stochastic processes and let ξn minimize Zn and ξ minimize Z, where ξ is unique with
probability 1. If

(Zn(t1), . . . , Zn(tk))
D−→ (Z(t1), . . . , Z(tk)) in Rk as n→∞, (21)

for all t1, . . . , tk ∈ Rd, then

ξn
D−→ ξ in Rd. (22)
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Haberman [8] investigates a very broad class of M-estimators based on convex cri-
terion functions. His proof of asymptotic normality (Theorem 6.1) is rather long, but
using the above corollary can make it much less difficult.

A significant simplification of assumption (21) is possible, if the Zn allow a second-
order expansion.

Corollary 1.10. (Hjort and Pollard [9]) Let Zn, n ∈ N, be real-valued and convex
stochastic processes and let ξn minimize Zn. Assume there exists a sequence (Un) of

random vectors with Un
D−→ U in Rd, and a sequence (Vn) of matrices with Vn

P→ V ,
where V is positive definite. If Zn has the representation

Zn(t) = U ′nt+
1

2
t′Vnt+ rn(t),

where rn(t)
P−→ 0 for every t ∈ Rd, then

ξn
D−→ −V −1U in Rd. (23)

The paper of Hjort and Pollard [9] is also an unpublished manuscript, whence we
refer to Theorem 7.133 of Liese and Mieschke [15], who present a proof by following the
ideas of Hjort and Pollard [9]. Also notice that in contrast to Hjort and Pollard [9] we
do not require that the matrices Vn are positive definite.

The paper is organized as follows: In section 2 we endow the function space S with
the epi-metric e, which corresponds to epi-convergence. This type of convergence is
known to be most suitable for minimization problems. According to Attouch [1] the
metric space (S, e) is second countable (and compact). If Be(S) denotes the Borel-σ-
algebra induced be e, it turns out that measurability of a map Z : (Ω,A)→ (S,Be(S))
is exactly the same as being a normal integrand in the sense of Rockafellar and Wets
[19]. This link to the theory of normal integrands enables us to deduce that every lsc
and convex stochastic process (which has an effective domain with non-empty interior)
is Borel-measurable. A first fundamental result in section 2 gives conditions under
which the map A is τuV -continuous or τV -continuous, respectively. As a consequence we
obtain that for a stochastic process Z with trajectories in S1 and a non-negative random
variable ε the random set A(Z, ε) is A−BuV -measurable and in particular this holds for
Argmin(Z). Next, for a countable and dense subset D = {ti : i ∈ N} of Rd we consider
the projection πD(f) := (f(ti) : i ∈ N), f ∈ S0, and show that it is a homeomorphism
from (S0, e) onto its range equipped with the metric % of coordinatewise convergence.

This leads to our second fundamental result in section 2, namely that Zn
fd→D Z with Zn

and Z in S0 guarantees epi-convergence in distribution, i. e., Zn
D→ Z in (S0, e). Finally,

section 3 contains the proofs of our main theorems, where we just combine the results
of section 2 with the Continuous Mapping Theorem. Several technical lemmas, mainly
about convex functions, are deferred in the appendix (section 4).
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2. CONTINUITY OF THE FUNCTIONAL A AND EPI-CONVERGENCE
IN DISTRIBUTION

A sequence (fn) ⊆ S of lsc functions epi-converges to some f ∈ S (fn →epi f) if at each
x ∈ Rd one has

lim inf
n→∞

fn(xn) ≥ f(x) for every sequence xn → x, (24)

and

lim sup
n→∞

fn(xn) ≤ f(x) for at least one sequence xn → x. (25)

Epi-convergence can equivalently be described by convergence of the pertaining epigraphs
in the hyperspace (Fd+1, τF ). To see this recall that for a function f : Rd → R, the
epigraph of f is the set

epi(f) := {(x, α) ∈ Rd × R : f(x) ≤ α}.

The crucial point is that every function f is uniquely determined by its epigraph.
Indeed, we have that:

Lemma 2.1. If f and g are functions from Rd into R with epi(f)=epi(g), then f = g.

In other words the map with φ(f) :=epi(f) is an injection from RRd

into the power set
of Rd × R.

A proof is given at the end of the appendix. Another well-known fact says that f is
lsc if and only if epi(f) is a closed subset of Rd × R ≡ Rd+1. Let Fd+1 = F(Rd+1) be
equipped with the Fell-topology τF = τF (Fd+1). The next result follows from Theorem
2.78 and Proposition 1.14 of Attouch [1].

Theorem 2.2. (Attouch [1]) For every sequence (fn)n∈N in S the following equivalence
holds:

fn →epi f ⇔ epi(fn)→ epi(f) in (Fd+1, τF ). (26)

Let E := {epi(f) : f ∈ S} be the system of all epigraphs of lsc functions from Rd into
R. As mentioned above E ⊆ Fd+1 and from Lemma 2.1 it follows that the map φ : S → E
given by φ(f) := epi(f), f ∈ S, is a bijection. Attouch [1], p.254-255, proves that E is
compact for the Fell-topology τF (Fd+1) or in other words that (E , δ) is a compact metric
space. Recall that δ is a metrization for τF (Fd+1). Since (Fd+1, δ) is second countable
and therefore separable, this property applies to the subspace (E , δ) as well.

Define the epi-metric e : S × S → R by e(f, g) := δ(φ(f), φ(g)). Summing up we
obtain from Lemma 2.1 and Theorem 2.2:

Proposition 2.3. The epi-metric e is a metric on S such that convergence in (S, e)
coincides with epi-convergence, i. e., e is a metrization of epi-convergence. Moreover,
φ : (S, e) → (E , δ) is a homeomorphism, and in particular (S, e) and (E , δ) are compact
and separable metric spaces.
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Rockafellar and Wets [19] define a normal integrand (on (Ω,A)) as follows: it is

a function-valued map Z : (Ω,A)→ RRd

such that φ◦Z is a random closed set in Rd+1.
Especially it follows that epi(Z(ω)) = φ(Z(ω)) = φ ◦ Z(ω) is closed in Rd+1 and thus
Z(ω) is lsc for every ω ∈ Ω. In fact, by Proposition 14.28 of Rockafellar and Wets [19] Z
is not only lsc but actually a stochastic process (integrand). The other direction needs
not to be true: Not every lsc integrand is a normal integrand. However, the following
lemma gives a sufficient condition for normality.

Lemma 2.4. Assume that Z is a lsc convex stochastic process with int(dom Z(ω)) 6= ∅
for all ω ∈ Ω with dom Z(ω) 6= ∅ (as for instance when Z ∈ S0). Then Z is a normal
integrand.

P r o o f . This is the second part of Theorem 14.39 of Rockafellar and Wets [19]. �

We shall see that a normal integrand is nothing else but a Borel-measurable map
from (Ω,A) into the metric space (S, e).

Lemma 2.5. Let Be(S) be the Borel-σ algebra on (S, e). Then Z is a normal integrand
if and only if Z : (Ω,A)→ (S,Be(S)) is measurable.

P r o o f . Let τδ denote the topology on Fd+1 induced by the Painlevé–Kuratowski metric
δ. We already mentioned above that τδ coincides with the Fell-topology τF on Fd+1,
whence the corresponding Borel-σ algebras Bδ(Fd+1) := σ(τδ) and BF (Fd+1) := σ(τF )
coincide as well. Further, recall that E is compact in (Fd+1, τF ) and in particular
E ∈ BF (Fd+1). For the Borel-σ algebra Bδ(E) on (E , δ) we therefore obtain

Bδ(E) = σ(E ∩ τδ) = E ∩ σ(τδ) = E ∩ BF (Fd+1) ⊆ BF (Fd+1). (27)

Here, the first equality holds by definition and the second one is valid according
to Lemma 1.6 in Kallenberg [11]. It is well-known, see, e. g., Molchanov [16], that
BF (Fd+1) = σ({M(K) : K ∈ Kd+1}), whence BuF (Fd+1) = BF (Fd+1) and thus every
random closed set C in Rd+1 can alternatively be conceived as a measurable map C :
(Ω,A)→ (Fd+1,BF (Fd+1)).

Now suppose that Z is a normal integrand. By definition and our last conclusion
this means that φ ◦ Z : (Ω,A) → (Fd+1,BF (Fd+1)) is measurable. But φ maps into
E , whence it follows from (27) that φ ◦ Z : (Ω,A) → (E ,Bδ(E)) is measurable. By
Proposition 2.3 φ−1 is a continuous map and therefore it is Bδ(E)− Be(S) measurable.
Since Z = φ−1 ◦ (φ ◦ Z) we can infer that Z is A− Be(S) measurable as a composition
of measurable maps.

For the other direction notice that by Proposition 2.3 φ is continuous and hence

φ is Be(S)− Bδ(E) measurable. (28)

Let B ∈ BF (Fd+1) be an arbitrary Borel-set. It has the inverse image φ−1(B) = φ−1(E∩
B), where E ∩B ∈ Bδ(E) by the equalities in (27). Thus φ−1(B) ∈ φ−1(Bδ(E)) ⊆ Be(S)
by (28), whence (φ ◦ Z)−1(B) = Z−1(φ−1(B)) ∈ A for Z is A − Be(S) measurable by
assumption. This shows that φ ◦ Z is a random closed set and hereby Z is a normal
integrand. �
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Corollary 2.6. Fix a subspace U of (S, e) and assume that Z is a normal integrand on
(Ω,A) with trajectories in U . Then Z : (Ω,A)→ (U,Be(U)) is measurable.

P r o o f . Let B ∈ Be(U). Since Be(U) = U ∩ Be(S) by Lemma 1.6 in Kallenberg [11] it
follows that B = U ∩ B̃ for some B̃ ∈ Be(S). We thus can infer that

Z−1(B) = Z−1(U) ∩ Z−1(B̃) = Ω ∩ Z−1(B̃) = Z−1(B̃) ∈ A

by Lemma 2.5. �

Notice: If Z is a stochastic process with trajectories in S0, then it is a normal in-
tegrand by Lemma 2.4, whence by Corollary 2.6 it is A − Be(S0) measurable, which
in turn is equivalent to A − Be(S)-measurability. Therefore, given a sequence (Zn) of
stochastic processes with values in S0, the measurability requirement in the definition

of distributional convergence Zn
D→ Z in (S0, e) and in (S, e) is fulfilled.

The following lemma gives an equivalent description for convergence in the Vietoris-
topology τV and in the upper-Vietoris topology τuV .

Lemma 2.7. Let F and Fn, n ∈ N, be closed subsets of Rd.
(1) The following statements (a) and (b) are equivalent:

(a) Fn → F in (Fd, τV ).

(b) The miss-criterion (b1) and the hit-criterion (b2) are satisfied, where

(b1) For every H ∈ Fd with F ∩H = ∅ there exists a natural number n0 such that
Fn ∩H = ∅ for all n ≥ n0,

(b2) For every G ∈ Gd with F ∩G 6= ∅ there exists a natural number n1 such that
Fn ∩G 6= ∅ for all n ≥ n1.

(2) Fn → F in (Fd, τuV ) if and only if the miss-criterion (b1) holds.

P r o o f . Both equivalences follow immediately from the definitions of the respective
topologies upon noticing that for checking convergence it suffices to consider subbase-
neighbourhoods. �

With the help of Lemma 2.7 we prove continuity of the map A. This plays a
fundamental role in our paper. Here we deal with the superset U0 := {f ∈ S :
f convex and proper } ⊇ S0.

Theorem 2.8. Let u be the usual metric on R+ and e × u be the product-metric on
S × R+. Then:

(1) A : (U0 × R+, e× u)→ (Fd, τuV ) is continuous on U × R+, where

U = {f ∈ S : f convex, proper and level-bounded}.

(2) A : (U0 × R+, e× u)→ (Fd, τV ) is continuous on U∗ × {0}, where

U∗ = {f ∈ S : f convex, proper with unique minimizer} ⊆ U.
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P r o o f . (1) Let (f, r) ∈ U × R+ and (fn, rn)n∈N be a sequence in U0 × R+ with
(fn, rn)→e×d (f, r). Convergence by components and Proposition 2.3 yield that fn →epi

f and rn → r. By Exercise 7.32(c) in Rockafellar and Wets [19] the sequence (fn)n∈N
is eventually level-bounded, that means there exists some n0 ∈ N such that for every
n ≥ n0 we have that:

∀ α ∈ R ∃ K = Kα ∈ Kd such that {fn ≤ α} ⊆ K. (29)

Notice that K = Kα does not depend on n. Lemma 4.3 in the appendix ensures that

A(fn, rn) 6= ∅ for all n ≥ n0. (30)

Furthermore Theorem 7.33 in Rockafellar and Wets [19] guarantees the convergence

inf
t∈Rd

fn(t)→ inf
t∈Rd

f(t) ∈ R. (31)

Let t ∈ A(fn, rn). Then fn(t) ≤ inft∈Rd fn(t) + rn and by (31) there exists an integer
n1 ∈ N such that inft∈Rd fn(t) ≤ inft∈Rd f(t) + 1 for all n ≥ n1. Moreover, since rn → r
we have that rn ≤ r+1 for all n ≥ n2 for some n2 ∈ N. Thus fn(t) ≤ inft∈Rd f(t)+2+r =:
α ∈ R for all n ≥ n3 := n1∨n2 ∈ N. Conclude that A(fn, rn) ⊆ {fn ≤ α} for all n ≥ n3.
With K and n0 as in (29) plus n4 := n0 ∨ n3 ∈ N we obtain that

A(fn, rn) ⊆ K ∀ n ≥ n4. (32)

In order to verify the miss-criterion (b1) of Lemma 2.7 let us consider an arbitrary
closed set H ∈ Fd with A(f, r) ∩H = ∅. Then a fortiori

A(f, r) ∩H ∩K = ∅. (33)

We shall show that

A(fn, rn) ∩H ∩K = ∅ ∀ n ≥ n5 for some n5 ∈ N. (34)

Assume that (34) is not true, i. e., there exists a subsequence (nj)j∈N ⊆ N such that
A(fnj

, rnj
) ∩H ∩K 6= ∅ for all j ∈ N. Then one can find a sequence (xnj

)j∈N ⊆ H ∩K
such that xnj ∈ A(fnj , rnj ) for each j ∈ N. Since H ∩ K is compact, the sequence
(xnj )j∈N has a subsequence (xnjl

)l∈N with xnjl
→ x ∈ H ∩K as l→∞. For notational

convenience we take xnj
→ x, j →∞ for granted. It follows that

x ∈ A(f, r). (35)

Indeed, assume that x /∈ A(f, r), i. e., f(x) > inft∈Rd f(t) + r, whence

f(x) > f(y) + r for some y ∈ Rd. (36)

Recall that fn →epi f . Thus by (24) and (25) there exists a sequence (yn) with yn → y
such that f(y) = limn→∞ fn(yn). Conclude from (36) that

f(x) > lim
n→∞

fn(yn) + r = lim inf
j→∞

fnj
(ynj

) + r. (37)
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Now xnj ∈ A(fnj , rnj ) entails fnj (ynj ) ≥ fnj (xnj )− rnj and so

lim inf
j→∞

fnj
(ynj

) ≥ lim inf
j→∞

fnj
(xnj

)− r ≥ f(x)− r, (38)

where the last inequality holds by (24), because xnj
→ x and by Proposition 2.3 the

subsequence (fnj
)j∈N epi-converges to f as well. Combining (37) and (38) leads to

f(x) > (f(x) − r) + r = f(x), a contradiction. Thus relation (35) is true and since
x ∈ H ∩ K we arrive at A(f, r) ∩ H ∩ K 6= ∅, which is a contradiction to (33). This
shows (34).

For n6 := n4 ∨ n5 ∈ N observe that A(fn, rn) = A(fn, rn)∩K by (32) for all n ≥ n6,
whence (34) yields:

A(fn, rn) ∩H = A(fn, rn) ∩H ∩K = ∅ ∀ n ≥ n6,

whence the miss-criterion (b1) in Lemma 2.7(2) is fulfilled and therefore A(fn, rn)→
A(f, r) in (Fd, τuV ). This shows continuity of A at every point (f, r) ∈ U × R+.

(2) Let (fn, rn)→e×d (f, 0) with f ∈ U∗. It follows from Lemma 4.2 in the appendix
that f is level-bounded and thus U∗ ⊆ U . In particular, the missing-criterion (b1) is
fulfilled by (1) above. Therefore it remains to show the hit-criterion (b2) in Lemma 2.7.
For that purpose let G ∈ Gd with A(f, 0) ∩G 6= ∅. We have to show that

A(fn, rn) ∩G 6= ∅ for eventually all n ∈ N. (39)

Assume that (39) does not hold, i. e., there exists a subsequence (nj)j∈N of the natural
numbers such that A(fnj

, rnj
)∩G = ∅ or equivalently A(fnj

, rnj
) ⊆ Gc for every j ∈ N,

where Gc := E \ G denotes the complement of G in E. From (32) we can deduce that
there exist a compact set K and a j0 ∈ N such that A(fnj , rnj ) ⊆ K for all j ≥ j0 and
consequently A(fnj

, rnj
) ⊆ Gc∩K for all j ≥ j0. By (30) there exists a j1 ∈ N such that

A(fnj
, rnj

) 6= ∅ for all j ≥ j1. Put j2 = j0 ∨ j1 ∈ N. Then for every j ≥ j2 there exists
some znj

∈ A(fnj
, rnj

) ⊆ Gc ∩K. Since G is open Gc ∩K is compact, whence w.l.o.g.
we may assume that znj → z ∈ Gc ∩K as j → ∞. Now, znj ∈ A(fnj , rnj ) means that
fnj (znj ) ≤ infs∈Rd fnj (s) + rnj for all j ≥ j2. From fnj →epi f it follows with (24) that

f(z) ≤ lim inf
j→∞

fnj
(znj

) ≤ lim inf
j→∞

inf
s∈Rd

fnj
(s) + lim inf

j→∞
rnj

= inf
s∈Rd

f(s),

where the last equality holds by (31) and rn → 0. Conclude that z ∈ A(f, 0), where
by f ∈ U∗ the argmin-set A(f, 0) =Argmin(f) is a singleton. Hence A(f, 0) = {z}.
However, recall that A(f, 0) ∩ G 6= ∅, which results in z ∈ G in contradiction to z ∈
Gc ∩K. �

Proposition 2.9. Let Z be a stochastic process with trajectories in S1 and let ε be
a R+-valued random variable both defined on (Ω,A). Then A(Z, ε) = A ◦ (Z, ε) is a
A− BuV measurable map from Ω into Fd.
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P r o o f . By Lemma 2.4 Z is a normal integrand and therefore by Corollary 2.6 it is a
A−Be(S1) measurable map from Ω into S1. Thus (Z, ε) : (Ω,A)→ (S1 ×R+,Be(S1)⊗
Bu(R+)) is measurable. It follows from Proposition 2.3 that the subspace (S1, e) is
separable, and clearly (R+, u) is also separable. Consequently

Be(S1)⊗ Bu(R+) = Be×u(S1 × R+). (40)

By S1 ⊆ U Theorem 2.8 ensures that the restriction A : (S1 × R+, e × u) → (Fd, τuV )
is continuous and consequently Be×u(S1 × R+) − BuV measurable. The assertion now
follows from (40), which shows that A ◦ (Z, ε) is a composition of measurable maps.

�

In view of Argmin(Z) = A(Z, 0) we immediately obtain

Corollary 2.10. If Z is a stochastic process with trajectories in S1, then Argmin(Z) is
A− BuV measurable.

Next, we seek conditions under which a random closed set C : Ω → Fd is actually
A− BuV measurable. An answer is given in

Proposition 2.11. If the random closed set C : Ω → Fd is convex and bounded with
int(C) 6= ∅, then it is A− BuV measurable.

P r o o f . Consider the special indicator function

Z(ω, t) := δC(ω)(t) :=

{
0 , t ∈ C(ω)
∞ , t 6= C(ω).

Observe that for each fixed t ∈ Rd and every α ∈ R the set {ω ∈ Ω : Z(ω, t) ≤ α}
is equal to {ω ∈ Ω : t ∈ C(ω)}, if α ≥ 0 and it is equal to ∅, if α < 0. Recall that
BF := BF (Fd) = σ({M(K) : K ∈ Kd}). Therefore {ω ∈ Ω : t ∈ C(ω)} = {ω ∈ Ω :
C(ω) ∩ {t} 6= ∅} ∈ A, since {t} ∈ Kd. This shows that Z is an integrand (stochastic
process). Similarly, one sees that for each fixed ω ∈ Ω the level-set {t ∈ Rd : Z(ω, t) ≤ α}
is equal to C(ω) or ∅ according as α ≥ 0 or α < 0. Consequently Z is level-bounded,
because C is bounded by assumption. Furthermore, epi(Z(ω)) = C(ω) × [0,∞) is a
closed subset of Rd × R, whence Z is lsc. It is easy to check that Z is also convex and
proper with dom Z = C. To sum up, Z is a an integrand with trajectories in S1. Thus
Corollary 2.10 yields the assumption upon noticing that Argmin(Z) = C. �

Let D = {ti : i ∈ N} be a countable and dense subset of Rd. We define the projection-
map πD : S0 → R∞ by πD(f) := (f(ti) : i ∈ N), f ∈ S0. Let % be the metric of
coordinatewise convergence on R∞ or in other words % is the product-metric pertaining
to the metric on R. Further let R := πD(S0) ⊆ R∞ be the range of πD. We obtain:

Theorem 2.12. For every countable and dense subset D the corresponding projection-
map πD : (S0, e)→ (R, %) is bijective and its inverse π−1D : (R, %)→ (S0, e) is continuous.
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P r o o f . Write π = πD for short. For the first assertion it suffices to show that π is
injective. So, assume π(f) = π(g), that is f(s) = g(s) for all s ∈ D. We firstly show
that

int(dom f)=int(dom g). (41)

For that purpose consider t ∈ int(dom f). Since D lies dense in Rd there exists a sequence
(sm)m∈N in D such that sm → t. Observe that int(dom f) is an open neighborhood of t,
whence there exists a m0 ∈ N such that sm ∈ int(dom f) for all m ≥ m0. Now, f ∈ S0

implies that f is finite on dom f 6= ∅, which is convex. Recall that the nonempty interior
of a convex set in Rd is convex as well, see Theorem 2.33 of Rockafellar and Wets [19].
Thus f is a finite convex function on the open and convex set O := int(dom f). Since by
assumption O 6= ∅ Corollary 2.36 in Rockafellar and Wets [19] says that f is continuous
on O. This makes us to infer that

∞ > f(t) = lim
m→∞

f(sm) = lim
m→∞

g(sm) = lim inf
m→∞

g(sm) ≥ g(t),

where the last inequality holds because g is lsc. Conclude that g(t) < ∞, whence
t ∈ dom g. This shows that int(dom f) ⊆ dom g, which in turn gives int(dom f) ⊆
int(dom g) for int(dom g) is the largest open set contained in dom g. Using the same
arguments with f and g reversing their roles yields int(dom g) ⊆ int(dom f) and thus
the equality (41).

For every t ∈ int(dom f) as above we obtain that

f(t) = lim
m→∞

f(sm) = lim
m→∞

g(sm) = g(t),

because f and g are continuous on O := int(dom f)=int(dom g). This means that f and
g coincide on O, which as nonempty set agrees with the relative interiors rint(dom f)
and rint(dom g). Thus Exercise 2.46(a) in Rockafellar and Wets [19] guarantees that
f = g upon noticing that f and g are lsc. Consequently, π is injective.

For proving continuity of the inverse π−1 let (yn) be a sequence in the range R with

yn →% y ∈ R, that is %(yn, y)→ 0. (42)

Observe that yn = π(fn) = (fn(ti) : i ∈ N) and y = π(f) = (f(ti) : i ∈ N) with
fn = π−1(yn) and f = π−1(y) by the first part. Then by definition of % the convergence
(42) means that

fn(ti)→ f(ti) for all i ∈ N.

Since D = {ti : i ∈ N} is a dense subset of Rd, Theorem 7.17 of Rockafellar and Wets
[19] yields that fn →epi f , which by Proposition 2.3 is equivalent to fn →e f and thus
π−1(yn)→e π

−1(y). This shows continuity of the inverse. �

With our last theorem we can prove that for lsc and convex stochastic processes con-
vergence of the finite dimensional distributions entails epi-convergence in distribution.
More precisely we have
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Proposition 2.13. Fix some countable and dense subset D = {t1, t2, . . .} of Rd. Let Z
and Zn, n ∈ N, be integrands with trajectories in S0.

If Zn
fd−→D Z then

Zn
D−→ Z in (S0, e) (43)

and
Zn

D−→ Z in (S, e). (44)

P r o o f . Again let π = πD. Since R is separable, the assumption Zn
fd−→D Z in

combination with Theorem 3.29 in Kallenberg [11] yields that π(Zn)
D−→ π(Z) in

(R∞, %). By the Subspace-Lemma 3.26 in Kallenberg [11] this is equivalent to π(Zn)
D−→

π(Z) in (R, %). By Theorem 2.12 the inverse π−1 : (R, %) → (S0, e) is continuous,
whence the Continuous Mapping Theorem ensures (43), because Zn = π−1(π(Zn)).
Another application of the Subspace-Lemma gives (44). �

3. PROOFS

In this section we prove our results in section 1. With the preparations made in section 2
the proofs reduce to a few lines.

P r o o f . (of Theorem 1.1) By Proposition 2.13 we have that Zn
D−→ Z in (S, e).

Since (S, e) and (R+, u) are separable Slutsky’s theorem yields (Zn, εn)
D−→ (Z, c) in

(S × R+, e × u), which in particular entails (Zn, εn) �∼ (Z, c) in (S × R+, e × u).
Theorem 2.8 (1) says that A is τuV -continuous on U × R+ ⊇ S1 × R+, whence the
set of discontinuity-points DA := {(f, r) ∈ S × R+ : A is not τuV -continuous at (f, r)}
of A is contained in (S \ S1) × R+. Consequently, P∗((Z, c) ∈ DA) ≤ P∗(Z /∈ S1) =
P(Z /∈ S1) = 0 and the Continuous Mapping Theorem for �∼, see Lemma 4.5 yields
the desired result (3). The second part follows from Lemma 4.3. �

P r o o f . (of Theorem 1.2) By Proposition 2.9 the random sets A(Zn, εn), n ∈ N, and
A(Z, c) are A− BuV measurable. Therefore⋂

F∈F ′

{A(Zn, εn) ∩ F 6= ∅} = {A(Zn, εn) ∈
⋂
F∈F ′

H(F )} ∈ A

and ⋂
F∈F ′

{A(Z, c) ∩ F 6= ∅} = {A(Z, c) ∈
⋂
F∈F ′

H(F )} ∈ A,

because
⋂
F∈F ′ H(F ) is τuV -closed and in particular a Borel-set in BuV . Thus (5) follows

from Theorem 1.1, because (4) reduces to (6), since P∗ = P = P∗ on A. Finally, by the
Portmanteau-Theorem (6) is equivalent to (5). Again the second part is a consequence
of Lemma 4.3 �

P r o o f . (of Corollary 1.3) First observe that by complementation the sequence (Cn)
satisfies
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lim sup
n→∞

P∗(Cn 6⊆ A(Zn, εn)) = 0. (45)

Now, since {Cn∩F 6= ∅}∩{Cn ⊆ A(Zn, εn)} ⊆ {A(Zn, εn)∩F 6= ∅}, a decomposition
of the set

⋂
F∈F ′{Cn ∩ F 6= ∅} results in

lim sup
n→∞

P∗
( ⋂
F∈F ′

{Cn ∩ F 6= ∅}
)

≤ lim sup
n→∞

P∗
( ⋂
F∈F ′

{A(Zn, εn) ∩ F 6= ∅}) + lim sup
n→∞

P∗(Cn 6⊆ A(Zn, εn)
)
.

Here, by (45) the second summand vanishes and by Theorem 1.1 the first summand can
be estimated as in (4). Thus we obtain

lim sup
n→∞

P∗
( ⋂
F∈F ′

{Cn ∩ F 6= ∅}
)
≤ P∗

( ⋂
F∈F ′

{A(Z, c) ∩ F 6= ∅}
)

for all F ′ ⊆ Fd, (46)

which by the Borel law Portmanteau Theorem gives the assertion (9). In case of mea-
surable Cn’s we can argue analogously as in the above proof to conclude that (46) holds
without the asteriks ∗, which by the Portmanteau-Theorem results in (10). �

P r o o f . (of Theorem 1.4) First notice that by Theorem 1.1 Argmin(Z) = A(Z, 0) is
a.s. non-empty, whence Argmin(Z) = {ξ} a.s. by (11).

From the proof of Theorem 1.1 we know that (Zn, εn) �∼ (Z, 0) in (S × R+, e× u).
Theorem 2.8 (2) yields thatDA := {(f, r) ∈ S×R+ : A is not τV -continuous at (f, r)} ⊆
(S × R+) \ (U∗ × {0}) = ((S \ U∗) × R+) ∪ (S × (R+ \ {0})). Thus it follows that
P∗((Z, 0) ∈ DA) ≤ P∗(Z /∈ U∗) = 0 by (12) and so the CMT (Lemma 4.5) gives (13). �

P r o o f . (of Theorem 1.5) The first part (12) follows from Theorem 1.4. From the

proof of Theorem 1.1 we know that (Zn, εn)
D−→ (Z, 0) in (S × R+, e × u), whence by

the subspace-lemma

(Zn, εn)
D−→ (Z, 0) in (S1 × R+, e× u). (47)

Since S1 ⊆ U and τuF ⊆ τuV it follows from Theorem 2.8(1) that A : (S1×R+, e×u)→
(Fd, τuF ) is continuous and herewith A is Be×u(S1×R+)−BuF measurable. Recall that
BuF = BF , see the proof of Proposition 2.5. Therefore A : (S1 × R+, e× u)→ (Fd, τF )
is Borel-measurable. From τF ⊆ τV and Theorem 2.8(2) we can infer that A is τF -
continuous on U∗ × {0}. Thus the assertion (14) follows from (47) and the CMT. �

P r o o f . (of Theorem 1.6) Cn := {ξn} is A − BuV measurable by Lemma 4.6 in the
appendix and so Corollary 1.3 yields the distributional convergence (15) of the singletons.
By the Portmanteau-Theorem this is equivalent to

lim sup
n→∞

P
( ⋂
F∈F ′

{{ξn} ∩ F 6= ∅}
)
≤ P

( ⋂
F∈F ′

{A(Z, c) ∩ F 6= ∅}
)

for all F ′ ⊆ Fd,
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which with F ′ = {F} simplifies to (16) since {{ξn} ∩ F 6= ∅} = {ξn ∈ F}. �

P r o o f . (of Theorem 1.7) By Theorem 1.4 Argmin(Z) = {ξ} a.s. From Corollary 1.3
with Cn := {ξn} and c = 0 we know that {ξn} �∼ A(Z, 0) =Argmin(Z) in (Fd, τuV ).
Use (4) with F ′ := {F} to infer that

lim sup
n→∞

P∗(ξn ∈ F ) ≤ P∗(Argmin(Z) ∩ F 6= ∅) = P∗({ξ} ∩ F 6= ∅) = P∗(ξ ∈ F ) ∀F ∈ F .

Since the ξ′ns and ξ are random variables it follows that {ξn ∈ F} ∈ A for every n ∈ N
and {ξ ∈ F} ∈ A as well. Consequently, the above inequalities hold without the asterisks
leftmost and rightmost and therefore

lim sup
n→∞

P(ξn ∈ F ) ≤ P(ξ ∈ F ) ∀F ∈ F ,

which by the Portmanteau-Theorem gives ξn
D→ ξ in Rd. �

P r o o f . (of Corollary 1.8) By assumption Argmin(Z) = {ξ} a.s. and thus Z ∈ S1 a.s.
according to Lemma 4.2 and in particular (18) is fulfilled. Then the assertion follows
from Theorem 1.7 with εn := cn. �

P r o o f . (of Corollary 1.9) First notice that every convex and real-valued function
f : Rd → R is lsc (actually even continuous) and proper with dom(f) = Rd. Therefore,
the processes Z and Zn, n ∈ N, especially have trajectories in S0. Moreover, by the

subspace-lemma (21) entails Zn
fd→D Z, whence the proposition follows from Corollary

1.8 with cn := 0. �

P r o o f . (of Corollary 1.10) Zn(t) = U ′nt + Dn(t) with Dn(t) := 1
2 t
′Vnt + rn(t). Let

t1, . . . , tk ∈ Rk. Then (U ′nt1, . . . , U
′
ntk)

D→ (U ′t1, . . . , U
′tk) by the Continuous Mapping

Theorem. By continuity Dn(t)
P→ D(t) = 1

2 t
′V t and stochastic convergence by com-

ponents gives (Dn(t1), . . . , Dn(tk))
P→ (D(t1), . . . , D(tk)). Thus Slutsky’s lemma yields

the finite dimensional convergence (21), where Z(t) = U ′t+ 1
2 t
′V t. Since Z has unique

minimizer −V −1U the statement follows from Corollary 1.9. �

4. APPENDIX

Lemma 4.1. For every f : Rd → R lsc and every real r ≥ 0 we have that

A(f, r) = {t ∈ Rd : f(t) ≤ inf
s∈Rd

f(s) + r}

is a closed subset of Rd.



Argmin-sets of convex stochastic processes 443

P r o o f . If infs∈Rd f(s) = +∞ then A(f, r) = Rd ∈ F(Rd) and if infs∈Rd f(s) = −∞
then A(f, r) = {f ≤ −∞}, which is closed, because for each sequence tn → t ∈ Rd with
f(tn) ≤ −∞ it follows by lower-semicontinuity of f that f(t) ≤ lim infn→∞ f(tn) ≤ −∞,
whence t ∈ {f ≤ −∞}. Finally, assume that infs∈Rd f(s) ∈ R. Then α := infs∈Rd f(s)+
r ∈ R and A(f, r) = {f ≤ α} ∈ F(Rd), since f lsc means that {f > α} is open for each
real α. �

Lemma 4.2. Let f : Rd → R be lsc, convex and proper. Then Argmin(f) is non-empty
and bounded if and only if f is level-bounded.

P r o o f . The if-part follows from Theorem 1.9 in Rockafellar and Wets [19]. For the
other direction first observe that by Argmin(f) 6= ∅ there exists t0 ∈ Rd such that
f(t0) = inf∈Rd f(t). Since f is proper f(t) > −∞ for all t ∈ Rd and so in particular
f(t0) > −∞. Moreover, there exists s ∈ Rd such that f(s) <∞, whence f(t0) ≤ f(s) <
∞. Consequently, α0 := f(t0) ∈ R. It follows that {f ≤ α0} = {f = α0} =Argmin(f).
Thus by assumption on Argmin(f) the level-set {f ≤ α0} is non-empty and bounded
and hence compact, because {f ≤ α0} is closed by lower-semicontinuity of f . Now, the
assertion that f is level-bounded follows from Proposition 2.3.1 of Bertsekas [2], Convex
Analysis and Optimization. �

Lemma 4.3. If f is lsc, convex, proper and level-bounded, then A(f, r) is non-empty
and compact for every real r ≥ 0.

P r o o f . Conclude from Argmin(f) = A(f, 0) ⊆ A(f, r) and Lemma 4.2 that A(f, r) 6= ∅
for all real r ≥ 0. As in the proof of Lemma 4.2 we see that A(f, r) = {f ≤ α0 + r},
where α0 = inft∈Rd f(t) ∈ R and another application of Proposition 2.3.1 of Bertsekas
[2] yields that {f ≤ α0 + r} is compact as desired. �

Lemma 4.4. Let f : Rd → R be convex. Then the following statements are equivalent:

(1) f is proper and int(domf) 6= ∅.

(2) f is finite on some nonempty open set

P r o o f . If (1) holds then f is finite on domf and in particular on int(domf) 6= ∅. For
the reverse let G 6= ∅ be open such that ∞ < f(x) < ∞ for all x ∈ G. Then G ⊆
domf and thus G ⊆ int(domf), whence int(domf) 6= ∅. Next, assume that f is not
proper. By Exercise 2.5 in Rockafellar and Wets [19] it follows that f(x) = −∞ for all
x ∈ int(domf) ⊃ G, which contradicts f > −∞ on G. �

Lemma 4.5. (CMT for �∼) Let (X1,O1) and (X2,O2) be topological spaces and let h :
X1 → X2 be a mapping with pertaining set Dh := {x ∈ X1 : h is not continuous at x}
of all discontinuity-points of h. For mappings Yn : (Ω,A) → X1 and Y : (Ω,A) → X1

assume that
Yn �∼ Y in (X1,O1).

If P∗(Y ∈ Dh) = 0, then
h(Yn) �∼ h(Y ) in (X2,O2).
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P r o o f . Let F be closed in (X2,O2). Check that

cl1(h−1(F )) ⊆ h−1(F ) ∪Dh, (48)

where cl1(A) denotes the closure of A ⊂ (X1,O1). It follows that

lim sup
n→∞

P∗(h(Yn) ∈ F ) = lim sup
n→∞

P∗(Yn ∈ h−1(F )) ≤ lim sup
n→∞

P∗(Yn ∈ cl1(h−1(F )))

≤ P∗(Y ∈ cl1(h−1(F ))) ≤ P∗(Y ∈ h−1(F )) + P∗(Y ∈ Dh) = P∗(h(Y ) ∈ F ).

Here, in the second row the first inequality follows from the Borel-Portmanteau-Theorem,
the second inequality from (48) and the subsequent equality from the requirement
P∗(Y ∈ Dh) = 0. Another application of the Borel-Portmanteau-Theorem yields the
assertion. �

Lemma 4.6. Let ξ1, . . . , ξn be finitely many random variables defined on a measurable
space (Ω,A) with values in (Rd,B(Rd)). Then C := {ξ1, . . . , ξn} is A−BuV -measurable.

P r o o f . Clearly, C maps into Fd. Let O ∈ τuV . Since SuV is actually a base for
τuV , there exists a family (Fi)i∈I ⊆ Fd with some index-set I 6= ∅ such that O =⋃
i∈IM(Fi). If πl : (Rd)n → Rd with l ∈ {1, . . . , n} denotes the l−th projection, i. e.,

πl(x1, . . . , xn) = xl for (x1, . . . , xn) ∈ (Rd)n, then {C ∈ O} = {(ξ1, . . . , ξn) ∈ V },
where V =

⋃
i∈I
⋂n
l=1 π

−1
l (F ci ) is open in (Rd)n. In particular, V ∈ B((Rd)n). Now,

B((Rd)n) = (B(Rd))n, whence {(ξ1, . . . , ξn) ∈ V } ∈ A. Thus {C ∈ O} ∈ A for every
open O ∈ τuV , which yields that C is A− BuV -measurable. �

P r o o f . (of Lemma 2.1) Let x ∈ Rd. In case 1 assume that f(x) = −∞. Then (x, α) ∈
epi(f) = epi(g) for every α ∈ R, and so g(x) ≤ α for every α ∈ R, which means that
g(x) = −∞ = f(x). In case 2 let −∞ < f(x) < ∞. Then (x, f(x)) ∈ epi(f) = epi(g),
whence (?) g(x) ≤ f(x) <∞. Assume that g(x) = −∞. Then as in case 1 (exchange f
for g) it followed that f(x) = −∞, a contradiction. Therefore g(x) ∈ R and consequently
(x, g(x)) ∈ epi(g) = epi(f) resulting in f(x) ≤ g(x) and by (?) we obtain that f(x) =
g(x). Finally, let f(x) =∞. Assume that g(x) <∞. Then either g(x) = −∞ and as in
case 1 it followed that f(x) = −∞ (contradiction) or −∞ < g(x) <∞ and as in case 2
it followed that f(x) <∞ (contradiction). Consequently, g(x) =∞ = f(x). �

(Received February 11, 2021)
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