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MARKOV STOPPING GAMES WITH AN ABSORBING
STATE AND TOTAL REWARD CRITERION

Rolando Cavazos-Cadena, Luis Rodŕıguez-Gutiérrez
and Dulce Maŕıa Sánchez-Guillermo

This work is concerned with discrete-time zero-sum games with Markov transitions on a
denumerable space. At each decision time player II can stop the system paying a terminal
reward to player I, or can let the system to continue its evolution. If the system is not halted,
player I selects an action which affects the transitions and receives a running reward from player
II. Assuming the existence of an absorbing state which is accessible from any other state, the
performance of a pair of decision strategies is measured by the total expected reward criterion.
In this context it is shown that the value function of the game is characterized by an equilibrium
equation, and the existence of a Nash equilibrium is established.

Keywords: non-expansive operator, monotonicity property, fixed point, equilibrium equa-
tion, hitting time, bounded rewards

Classification: 91A10, 91A15

1. INTRODUCTION

This note concerns with zero-sum games with Markovian transitions on a denumerable
state space and discrete-time parameter. Two players drive the system by applying
actions: at each decision epoch Player II always has two options, namely, to stop the
game paying a terminal reward to player I, or else, to let the system to continue its
evolution, and in this case player I chooses and applies an action affecting the system
transition and entitling him to receive a running reward from player II. The performance
of a pair of strategies is measured by the total reward criterion and, besides standard
continuity-compactness conditions, the framework of the paper is determined by the
following condition, under which the total reward criterion generalizes the discounted
index: There is an absorbing state which is accessible from any other state and at which
the running and terminal rewards are null. In this framework, the main objectives of
the paper can be stated as follows:

• to characterize the value function of the game via an equilibrium equation, and

• to determine a Nash equilibrium.
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Markov stopping games with discounted criterion were studied in [5], where an appli-
cation to mathematical finance was discussed; recently, in [10] the total reward criterion
for finite models with an absorbing state was studied, and the conclusions were illus-
trated with two examples. As in these papers, the approach of this work is based on
the existence of a fixed point for a non-expansive operator, a result that, via basic ideas
about stopping times, dynamic programming and Markov chains, allows to derive the
existence of a Nash equilibrium.

The theory of Markov games van be traced back to [15]and [23], and recent advances
and applications can be found, for instance, in [1, 2, 6, 9] or [3]. On the other hand,
the idea of stopping time is of great relevance in stochastic analysis, and a deep account
of the theory can be found in [16] and [12]; applications to mathematical finance can
be seen in [4] and [11]. On the other hand, the theory on controlled Markov processes
used in this note is well established and is exposed, for instance, in [7, 8, 14], whereas
applications can be found in [13, 20, 21, 22], and [17, 18, 19].

The organization of the subsequent material is as follows: The technical presentation
starts at Section 2, where a Markov stopping game is formally defined, the total reward
criterion is formulated, and the idea of Nash equilibrium is discussed. Then, in Section
3 a non-expansive operator is introduced and its main property is stated in Theorem
3.1, namely, that the operator admits a unique fixed point. Such a result is used to
define strategies for players I and II which, as stated in Theorem 3.2, constitute a Nash
equilibrium. Next, in Section 4 the basic technical tools that will be used to prove
the main results are established in Lemmas 4.1–4.4. Finally, Theorems 3.1 and 3.2 are
proved in Sections 5 and 6, respectively.

Notation. Given a nonempty set K, the Banach space C(K) consist of all continuous
functions R : K→ R whose supremum norm ‖R‖ is finite, where ‖R‖ := supk∈K |R(k)|.
N stands for the set of nonnegative integers and the indicator function of an event
A is denoted by I[A]. Finally, even without explicit mention, all relations involving
conditional expectations are valid with probability 1 with respect to the underlying
probability measure.

2. THE MODEL

This work is concerned with a dynamic model G = (S,A, {A(x)}x∈S , R,G, P ) which is
referred to as a Markov stopping game, and whose elements have the following meaning:
The (nonempty and) denumerable set S is the state space and is endowed with the
discrete topology, the metric space A is the action set and, for each x ∈ S, A(x) ⊂ A is
the nonempty class of admissible actions at x for player I. On the other hand, R ∈ C(K)
is the running reward function, where the class of admissible pairs is defined by K :=
{(x, a) | a ∈ A(x), x ∈ S}, and G ∈ C(S) is the terminal reward; finally, P = [px,y(a)] is
the controlled transition law on S given K, so that px,y(a) ≥ 0 and

∑
y∈S px,y(a) = 1

for each (x, a) ∈ K. Model G is interpreted as follows: At each decision epoch t ∈ N,
players I and II observe the state of the system, say Xt = x ∈ S, and player II must
select one of two actions: To stop the system paying a terminal reward G(x) to player I,
or let the system to continue its evolution. In this latter case, using the record of states
up to time t and actions previous to t, player I selects and applies an action (control)
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At = a ∈ A(x), and such an intervention has two consequences: player I gets a reward
R(x, a) from player II and, regardless of the previous states and actions, the system
moves to Xt+1 = y ∈ S with probability px y(a); this is the Markov property of the
decision process. The following condition is enforced in the sequel.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a 7→ R(x, a) and a 7→ px,y(a) are continuous in
a ∈ A(x).

(iii) For each x ∈ S and a ∈ A(x), G(x) ≥ 0 and R(x, a) ≥ 0.

Decision Strategies. For each t = 0, 1, 2, . . . , the space Ht of possible histories
up to time t is defined by H0 := S and Ht := Kt × S when t > 0, whereas ht =
(x0, a0, . . . , xi, ai, . . . , xt) stands for a generic element of Ht, where ai ∈ A(xi). A policy
π = {πt} is a special sequence of stochastic kernels: For each t ∈ N and ht ∈ Ht, πt(·|ht)
is a probability measure on A concentrated on A(xt), and for each Borel subset B ⊂ A,
the mapping ht 7→ πt(B|ht), ht ∈ Ht, is Borel measurable. The class of all policies
constitutes the family of admissible strategies for player I and is denoted by P. When
player I drives the system using π, the control At applied at time t belongs to B ⊂ A
with probability πt(B|ht), where ht is the observed history of the process up to time t.
Given π ∈ P and the initial state X0 = x, a unique probability measure Pπx is uniquely
determined on the Borel σ-field of the space H :=

∏∞
t=0 K of all possible realizations

of the state-action process {(Xt, At)} [7, 14]; the corresponding expectation operator is
denoted by Eπx . Next, define F :=

∏
x∈S A(x) and notice that F is a compact metric

space, which consists of all functions f : S → A such that f(x) ∈ A(x) for each x ∈ S.
A policy π is stationary if there exists f ∈ F such that the probability measure πt(·|ht)
is always concentrated at f(xt), and in this case π and f are naturally identified; with
this convention, F ⊂ P. On the other hand, setting

Ft := σ(X0, A0, . . . , Xt−1, At−1, Xt), (1)

the space T of strategies for player II consists of all stopping times τ : H → N with
respect to the filtration {Ft}, that is, for each nonnegative integer t, the event [τ = t]
belongs to Ft.

Performance Criterion. Given the initial state X0 = x ∈ S, the total expected
reward of player I associated with the pair (π, τ) ∈ P × T is given by

V (x;π, τ)

:= Eπx

[(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ <∞]

]
+ Eπx

[
I[τ =∞]

∞∑
t=0

R(Xt, At)

]
, (2)

where the convention
−1∑
t=0

R(Xt, At) = 0 (3)
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is enforced. When player II employs the strategy τ , the best expected total reward of
player I is supπ∈P V (x;π, τ), and the (upper-)value function of the game is given by

V ∗(x) := inf
τ∈T

[
sup
π∈P

V (x;π, τ)

]
, x ∈ S. (4)

Interchanging the order in which the supremum and the infimum are taken, the following
lower-value function of the game is obtained:

V∗(x) := sup
π∈P

[
inf
τ∈T

V (x;π, τ)

]
, x ∈ S; (5)

since supπ∈P V (x;π, τ) ≥ V (x;π, τ) ≥ infτ∈T V (x;π, τ), these definitions lead to

V ∗(·) ≥ V∗(·). (6)

Equilibrium Strategies. As already mentioned, this paper is focused on the existence
of a Nash equilibrium, an idea that is introduced below.

Definition 2.2. A pair (π∗, τ∗) ∈ P ×T is a Nash equilibrium if, for every state x ∈ S,

V (x;π, τ∗) ≤ V (x;π∗, τ∗) ≤ V (x;π∗, τ), π ∈ P, τ ∈ T . (7)

Suppose that the strategies π∗ and τ∗ actually used by the players form a Nash
equilibrium. In this case the first inequality in the above display shows that, if player II
keeps on using strategy τ∗, then player I does not have any incentive to switch to other
policy. Similarly, the second inequality in (7) implies that, if player I keeps on using π∗,
then there is not any incentive for player II to change his strategy. Also, note that (7)
implies that

V ∗(·) ≤ sup
π
V (·;π, τ∗) ≤ V (·;π∗, τ∗) ≤ inf

τ
V (x;π∗, τ) ≤ V∗(·),

where the left- and right-most inequalities are due to (4) and (5), respectively, so that
via (6) it follows that the upper and lower value functions coincide.

The existence of a Nash equilibrium was established in [5] for Markov stopping games
with the discounted criterion. As it was pointed out in [10], the discounted index is a
particular case of the total reward criterion applied to models with an absorbing state
z satisfying two properties: (i) The running and terminal reward are null at z, and (ii)
Under any stationary policy, state z is accessible from any initial state. These conditions
are formally stated as follows.

Assumption 2.3. There exists a state z ∈ S for which conditions (i)–(iii) below hold.

(i) For every x ∈ S,
P fx [τz <∞] = 1, (8)

where
τz : = min{n |Xn = z}. (9)

(ii) G(z) = 0 = R(z, ·) and pz,z(a) = 1, a ∈ A(z).

Note that (9) yields that

Pπz [τz = 0] = 1, π ∈ P. (10)
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3. MAIN THEOREM

In this section the main result on the existence of a Nash equilibrium is stated. First, a
subset of C(S) and an operator on that set are introduced.

Definition 3.1. (i) The space [[0, G]] ⊂ C(S) is defined by

[[0, G]] := {h ∈ C(S) | 0 ≤ h(x) ≤ G(x)}. (11)

(ii) The operator T : [[0, G]] → [[0, G]] is determined as follows: For every W ∈ [[0, G]]
and x ∈ S,

T [W ](x) := min

G(x), sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)W (y)

 . (12)

Using that R and G are nonnegative, it is not difficult to verify that T transforms
[[0, G]] into itself and that

T [W ](z) = W (z) = 0, W ∈ [[0, G]]. (13)

Note that T is monotone, i. e., for W,W1 ∈ [[0, G]],

W ≤W1 =⇒ T [W ] ≤ T [W1]. (14)

Theorem 3.2. Under Assumptions 2.1 and 2.3 the operator T has a unique fixed point,
that is, there exists a unique function W ∗ ∈ [[0, G]] satisfying

W ∗ = T [W ∗]. (15)

Next, strategies for players I and II will be defined using the fixed point W ∗. Notice
that (15) can be explicitly written as

W ∗(x) = min

G(x), sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)W ∗(y)

 , x ∈ S, (16)

and observe that, since W ∗ ∈ [[0, G]] and G is bounded, from Assumption 2.1 it follows
that there exists a policy f∗ ∈ F satisfying

R(x, f∗(x)) +
∑
y∈S

px,y(f∗(x))W ∗(y)

= sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)W ∗(y)

 , x ∈ S. (17)
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Next, define the subset S∗ of the state space by

S∗ := {x ∈ S |W ∗(x) = G(x)}, (18)

and let τ∗ be the hitting time of set S∗, that is,

τ∗ := min{n ∈ N |Xn ∈ S∗}, (19)

so that τ∗ is a stopping time with respect to the filtration {Ft} in (1), that is, τ∗

belongs to the space T of admissible strategies for player II. With this notation, the
main conclusion of this paper can be stated as follows.

Theorem 3.3. Under Assumptions 2.1 and 2.3, the following assertions (i) – (ii) hold.

(i) For every x ∈ S,
V (x; f∗, τ∗) = W ∗(x);

(ii) The pair (f∗, τ∗) ∈ F× T is a Nash equilibrium.

Theorem 3.2 and 3.3 will be proved in Sections 5 and 6, respectively, after the nec-
essary preliminaries established in Section 4. The argument used to prove Theorem 3.2
relies heavily on the the monotonicity property in (14), whereas Theorem 3.3 will be
established via dynamic programming arguments. Throughout the remainder Assump-
tions 2.1 and 2.3 are enforced.

4. TECHNICAL TOOLS

This section contains the auxiliary results that will be used to establish Theorems 3.2
and 3.3. The starting point is the following consequence of Assumption 2.1.

Lemma 4.1. (i) Consider a family {Sk} of finite subsets of S such that

S =

∞⋃
k=1

Sk, Sk ⊂ Sk+1, k ∈ N, (20)

and for each x ∈ S and k ∈ N define

δk(x) := sup
a∈A(x)

1−
∑
y∈Sk

px,y(a)

 = sup
a∈A(x)

∑
y∈S\Sk

px,y(a). (21)

In this case,
lim
k→∞

δk(x) = 0, x ∈ S.

(ii) If {Wn} ⊂ C(S) is such that

c := sup
n∈N
‖Wn‖ <∞ and lim

n→∞
Wn(x) = 0, x ∈ S, (22)

then
sup

a∈A(x)

∑
y∈S

px,y(a)|Wn(y)| → 0 as n→∞.
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P r o o f . (i) Observe that the conditions in (20) imply that∑
y∈Sk

px,y(a)↗
∑
y∈S

px,y(a) = 1 as k ↗ 1;

moreover, by Assumpion 2.1, for each k ∈ N the mappings a 7→
∑
y∈Sk

px,y(a) is con-
tinuous on the compact space A(x), so that Dini’s theorem implies that the above

convergence is uniform on the space A(x), that is, supa∈A(x)

[
1−

∑
y∈Sk

px,y(a)
]
→ 0.

(ii) Let x ∈ S be fixed and notice that, for every k ∈ N

sup
a∈A(x)

∑
y∈S

px,y(a)|Wn(y)| ≤ sup
a∈A(x)

∑
y∈Sk

px,y(a)|Wn(y)|+ sup
a∈A(x)

∑
y∈S\Sk

px,y(a)|Wn(y)|

≤ max
y∈Sk

|Wn(y)|+ c sup
a∈A(x)

∑
y∈S\Sk

px,y(a)

= max
y∈Sk

|Wn(y)|+ cδk(x)

where the equality is due to (21). Recalling that the sets Sk are finite, using (22) it
follows that

lim sup
n→∞

∣∣∣∣∣∣ sup
a∈A(x)

∑
y∈S

px,y(a)Wn(y)

∣∣∣∣∣∣ ≤ cδk(x), x ∈ S,

and then, since k ∈ N is arbitrary, the conclusion follows from part (i). �

The following result establishes the continuity of the operator T with respect to the
topology of pointwise convergence.

Lemma 4.2. Suppose that the sequence {Wn} ⊂ [[0, G]] converges pointwise to a func-
tion V : S → R, that is,

lim
n→∞

Wn(x) = V (x), x ∈ S. (23)

In this case

V ∈ [[0, G]] and lim
n→∞

T [Wn](x) = T [V ](x), x ∈ S.

P r o o f . Observe that the inclusion V ∈ [[0, G]] follows from (11) and (23). Next, let
x ∈ S be arbitrary and notice that

sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)Wn(y)


= sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)V (y) +
∑
y∈S

px,y(a)[Wn(y)− V (y)]


≤ sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)V (y)

+ sup
a∈A(x)

∑
y∈S

px,y(a)|Wn(y)− V (y)|,
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a relation that together with (12) leads to

T [Wn](x) ≤ T [V ](x) + sup
a∈A(x)

∑
y∈S

px,y(a)|Wn(y)− V (y)|.

The inequality that is obtained by interchanging the roles ofWn and V can be established
along similar lines, and it follows that

|T [Wn](x)− T [V ](x)| ≤ sup
a∈A(x)

∑
y∈S

px,y(a)|Wn(y)− V (y)|.

Taking the limit as n goes to∞ in both sides of this inequality, an application of Lemma
4.1(ii) with |Wn − V | instead of Wn leads to |T [Wn](x)− T [V ](x)| → 0 as n→∞. �

In the second part of the following lemma, property (8) will be extended to the class
of all policies.

Lemma 4.3. For each x ∈ S, and n ∈ N, define

Mn(x) := sup
π∈P

Pπx [τz > n] ∈ [0, 1]. (24)

With this notation,

(i) For each x ∈ S,

Mn(x)→ 0 as n→∞;

(ii) For every x ∈ S and π ∈ P,

Pπx [τz <∞] = 1.

P r o o f . Since [τz > n + 1] ⊂ [τz > n], it follows that the inequality Pπx [τz > n + 1] ≤
Pπx [τz > n] always holds, and then ( 24) yields that

Mn+1 ≤Mn, n ∈ N,

so that

M(x) := lim
n→∞

Mn(x) ∈ [0, 1] (25)

exists for every x ∈ S; notice that (10) yields that Mn(z) = 0 for every positive n, so
that

M(z) = 0. (26)

Now, let x ∈ S be arbitrary but fixed. Given n ∈ N, select a policy νx ∈ P in such a
way that

Mn+1(x)− 1

n+ 1
≤ P νxx [τz > n+ 1]. (27)
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Next, have a glance at (9) and notice that [τz > n+ 1] = [τz > n+ 1, X1 6= z] for every
n ∈ N. With this in mind, an application of the Markov property yields that for every
ã ∈ A(x)

P νxx [τz > n+ 1|A0 = ã] =
∑

y∈S\{z}

px,y(ã)P νx,ã
y [τz > n]

≤
∑

y∈S\{z}

px,y(ã)Mn(y)

≤ sup
a∈A(x)

 ∑
y∈S\{z}

px,y(a)Mn(y)

 ,
where policy νx,ã is determined by νx,ã,t(·|ht) = νx,t+1(·|x, ã,ht) for every t ∈ N and
ht ∈ Ht, and the first inequality is due to (24). Since ã ∈ A(x) is arbitrary, the above
display leads to

P νxx [τz > n+ 1] ≤ sup
a∈A(x)

 ∑
y∈S\{z}

px,y(a)Mn(y)

 .
On the other hand, since Mn(·) ∈ [0, 1], from Assumption 2.1 it follows that there exists
an action ax,n ∈ A(x) such that

∑
y∈S\{z}

px,y(ax,n)Mn(y) = sup
a∈A(x)

 ∑
y∈S\{z}

px,y(a)Mn(y)


and the three previous displays together imply that

Mn+1(x)− 1

n+ 1
≤

∑
y∈S\{z}

px,y(ax,n)Mn(y)

≤
∑

y∈Sk\{z}

px,y(ax,n)Mn(y) +
∑

y∈S\Sk

px,y(ax,n)Mn(y),

Mn+1(x)− 1

n+ 1
≤

∑
y∈Sk\{z}

px,y(ax,n)Mn(y) + δk. (28)

Since {ax,n} is contained in the compact (metric) space A(x), there exists a subsequence
{ax,nr

} such that limr→∞ ax,nr
=: ax ∈ A(x), and then, replacing n be nr in the above

display an taking the limit as r →∞ in both sides of the resulting inequality, Assumption
2.1 and (25) together imply that M(x) ≤

∑
y∈Sk\{z} px,y(ax)M(y) + δk. Since this last

inequality is valid for every k ∈ N, via (20) and (21) it follows that

M(x) ≤
∑

y∈S\{z}

px,y(f̂(x))M(y), x ∈ S,
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where the stationary policy f̂ is given by f(x) := ax for every x ∈ S. Let n ∈ N be
arbitrary and, using that [τz > n+ 1] = [τz > n,Xn+1 6= z], combine the above display
with the Markov property to obtain

Ef̂x [M(Xn+1)I[τz > n+ 1]|Fn] = Ef̂x [M(Xn+1)I[τz > n,Xn+1 6= z]|Fn]

= I[τz > n]Ef̂x [M(Xn+1)I[Xn+1 6= z]|Fn]

= I[τz > n]
∑

y∈S\{z}

pXn,y(f̂(Xn))M(y)

≥ I[τz > n]M(Xn)

where, observing that Xn 6= z on the event [τn > n], (28) with Xn instead of x was used
in the last step. It follows that the inequality

Ef̂x [M(Xn)I[τz > n]] ≤ |Ef̂x [M(Xn+1)I[τz > n+ 1]]

is always valid, and then

M(x)P f̂x [τz > 0] = Ef̂x [M(X0)I[τz > 0]] ≤ Ef̂x [M(Xn)I[τz > n]]

≤ P f̂x [τz > n], x ∈ S, n ∈ N,

where the inclusion in (25) was used to set the second inequality. Next, using that

limn→∞ P f̂x [τz > n] = 0, by Assumption 2.3(i), the above display yields that

M(x)P f̂x [τz > 0] = 0,

and then, observing that I[τz > 0] = 1 on the event [X0 6= z], it follows that M(x) = 0
for x ∈ S \ {z}, so that M(·) = 0, by (26), establishing part (i). To conclude note that
for each x ∈ S, n ∈ N and π ∈ P, Pπx [τz > n] ≤ Mn(x), and then part (i) implies that
Pπx [τz =∞] = limn→∞ Pπx [τz > n] ≤ limn→∞Mn(x) = 0, so that Pπx [τz <∞] = 1.

�

The following lemma shows that, in the context determined by Assumption 2.3, the
space of strategies of player II can be reduced to the class of finite stopping times, a
result that will be used in the proof of Theorem 3.3.

Lemma 4.4. For every (π, τ) ∈ P × T ,

V (·, π, τ) = V (·, π, τ ∧ τz). (29)

P r o o f . Let x ∈ S, and (π, τ) ∈ P×T be arbitrary. Keep in mind that Pπx [τz <∞] = 1,
by Lemma 4.3, and notice that Assumption 2.3 and (9) yield that

On [τz <∞], Xτz = z and R(Xn, An) = G(Xn) = 0, n ≥ τz. (30)

Next, observe the following facts (a)–(c):
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(a) On the event [τ =∞] ∩ [τz <∞] the above display yields that

∞∑
t=0

R(Xt, At) =

τz−1∑
t=0

R(Xt, At)

=

τz−1∑
t=0

R(Xt, At) +G(Xτz ) =

τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

and then, since Pπx [τz <∞] = 1,

Eπx

[
I[τ =∞]

∞∑
t=0

R(Xt, At)

]
= Eπx

[
I[τ =∞]

τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

]
. (31)

(b) On the event [τz ≤ τ < ∞], τz = τ ∧ τz and via (30) it follows that G(Xτ ) = 0 =

G(Xτz ) = G(Xτ∧τz ) as well as
∑τ−1
t=0 R(Xt, At) =

∑τz−1
t=0 R(Xt, At) =

∑τ∧τz−1
t=0 R(Xt, At)

so that

Eπx

[
I[τz ≤ τ <∞]

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)]

= Eπx

[
I[τz ≤ τ <∞]

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

)]
On the other hand, since τ = τ ∧ τz on the event [τ <∞, τ < τz], it follows that

Eπx

[
I[τ <∞, τ < τz]

τ−1∑
t=0

R(Xt, At)

]

= Eπx

[
I[τ <∞, τ < τz]]

τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

]
,

an equality that together with the previous display leads to

Eπx

[
I[τ <∞]

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)]

= Eπx

[
I[τ <∞]

(
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

)]
Combining this equality with (31) and (2) it follows that

V (x;π, τ) = Eπx

[
τ∧τz−1∑
t=0

R(Xt, At) +G(Xτ∧τz )

]
.

Finally, since Pπx [τ ∧ τz = ∞] = 0, by Lemma 4.3, the right-hand side of the above
display coincides with V (x, π, τ ∧ τz), and then V (x;π, τ) = V (x;π, τ ∧ τz). �
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5. THE FIXED POINT RESULT

In this section Theorem 3.2 will be established. The existence of a fixed point will be
proved combining the continuity result in Lemma 4.2 with the monotonicity property
(14), whereas the uniqueness will be derived via the continuity conditions in Assumption
2.1 and the optional sampling theorem.

P r o o f of Theorem 3.2. Set Wn := Tn[0] for each nonnegative integer n, so that

Wn+1 = T [Wn], n ∈ N. (32)

Since W0 = 0 ∈ [[0, G]] and W1 = T [0] ∈ [[0, G]] it follows that W1 ≥ W0, and then an
induction argument combining using the above display and (14) immediately yields that

0 ≤Wn ≤Wn+1 ≤ G,

where the extreme inequalities are due to the fact that the functions Wn belong to [[0, G]].
Thus, for each y ∈ S, the sequence {Wn(y)} is monotone and bounded, so that

lim
n→∞

Wn(y) =: Ŵ (y)

exists for every y ∈ S. From this point, Lemma 4.2 yields that Ŵ ∈ [[0, G]] and

lim
n→∞

T [Wn](x) = T [Ŵ ](x), x ∈ S,

and then, taking the limit as n goes to∞ in both sides of (32), the two previous displays
lead to

Ŵ = T [Ŵ ],

showing that Ŵ is a fixed point if T . To conclude, it will be proved that such a fixed
point is unique. Let V ∈ [[0, G]] be an arbitrary fixed point of T , so that

V = T [V ],

and observe that (12) yields that for every x ∈ S
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Ŵ (x) = T [Ŵ ](x)

= min

G(x), sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)Ŵ (y)


= min

G(x), sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)V (y) +
∑
y∈S

px,y(a)[Ŵ (y)− V (y)]


≤ min

G(x), sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)V (y)


+ sup
a∈A(x)

∑
y∈S

px,y(a)[Ŵ (y)− V (y)]

= T [V ](x) + sup
a∈A(x)

∑
y∈S

px,y(a)[Ŵ (y)− V (y)]

= V (x) + sup
a∈A(x)

∑
y∈S

px,y(a)[Ŵ (y)− V (y)],

and then
Ŵ (x)− V (x) ≤ sup

a∈A(x)

∑
y∈S

px,y(a)[Ŵ (y)− V (y)], x ∈ S.

Since Ŵ , V ∈ [[0, G]] and G is bounded, it follows that ‖Ŵ − V ‖ ≤ ‖G‖ <∞, and then
Assumption 2.1 implies that there exists f ∈ F such that∑

y∈S
px,y(f(x))[Ŵ (y)− V (y)] = sup

a∈A(x)

∑
y∈S

px,y(a)[Ŵ (y)− V (y)], x ∈ S,

so that
Ŵ (x)− V (x) ≤

∑
y∈S

px,y(f(x))[Ŵ (y)− V (y)], x ∈ S. (33)

This relation and the Markov property imply that, for every x ∈ S and n ∈ N,

Ŵ (Xn)− V (Xn) ≤
∑
y∈S

pXn,y(f(Xn))[Ŵ (y)− V (y)] = Efx

[
Ŵ (Xn+1)− V (Xn+1)

∣∣∣Fn]

and then {(Ŵ (Xn)− V (Xn),Fn)} is a supermartingale with respect to P fx . Observing
that {Ŵ (Xn)− V (Xn)} is uniformly integrable (since ‖Ŵ − V ‖ ≤ ‖G‖ <∞) and

P fx [τz <∞] = 1,

by Assumption 2.3(i), the optional sampling theorem implies that

Ŵ (x)− V (x) = Efx [Ŵ (X0)− V (X0)] ≤ Efx [Ŵ (Xτz )− V (Xτz )].



Markov stopping games 487

Thus, using that Xτz = z on the event [τz < ∞] and Ŵ (z) = V (z) = 0, by (13), the
two last displays yield that Ŵ (x) − V (x) ≤ 0, whereas the reverse inequality can be
established interchanging the roles of Ŵ and V . It follows that Ŵ = V , showing that
T has a unique fixed point. �

6. EXISTENCE OF NASH EQUILIBRIA

In this section a proof of Theorem 3.3 will be presented. By convenience, the core of the
argument is presented separately in two lemmas.

Lemma 6.1. For each τ ∈ T ,

W ∗(·) ≤ V (·; f∗, τ). (34)

P r o o f . Notice that, by Assumption 2.3 and Lemma 4.4, replacing τ by τ ∧ τz, if
necessary, it is sufficient to establish the conclusion under the condition that τ is a finite
stopping time:

P f
∗

x [τ <∞] = 1, x ∈ S. (35)

With this in mind, the verification of (34) relies on the following claim:

For every τ ∈ T and every positive integer n and x ∈ S,

W ∗(x) ≤ Ef
∗

x

[
n−1∑
t=0

R(Xt, At)I[τ > t] +W ∗(Xτ )I[τ ≤ n] +W ∗(Xn)I[τ > n]

]
. (36)

Before proving this assertion, it will be used to establish the desired conclusion under
the condition (35). Notice that, using the nonnegativity of R and W ∗ as well as (35),
via the monotone convergence theorem it follows that

lim
n→∞

Ef
∗

x

[
n−1∑
t=0

R(Xt, At)I[τ > t] +W ∗(Xτ )I[τ ≤ n]

]

= Ef
∗

x

[ ∞∑
t=0

R(Xt, At)I[τ > t] +W ∗(Xτ )

]
= Ef

∗

x

[
τ−1∑
t=0

R(Xt, At) +W ∗(Xτ )

]
.

On the other hand, since ‖W ∗| ≤ ‖G‖ <∞, via (35) it follows that

Ef
∗

x [W ∗(Xn)I[τ > n]] ≤ ‖W ∗‖P f
∗

x [τ > n]→ 0 as n→∞.

Taking the limit in the right-hand side of (36) this two last displays yield that

W ∗(x) ≤ Ef
∗

x

[
τ−1∑
t=0

R(Xt, At) +W ∗(Xτ )

]

≤ Ef
∗

x

[
τ−1∑
t=0

R(Xt, At) +G(Xτ )

]
= V (x, f∗, τ), x ∈ S,
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where the second inequality is due to the relation W (·) ≤ G(·) (derived from (16)) and,
using (35), the equality is due to (2). This establishes (34). To conclude, claim (36) will
be verified. To start with, note that (16) and (17) together imply that

W ∗(x) ≤ R(x, f∗(x)) +
∑
y∈S

px,y(f∗(x))W ∗(y), x ∈ S. (37)

On the other hand, using that [τ = 0] ∈ F0 = σ(X0), it follows that for each x ∈ S,

[X0 = x] ⊂ [τ = 0] or [X0 = x] ⊂ [τ = 0]c = [τ ≥ 1].

Now, the instance n = 1 of (36) will be established considering the following two ex-
haustive cases:

Case 1: [X0 = x] ⊂ [τ = 0].

In this context P f
∗

x [τ = 0] = 1, and it follows that

R(X0)I[τ > 0] +W ∗(Xτ )I[τ ≤ 0] +W ∗(X1)I[τ > 0]

= W ∗(X0) = W ∗(x) P f
∗

x -almost surely,

so that the inequality in (36) holds with equality when n = 1

Case 2: [X0 = x] ⊂ [τ ≥ 1].

In this framework P f
∗

x [τ > 0] = 1, and it follows that

R(X0)I[τ > 0]+W ∗(Xτ )I[τ ≤ 0]+W ∗(X1)I[τ > 0] = R(X0)+W ∗(X1) P f
∗

x -almost surely,

and then

Ef
∗

x [R(X0)I[τ > 0] +W ∗(Xτ )I[τ ≤ 0] +W ∗(X1)I[τ > 0]]

= Ef
∗

x [R(X0) +W (X1)] ≥W ∗(x)

where the inequality is due to (37), so that the case n = 1 of (36) also holds in the
present context.

Proceeding by induction, suppose that (36) is valid for some positive integer n and note
that W (Xn) and I[τ > n] are Fn-measurable, so that

Ef
∗

x [I[τ > n]W (Xn)|Fn] = I[τ > n]W (Xn)

≤ I[τ > n]

R(Xn, f
∗(Xn)) +

∑
y∈S

pXn,y(f∗(Xn))W ∗(y)


= Ef

∗

x [R(Xn, An)I[τ > n] +W ∗(Xn+1)I[τ > n]|Fn]

where (37) with Xn instead of x was used to set the inequality and the Markov property
was used in the last step. Therefore,

Ef
∗

x [I[τ > n]W (Xn)]

≤ Ef
∗

x [R(Xn, An)I[τ > n]] + Ef
∗

x [W ∗(Xn+1)I[τ > n]]

= Ef
∗

x [R(Xn, An)I[τ > n]] + Ef
∗

x [W ∗(Xn+1)I[τ = n+ 1]] + Ef
∗

x [W ∗(Xn+1)I[τ > n+ 1]].
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Combining this relation with the induction hypothesis, it follows that (36) is valid with
n+ 1 instead of n, completing the induction argument. �

Lemma 6.2. For every x ∈ S

V (x;π, τ∗) ≤W ∗(x), π ∈ P. (38)

P r o o f . First, suppose that x ∈ S∗. In this case (18) and (19) yield that

W ∗(x) = G∗(x) and Pπx [τ∗ = 0] = 1,

whereas via (2) and (3) it follows that V (x;π, τ∗) = G(x), so that (38) holds with
equality. To establish (38) for x ∈ S \ S∗, an argument similar to the one used to prove
Lemma 6.1 will be used. Consider the following claim: For every π ∈ P and n ∈ N \ {0}

W ∗(x) ≥ Eπx

[
n−1∑
t=0

R(Xt, At)I[τ∗ > t]] +W ∗(Xτ∗)I[τ∗ ≤ n]

]
+ Eπx [W ∗(Xn)I[τ∗ > n]] , x ∈ S \ S∗. (39)

To verify this assertion, observe that W ∗(x) 6= G(x) when x ∈ S \ S∗, and then (16)
yields that

W ∗(x) = sup
a∈A(x)

R(x, a) +
∑
y∈S

px,y(a)W ∗(y)


≥ R(x, a) +

∑
y∈S

px,y(a)W ∗(y), x ∈ S \ S∗, a ∈ A(x); (40)

using that Pπx [τ∗ > 0] = 1 when x /∈ S∗, the above inequality implies that, for every
π ∈ P and x ∈ S \ S∗,

W ∗(x) ≥ Eπx [R(X0, A0) +W ∗(X1)]

= Eπx [R(X0, A0)I[τ∗ > 0] +W ∗(X1)I[τ∗ = 1] +W ∗(X1)I[τ∗ > 1]]

= Eπx [R(X0, A0)I[τ∗ > 0] +W ∗(Xτ∗)I[τ∗ ≤ 1] +W ∗(X1)I[τ∗ > 1]]

establishing (39) for the case n = 1. Proceeding by induction, suppose that (39) is valid
for a positive integer n and, observing that W ∗(Xn) and I[τ∗ > n] are Fn-measurable
and that Xn ∈ S \ S∗ on the event [τ∗ > n], it follows that for every policy π ∈ P

Eπx [W ∗(Xn)I[τ∗ > n]|Fn] = I[τ∗ > n]W (Xn)

≥ I[τ∗ > n]

R(Xn, f
∗(Xn)) +

∑
y∈S

pXn,y(f∗(Xn))W ∗(y)


= Eπx [R(Xn, An)I[τ∗ > n] +W ∗(Xn+1)I[τ∗ > n] | Fn]
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where (40) with Xn instead of x was used to set the inequality, and the Markov property
was employed in the last step. Consequently,

Eπx [W ∗(Xn)I[τ∗ > n]

≥ Eπx [R(Xn, An)I[τ∗ > n] +W ∗(Xn+1)I[τ∗ > n]]

≥ Eπx [R(Xn, An)I[τ∗ > n] +W ∗(Xn+1)I[τ∗ = n+ 1] +W ∗(Xn+1)I[τ∗ > n+ 1]]

= Eπx [R(Xn, An)I[τ∗ > n] +W ∗(Xτ∗)I[τ∗ = n+ 1] +W ∗(Xn+1)I[τ∗ > n+ 1]].

Combining this relation with the induction hypothesis it follows that (39) holds with n+1
instead of n, completing the induction proof. To conclude, using that ‖W ∗‖ ≤ ‖G‖ <∞,
note that

Eπx [W ∗(Xn)I[τ∗ > n]]→ 0,

by Lemma 4.3, whereas the nonnegativity of R and W ∗ together with the monotone
convergence theorem imply that

lim
n→∞

Eπx

[
n−1∑
t=0

R(Xt, At)I[τ∗ > t] +W ∗(Xτ∗)I[τ∗ ≤ n]

]

= Eπx

[ ∞∑
t=0

R(Xt, At)I[τ∗ > t] +W ∗(Xτ∗)I[τ∗ <∞]

]

= Eπx

[
τ∗−1∑
t=0

R(Xt, At)I[τ∗ > t] +W ∗(Xτ∗)

]
.

Taking the limit as n goes to ∞ in the right-hand side of the inequality in (39) the two
last displays yield that

W (x) ≥ Eπx

[
τ∗−1∑
t=0

R(Xt, At)I[τ∗ > t] +W ∗(Xτ∗)

]

= Eπx

[
τ∗−1∑
t=0

R(Xt, At)I[τ∗ > t] +G∗(Xτ∗)

]
= V (x;π, τ∗), x ∈ S \ S∗,

where, recalling that W and G coincide on the set S∗, the first equality is due to the
inclusion Xτ∗ ∈ S∗, and the second equality is due to (2), showing that (38) also holds
for x ∈ S \ S∗. �

P r o o f of Theorem 3.3. By Lemmas 6.1 and 6.2

V (·;π, τ∗) ≤W ∗(·) ≤ V (·; f∗, τ), (π, τ) ∈ P × T .

Setting (π, τ) = (f∗, τ∗) it follows that W ∗(·) = V (·; f∗, τ∗), and then (f∗, τ∗) is a Nash
equlibrium, by Definition 2.2. �
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[3] N. Bäuerle and U. Rieder: Zero-sum risk-sensitive stochastic games. Stoch. Proc. Appl.
127 (2017), 622–642. DOI:10.1016/j.spa.2016.06.020

[4] T. Bielecki, D. Hernández–Hernández, and S. R. Pliska: Risk sensitive control of finite
state Markov chains in discrete time, with applications to portfolio management. Math.
Methods Oper. Res. 50 (1999), 167–188. DOI:10.1007/s001860050094

[5] R. Cavazos-Cadena and D. Hernández-Hernández: Nash equilibria in a class of Markov
stopping games. Kybernetika 48 (2012), 1027–1044.

[6] J. A. Filar and O. J. Vrieze: Competitive Markov Decision Processes. Springer, Berlin
1996.

[7] O. Hernández-Lerma: Adaptive Markov Control Processes. Springer, New York 1989.

[8] O. Hernández-Lerma and J. B. Lasserre: Discrete-Time Markov Control Processes: Basic
Optimality Criteria. Springer, New York 1996.

[9] V. N. Kolokoltsov and O. A. Malafeyev: Understanding Game Theory. World Scientific,
Singapore 2010.

[10] V. M. Mart́ınez-Cortés: Bipersonal stochastic transient Markov games with stopping times
and total reward criteria. Kybernetika 57 (2021), 1–14. DOI:10.14736/kyb-2021-1-0001

[11] G. Peskir: On the American option problem. Math. Finance 15 (2005), 169–181.
DOI:0.5840/leibniz20051510

[12] G. Peskir and A. Shiryaev: Optimal Stopping and Free-Boundary Problems. Birkhauser,
Boston 2010.

[13] A. B. Piunovskiy: Examples in Markov Decision Processes. Imperial College Press, London
2013.

[14] M. Puterman: Markov Decision Processes. Wiley, New York 1994.

[15] L. S. Shapley: Stochastic games. Proc. Natl. Acad. Sci. USA 39 (1953), 1095–1100.

[16] A. Shiryaev: Optimal Stopping Rules. Springer, New York 1978.
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