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NEURAL NETWORK OPTIMAL CONTROL
FOR NONLINEAR SYSTEM BASED ON ZERO-SUM DIF-
FERENTIAL GAME

Fu Xingjian and Li Zizheng

In this paper, for a class of the complex nonlinear system control problems, based on the
two-person zero-sum game theory, combined with the idea of approximate dynamic program-
ming(ADP), the constrained optimization control problem is solved for the nonlinear systems
with unknown system functions and unknown time-varying disturbances. In order to obtain
the approximate optimal solution of the zero-sum game, the multilayer neural network is used
to fit the evaluation network, the execution network and the disturbance network of ADP re-
spectively. The Lyapunov stability theory is used to prove the uniform convergence, and the
system control output converges to the neighborhood of the target reference value. Finally, the
simulation example verifies the effectiveness of the algorithm.

Keywords: zero-sum game, nonlinear system, neural network, approximate dynamic pro-
gramming

Classification: 93C10, 93D21, 91A80

1. INTRODUCTION

Game Theory is a mathematical method for studying the equilibrium of multiplayer
strategies, and it is an important branch of modern economics and operations research.
In 1944, John von Neumann and Oskar Morgenstern systematically defined game the-
ory in their book “Theory of Games and Economic Behavior” [22], which marked the
establishment of game theory as a discipline. The prisoner’s dilemma problem raised by
Albert Tucker in 1950 became one of the most classic cases in non-cooperative games. In
1950, “Equilibrium points in n-person games” published by John Nash formally defined
the concept of equilibrium and used the fixed point theory to prove the existence of equi-
librium points [20]. A year later, Nash’s doctoral dissertation “Non-cooperativegames”
was published in “Annals of mathematics” [21]. His important research result, “Nash
equilibrium” theory, laid the foundation for the development of game theory.

Equilibrium is the most important concept for solving game theory problems. The
key to solve the game problem is to find a strategy combination that can make all the
players in the game unwillingness to change their strategies individually. As long as this
strategy exists, there is a solution to the game problem. If this strategy combination is
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unique, then the solution of the game is uniquely determined. In the game, the strategy
adopted by any participant for their own best interests should be the best response to
the strategies of other participants. The strategy combination in which each player in
the game is unwilling or will not change their strategy individually is the solution of the
game, which is the Nash equilibrium [11, 17, 21, 31]. In the Nash equilibrium, no player
in the game can obtain more benefits by individually changing his own strategy while
the other participants keep their strategies unchanged.

In the 1950s, the team of Dr. R. Isaacs conducted research on the problem of the
chasing and escaping where everyone in the game can determine the action plan in-
dependently. In 1965, he published the monograph “Different Game” by sorting out
research results, which was the first monograph on the theory of differential game [10].
In game theory, by drawing on the tools and concepts of modern control theory, differen-
tial game theory can solve dynamic decision problems well. Differential game theory is
a dynamic strategy, which uses differential equations or equations to describe the inter-
nal laws of competitive relations. The theoretical research results based on differential
game theory play an important role in the field of automatic control and game theory.
Many scholars continued to study and excavate this field. In [15], a greedy heuris-
tic dynamic programming iteration algorithm is developed to solve the zero-sum game
problems, which can be used to solve the Hamilton–Jacobi–Isaacs equation associated
with H∞ optimal regulation control problems. In [4], for the attitude control problem
of a failed spacecraft with exhausted fuel, a state-dependent Riccati equation (SDRE)
differential game control method in which multiple microsatellites cooperate to achieve
attitude stability is proposed. In [14], the problem of two-person Nash differential games
for delayed stochastic systems with state-and control-dependent noise is discussed. A
sufficient condition for the existence of the Nash equilibrium strategy is presented in
terms of coupled Hamilton-Jacobi equations (HJEs). Due to disadvantages of single ca-
nard fin control or tail fin control for bounded-control interception missiles, a novel dual
and bounded controlled differential game guidance law is presented based on two-sided
optimization differential game theory [9]. In [[25], in order to overcome the difficulty
in real-time effectively acquiring the target parameters of differential game guidance
in a complex underwater environment, the differential game guidance of underwater
nonlinear tracking control based on continuous time generalized predictive correction is
proposed. In [16], an online optimal distributed learning algorithm is proposed to solve
leader-synchronization problem of nonlinear multi-agent differential graphical games.
Each player approximates its optimal control policy using a single-network ADP. In
[19], the optimization problem of the two-person zero-sum difference game with con-
trol constraints under the event trigger framework is studied. Relying on reinforcement
learning, an adaptive dynamic programming algorithm is developed to approximate the
optimal solution of the zero-sum game. In [33], two distributed dynamic optimization
structures, receding non-cooperative game optimization (RNGO) and receding coop-
erative game optimization (RCGO), are presented for analyzing distributed dynamic
optimization for chemical process networks. In [18], the risk-sensitive optimal control
and differential game of the stochastic differential delay equation driven by Brownian
motion are considered. In [26], an approximate optimal critic learning algorithm based
on single neural network strategy iteration was established to solve continuous-time two-
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person zero-sum games. In [8], the system application of the hybrid system framework
in differential games is studied. Two types of special switching rules: time-related and
state-related switching are discussed. In [19], the authors solve the two-person zero-sum
difference game problem of a nonlinear dynamic system with a nonlinear non-quadratic
cost function. The goal of the tracker is to minimize the cost function and ensure the
asymptotic stability of the closed-loop system.

The optimal control for the nonlinear systems is the difficult and challenging topic.
Dynamic programming (DP) is a very useful method to solve the optimal control prob-
lem. In particular, it can be easily applied to the nonlinear systems where the control
input and state variables are not constrained.The theory of dynamic programming was
founded by Bellman [2]. He developed the HJB theory in variational science by relying
on the optimality principle, and finally formed the DP theory. DP theory can deal with
optimal control problems under constrained and unconstrained conditions [6, 7, 23, 24].
However, with the increase in the operating speed of computer storage space, people
have entered the era of big data. The limitations of DP have gradually emerged. Under
small-scale calculations, the DP theory does have its own unique advantages, but as
the dimensionality of the data increases, the amount of DP calculations also increases
exponentially. This is the so-called “Dimension disaster” problem. In order to solve
this problem, Werbos proposed the idea of approximate/adaptive dynamic program-
ming (ADP) in 1977, which is a new nonlinear optimization method [28]. ADP uses the
function approximation structure to approximate the cost function and control strat-
egy in the DP equation, so that the optimal cost function and optimal control strategy
are obtained, so the limitations of the DP method are overcome. Therefore, the ADP
method can solve the optimal control problem of general nonlinear systems and is more
suitable for applications in systems with strong coupling and high complexity. Sub-
sequently, many scholars used ADP to deal with the optimal control problem of the
nonlinear systems [3, 5, 27, 29, 30]. In [27], a value iteration adaptive dynamic pro-
gramming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal
control problems for discrete-time nonlinear systems. The present value iteration ADP
algorithm permits an arbitrary positive semi-definite function to initialize the algorithm.
In [3], a novel optimal control design scheme is proposed for continuous-time nonaffine
nonlinear dynamic systems with unknown dynamics by adaptive dynamic programming
(ADP). The proposed methodology iteratively updates the control policy online by using
the state and input information without identifying the system dynamics. In [29], the
influence of time delay on system stability and controller design is studied, and heuristic
dynamic programming theory is introduced into iterative algorithms to solve the opti-
mal control problem of the system. A nonlinear robust optimal control (NROC) scheme
for uncertain two-axis motion control systems through adaptive dynamic programming
(ADP) and neural networks (NNs) is proposed in [5]. Nowadays, based on the idea of
two-person zero-sum game, there are relatively few studies on the optimal control for
the nonlinear systems with disturbances.
At present, many research results have been obtained by adopting adaptive control
methods to deal with nonlinear system problems [32, 13, 32]. In [12], this paper presents
an adaptive control method for a class of uncertain strict-feedback switched nonlinear
systems. Based on the backstepping technique, the integral Barrier Lyapunov functions
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(iBLFs) are adopted to solve the full state constraint problems. In [32], this paper
presents an adaptive neural network output feedback control method for stochastic non-
linear systems with full state constraints. The barrier Lyapunov functions are used to
conquer the effect of state constraints to system performance. In the control process of
nonlinear systems, there are a lot of uncertain disturbances and uncontrollable factors.
For example, the disturbance of the external environment or the aging of the internal
components of the system, these factors are not artificially controllable. The main idea
of the zero-sum game is that both sides of the game are trying to eliminate the other,
and the benefits that one party gets are exactly what the other party loses. According
to the characteristics of the zero-sum game, the control input of the nonlinear system
can be regarded as one party of the game, and the other party can be regarded as the
uncertain disturbance of the outside world. The disturbances attempt to destroy the
balance of the system, while the controlling party uses its own nature to eliminate the
adverse effects of disturbance, which constitutes a game. Regardless of the form of ex-
ternal disturbance, it can be abstracted as a player. The game strategy is to design a
strategy that allows the control input to overcome the external uncertain disturbance
to achieve optimal control of the nonlinear system.

According to the dynamic programming theory, for the nonlinear systems, HJB par-
tial differential equations need to be solved when seeking the optimal feedback control.
It is often difficult. Sometimes, it is impossible to get an analytical solution. Usually,
the system needs to be approximately processed. However, this kind of approximation is
often idealized, which often leads to inaccurate results and loses the original features of
the system. In this paper, the main contributions are as follows. For the complex non-
linear systems with unknown system functions and unknown time-varying disturbances,
based on the two-person zero-sum game theory, combined with the idea of approximate
dynamic programming, The constrained optimization control problem is solved. In order
to obtain the approximate optimal solution of the HJI equation, the multilayer neural
network is used to fit the evaluation network, the execution network and the disturbance
network respectively. Through continuous network training to reduce the approxima-
tion error, the characteristics of the system model can be retained to the greatest extent.
Assuming that the system is controllable, the Lyapunov stability theory is used to prove
the uniformly convergence, and the system control output converges to the neighbor-
hood of the target reference value. Compared with the existing methods, the proposed
method reduces the requirement of parameter uncertainty conditions, which reduces the
conservativeness of the optimal control. Finally, the simulation example verifies the
effectiveness of the algorithm.

2. PROBLEM STATEMENT

Considering the following nonlinear discrete system with disturbances

xk+1 = f(xk) + g(xk)uk + h(xk)dk (1)

where k = 0, 1, 2, . . . , n, xk ∈ Rn is the state, f(xk) ∈ Rn, g(xk) ∈ Rn×m and h(xk) ∈
Rn×q are the smooth and differentiable functions. uk ⊆ Rm is the control input,
dk ⊆ Rq is the disturbance input, and dk ∈ L2[0,∞). The discrete system satisfies
the characteristics of the Markov process. It is assumed that the system is controllable,
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that is, there is at least one continuous control sequence uk that can make the system
asymptotically stable when there is a disturbance dk.

The stable control problem for the system (1) with disturbance can be regarded
as a zero-sum differential game solving problem.The control input uk is used as the
minimization decision player. The disturbance signal dk is used as the maximization
decision player. According to the Nash equilibrium condition of the zero-sum differential
game [11, 31], this problem can be converted to how to find the Nash equilibrium solution
so that the minimized decision player uk can balance the maximum decision player dk

In the zero-sum differential game, the infinite cost function is defined as follows

J(x0,u,d) =

∞∑
k=0

U(xk,uk,dk), (2)

where
U(xk,uk,dk) = xT

k Qxk + uT
k Ruk − γ2dT

k Sdk. (3)

For a controllable system, U(xk,uk,dk) is a decreasing series, Uk ≥ Uk+1. When
k → ∞, Uk → 0 is a convergent series. The function J(x0,u,d) is the value of the
performance index function in the state xk. By selecting a suitable control strategy, the
J(x0,u,d) value can be minimized. The Q ,R and S are the positive definite matrices,
and γ is a given constant.

Remark 1. For the optimal control of the system, the control strategy u(xk) is re-
quired to ensure that the system is stabilized and that the cost function is finite, which
means that the control strategy u(xk) must be admissible control [24].

Definition 1. If the control strategy u(xk) can stabilize the system (1), u(0) = 0, and
for any initial state x0, J (x0) is a finite value. When the disturbance dk exists, the
control strategy u(xk) is the admissible control.

For the feedback control strategy u(xk) and the disturbance strategy dk, the infinite
value cost function is defined as

V (xk,uk,dk) =

∞∑
i=k

U(xi,ui,di). (4)

The Hamilton function is

H(xk,uk,dk) = V (xk+1)− V (xk) + xT
k Qxk + uT

k Ruk − γ2dT
k Sdk. (5)

According to the differential game theory, for the two control strategies u and d, one
tries to minimize its own cost function, and the other tries to maximize its own cost
function.

It is known that we want to minimize the decision player uk to balance the maximum
decision player dk, that is, to find a feedback saddle point solution u∗(k) = u(xk) and
d∗(k) = d(xk), so that

V (u∗,d∗) = min
u

max
d

V (u,d). (6)
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The necessary and sufficient condition for a two-person zero-sum differential game to
have a unique solution is that the following Nash equilibrium condition holds

min
u

max
d

V (u,d) = max
d

min
u
V (u,d). (7)

According to the Bellman optimality principle [2], the optimal value function V ∗(xk)
satisfies the following HJI equation

V ∗(xk) = min
u

max
d
{U(xk,uk,dk)}. (8)

The optimal control strategy u∗(k) and the worst disturbance d∗(k) satisfy the static
equilibrium conditions of the optimal control theory

∂H(xk,uk,dk)/∂uk = 0 (9)

and
∂H(xk,uk,dk)/∂dk = 0. (10)

Then, the optimal control strategy u∗(k) can be obtained according to the equation
(9)

u∗(xk) = −1

2
R−1gT (xk)

∂V ∗(xk)

∂xk
. (11)

According to the equation (10), the worst disturbance d∗(k) can be obtained

d∗(xk) =
1

2γ2
S−1hT (xk)

∂V ∗(xk)

∂xk
. (12)

Then the optimal feedback control strategyies u∗(xk) and d∗(k) are Nash equilibrium
strategies. Substituting the equation (11) and the equation (12) into the equation (8),
there is the following discrete-time HJI equation

∂V ∗T (xk)

∂xk
f(xk) +

1

4

∂V ∗T (xk)

∂xk+1
g(xk)R−1gT (xk)

∂V ∗(xk)

∂xk

− 1

4γ2
∂V ∗T (xk)

∂xk
h(xk)S−1hT (xk)

∂V ∗(xk)

∂xk
+ xT

k Qxk = 0.

(13)

In the nonlinear systems, the equation (13) is a nonlinear partial differential equation
and cannot be directly solved analytically. An ADP learning strategy based on the neural
network is proposed, which solves the equation (13) by continuously approximating the
value functionV ∗(xk).

3. ADP DESIGN BASED ON ZERO-SUM GAME

In order to obtain the approximate solution of the HJI equation, it is necessary to use
the neural network to approximate the value functionV (xk), the control strategy u(xk)
and the disturbance strategy d(xk) [24]. That is, evaluation network, execution network
and disturbance network.
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A block schematic of the whole algorithm scheme is given in Figure 1. The evalua-
tion network approximates the value function, the execution network approximates the
control strategy, and the disturbance network approximates the disturbance strategy.
The weight of evaluation network 2 is iterated in the outer loop, and the weight of eval-
uation network 1 is iterated in the inner loop. In the inner loop iteration process, the
weight of the evaluation network 2 remains unchanged. Once the inner loop iteration is
completed, the weight of the evaluation network 1 is sent to the evaluation network 2
as its latest weight. The output of the evaluation network 1 is an estimate of the value
function.

Fig. 1. A block schematic of the algorithm scheme.

3.1. Evaluation network design

The evaluation network can use the neural network, which has strong generalization
ability and nonlinear function approximation ability, which is very suitable for approxi-
mating performance index functions. The evaluation network trains the network through
the gradient descent method, so that it can output the value function.

According to the approximation properties of the neural network, the value function
V1(xk) can be approximated as

V1(xk) = WT j(xk) + ε(k) (14)

where W is the weight of the evaluation network, j(·) is the activation function of the
evaluation network, and ε(k) is the approximate error of the evaluation network.

Defining Ŵ as the estimated value of the W, then the output of the evaluation
network is

V̂1(xk) = ŴT (k)j(xk). (15)

For the control strategy uk and disturbance dk, the approximate Hamilton function
can be written as

H(xk,uk,dk) = U(xk,uk,dk) + V̂1(xk+1)− V̂1(xk). (16)

In addition, an auxiliary variable E(k) is defined as

E(k) = ŴTJ(xk) (17)

where J(xk) = [∆j(xk),∆j(xk−1), . . . ,∆j(xk−j)],∆j(xk) = j(xk)− j(xk−1).
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The mean square error function of the evaluation network is defined as

Ê =
1

2
ET (k)E(k). (18)

The design purpose is to choose Ŵ to minimize the mean square error to make
Ŵ → W. The weight update of the evaluation network is realized by the gradient
descent method, and the weight update law is

Ŵ(k + 1) = Ŵ(k)− α ∂Ê

∂Ŵ
(19)

where α > 0 is the learning rate of the evaluation network. The weight estimation error
is ∆W(k) = Ŵ(k + 1)−W(k).

The general steps for the evaluation network are as follows:

(1) The structure of the evaluation network is initialized. The number of hidden layer
nodes, learning rate αc > 0 and initial weight are given. The number of iterations
is k=1.

(2) The feedback states xk,xk+1, the control uk,uk+1for the execution network and
the disturbance dk and dk+1in the disturbance network are obtained. The value
Vk+1 is calculated in the evaluation network.

(3) The function U(xk,uk,dk) is calculated.

(4) Ec(k) is established. The evaluation network is trained, and the weights of the
evaluation network are updated by using the gradient descent method. The next
iteration is waiting to happen.

(5) If the weight error meets the accuracy requirements, stop the calculation and
output the value Vk. Otherwise, let k = k +1 and return to step (2).

3.2. Execution network design

According to the approximation properties of the neural network, the control input
u(xk) is approximated by the neural network as

u(xk) = WT
e je(xk) + εe(k) (20)

where We is the ideal weight of the execution network, je(·) is the activation function
of the execution network, and εe(k) is the approximate error of the execution network.

Defining Ŵe as the estimated value of We, then the actual output of the execution
network is

û(xk) = ŴT
e (k)je(xk). (21)

The feedback error of the execution network is defined as the difference between the
actual control signal on the system (1) and the minimized ideal control input signal

Ee(k) = ŴT
e (k)je(xk) +

1

2
R−1gT (xk)

∂V̂(xk+1)

∂xk+1
. (22)
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The goal of the execution network is to minimize the equation (23)

Êe =
1

2
ET

e (k)Ee(k). (23)

By using the gradient descent method, the weight update law of the execution network
can be obtained

Ŵe(k + 1) = Ŵe(k)− αe
∂Êe

∂Ŵe

(24)

where αe > 0 is the learning rate of the execution network. The weight estimation error
is ∆We(k) = Ŵe(k + 1)−We(k).

3.3. Disturbance network design

According to the approximation properties of the neural network, the disturbance input
d(xk) is approximated by the neural network as

d(xk) = WT
d jd(xk) + εd(k). (25)

Where Wd is the ideal weight of the disturbance network, jd(·) is the activation func-
tion of the disturbance network, and εd(k) is the approximate error of the disturbance
network.

Defining Ŵd as the estimated value of Wd, then the actual output of the disturbance
network is

d̂(xk) = ŴT
d (k)jd(xk). (26)

The feedback error of the disturbance network is defined as the difference between
the actual signal on the system (1) and the minimized ideal input signal

Ed(k) = ŴT
d (k)jd(xk)− 1

2γ2
S−1hT(xk)

∂V̂ (xk+1)

∂xk+1
. (27)

The goal of the disturbance network is to minimize equation (28)

Êd =
1

2
ET

d (k)Ed(k). (28)

By using the gradient descent method, the weight update law of the disturbance
network can be obtained

Ŵd(k + 1) = Ŵd(k)− αd
∂Êd

∂Ŵd

(29)

where αd > 0 is the learning rate of the disturbance network.The weight estimation
error is ∆Wd(k) = Ŵd(k + 1)−Wd(k).

4. CONVERGENCE ANALYSIS

Next, the system stability analysis will be given based on the neural network approxi-
mation errors ε(k), εe(k) and εd(k). Before conclusions, the following assumptions are
defined.
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Assumption 2. The ideal weights of the evaluation network, the execution network
and the disturbance network are all bounded, ||W|| ≤ WM , ||We|| ≤ WeM , and
||Wd|| ≤WdM . WM ,WeM and WdM are unknown normal numbers.

Assumption 3. The approximate errors of the evaluation network, the execution
network and the disturbance network are all bounded, ||ε(k)|| ≤ εM , ||εe(k)|| ≤ εeM ,
and ||εd(k)|| ≤ εdM , εM , εeM and εdM are the positive constants.

Assumption 4. The activation functions of the evaluation network, the execution
network and the disturbance network are all bounded, ||j(·)|| ≤ jM , ||je(·)|| ≤ jeM , and
||jd(·)|| ≤ jdM , jM , jeM and jdM are the positive constants.

Assumption 5. g(xk) ,f(xk) and h(xk) are the local Lipschitz continuous functions.
And there are the normal number gM , hM such that

‖g (xk)‖ ≤ gM , ‖h (xk)‖ ≤ hM . (30)

Theorem 4.1. Considering the system (1), it is assumed that the weight update laws of
the evaluation network, the execution network, and the disturbance network are given by
the equations (19), (24) and (29), and the initial weight value of the execution network
is selected so that the system is initially stable. If the evaluation network, execution
network and the disturbance network are updated at the same time along the trajectory
of the system (1), then the weight estimations Ŵ(k),Ŵe(k) and Ŵd(k) are convergent.

P r o o f . Considering the following Lyapunov function

V (xk) = V2(xk) + V3(∆W(k)) + Ve(∆We(k)) + Vd(∆Wd(k)) (31)

where
V2(xk) = xT

k xk (32)

V3 (∆W (k)) =tr{∆WT (k) ∆W (k)} (33)

Ve (∆We (k)) =tr{∆WT
e (k) ∆We (k)} (34)

Vd (∆Wd (k)) =tr{∆WT
d (k) ∆Wd (k)}. (35)

By using the equations (21) and (26), the closed-loop system can be written as

xk+1 = f(xk) + g(xk)û(xk) + h(xk)d̂(xk)

= f(xk) + g(xk)u∗(xk) + h(xk)d∗(xk) + g(xk)ŴT
e (k)je(xk)

−g(xk)εe(k) + h(xk)ŴT
d (k)jd(xk)− h(xk)εd(k)

(36)

then the difference of V2(xk) is

∆V2(xk) = xT
k+1xk+1 − xT

k xk

= ||f(xk) + g(xk)u∗(xk) + h(xk)d∗(xk) + g(xk)ŴT
e (k)je(xk)

+h(xk)ŴT
d (k)jd(xk)− g(xk)εe(k)− h(xk)εd(k)||2 − xT

k xk

≤ 2||f(xk) + g(xk)u∗(xk) + h(xk)d∗(xk)||2
+8||g(xk)ŴT

e (k)je(xk)||2 + 8||h(xk)ŴT
d (k)jd||2 + 8||g(xk)εe(k)||2

+8||h(xk)εd(k)||2 − xT
k xk.

(37)
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Suppose

||f(xk) + g(xk)u∗(xk) + h(xk)d∗(xk)||2 ≤ K1||xk||2 (38)

and let 
Πe =

(
ŴT

e (k)−WT
e (k)

)
je(xk)

Πd =
(
ŴT

d (k)−WT
d (k)

)
jd(xk)

Π =
(
ŴT (k)−WT (k)

)
j(xk).

(39)

By Assumption 5, then

∆V2(xk) ≤ 2K1||xk||2 + 8g2M ||Π||2 + 8h2M ||Πd||2 + 8g2Mε
2
M + 8h2Mε

2
dM − ||xk||2

= −(1− 2K1)||xk||2 + 8g2M ||Π||2 + 8h2M ||Πd||2 + 8g2Mε
2
M + 8h2Mε

2
dM .

(40)

The difference of ∆Ve (∆We (k)) is

∆Ve

(
Ŵe (k)

)
= tr

{
ŴT

e (k + 1)Ŵe(k + 1)
}
− tr

{
ŴT

e (k)Ŵe(k)
}

= tr


ŴT

e (k)− αe

(
∂Êe(k)

∂Ŵe(k)

)T
(Ŵe(k)− αe

∂Êe(k)

∂Ŵe(k)

)
−tr

{
ŴT

e (k)Ŵe(k)
}

= tr

ŴT
e (k)Ŵe(k)− αeŴe(k)

(
∂Êe(k)

∂Ŵe(k)

)T

− αeŴ
T

e (k)
∂Êe(k)

∂Ŵe(k)

+α2
e

(
∂Êe(k)

∂Ŵe(k)

)T
∂Êe(k)

∂Ŵe(k)

− tr{ŴT
e (k)Ŵe(k)

}
.

(41)

Substituting the equations (23) and (24) into the equation (41), we get

∆Ve (∆We (k)) = tr

α2
e

je(xk) +
1

2
R−1gT (xk)

(
∂V̂ (xk)

∂xk

)T

Ŵe(k)

T

×

je(xk) +
1

2
R−1gT (xk)

(
∂V̂ (xk)

∂xk

)T

Ŵe(k)


−αeŴe(k)

je(xk) +
1

2
R−1gT (xk)

(
∂V̂ (xk)

∂xk

)T


≤ α2
ej

2
eM +

1

4
α2
eg

2
MR−1 ‖Πe‖2 R−1g2M + α2

eg
2
MR−1 ‖Πe‖2 +

1

4
ε2eM . (42)
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The difference of V3 (∆W (k)) is

∆V3 (∆W (k)) = tr
{

ŴT (k + 1)Ŵ(k + 1)
}
− tr

{
ŴT (k)Ŵ(k)

}
= tr


ŴT (k)− α

(
∂Ê(k)

∂Ŵ(k)

)T
(Ŵ(k)− α ∂Ê(k)

∂Ŵ(k)

)
−tr

{
ŴT (k)Ŵ(k)

}
= tr

ŴT (k)Ŵ(k)− αŴ(k)

(
∂Êv(k)

∂Ŵ(k)

)T

− αŴT (k)
∂Ê(k)

∂Ŵ(k)

+α2

(
∂Ê(k)

∂Ŵ(k)

)T
∂Ê(k)

∂Ŵ(k)

− tr{ŴT (k)Ŵ(k)
}
.

(43)

Substituting the equations (18) and (19) into the equation (43), the process is similar
to equation (42), so it is omitted here. we can get

∆V3 (∆W (k)) ≤ −α2j2M − ε2M +
1

4
g2M ‖Π‖

2
. (44)

The difference of Vd(∆Wd(k)) is

∆Vd (∆Wd (k)) = tr
{

ŴT
d (k + 1)Ŵd(k + 1)

}
− tr

{
ŴT

d (k)Ŵd(k)
}

= tr


ŴT

d (k)− αd

(
∂Êd(k)

∂Ŵd(k)

)T
(Ŵd(k)− αd

∂Êd(k)

∂Ŵd(k)

)
−tr

{
ŴT

d (k)Ŵd(k)
}

= tr

ŴT
d (k)Ŵd(k)− αdŴd(k)

(
∂Êd(k)

∂Ŵd(k)

)T

− αdŴ
T
d (k)

∂Êd(k)

∂Ŵd(k)

+α2
d

(
∂Êd(k)

∂Ŵd(k)

)T
∂Êd(k)

∂Ŵd(k)

− tr{ŴT
d (k)Ŵd(k)

}
.

(45)

Substituting the equations (28) and (29) into the equation (45), the derivation process
is similar to the equation (42), so it is omitted here. We get

∆Vd (∆Wd (k)) ≤ α2
dj

2
dM −

1

γ2
α2
dh

2
MS−1 ‖Πd‖2 S−1

−1

4
ε2dM +

1

4γ2
α2
dh

4
MS−1 ‖Πd‖2 .

(46)

Putting the equations (40), (42), (44) and (46) into the equation (31), the difference
∆V (xk) is

∆V (xk) ≤ − (1− 2K1) ||xk||2 + 8g2M ||Π||2 + 8h2M ||Πd||2

+
1

4
α2
eg

2
MR−1 ‖Πe‖2 R−1g2M +GM + α2

eg
2
MR−1 ‖Πe‖2

− 1

γ2
α2
dh

2
MS−1 ‖Πd‖2 S−1 +

1

4γ2
α2
dh

4
MS−1 ‖Πd‖2 − EM

(47)
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where

GM = 8g2Mε
2
M + 8h2Mε

2
dM +

1

4
ε2eM + α2

dj
2
dM + α2

ej
2
eM (48)

EM =
1

4
ε2dM + α2j2M + ε2M . (49)

If 0 < K1 < 1/2, EM > GM and the following inequality (50) and (51) holds

||Πe|| >
√

8g2M +
1

4
α2
eR
−1g4MR−1 + α2

eR
−1g2M (50)

||Πd|| >
√

8h2M +
1

4γ2
S−1α2

dh
4
M +

1

γ2
S−1α2

dh
2
MS−1 (51)

then, ∆V < 0 can be obtained. Therefore, according to the Lyapunov stability theory,
it can be known that the weight estimation Ŵ(k),Ŵe(k) and Ŵd(k) are convergent.
The theorem proof is completed. �

Remark 2. According to the criterion of convergence theorem, all functions in the
uniformly convergence function family are bounded, and the total function family is
convergence. If it is proved that the system is uniformly convergent, then it is necessary
to set the sub-functions to be convergent in advance. According to Theorem 4.1, it is
proved that the system is uniform convergent.

Theorem 4.2. If the control input û(xk) and the disturbance input d̂(xk) are obtained
according to Theorem 4.1, then the û(xk) and the d̂(xk) will converge to the Nash
equilibrium solution of the zero-sum differential game, that is, the control input û(xk)
is in the neighborhood of the optimal control input u∗(xk), ||û(xk) − u∗(xk)|| ≤ εu.
The disturbance input d̂(xk) is in the neighborhood of the optimal disturbance input
d∗(xk), ||d̂(xk)− d∗(xk)|| ≤ εd. Where εu and εd are small normal number.

P r o o f . According to the equation (15), after derivation, substituting into the equation
(11), the optimal estimation û(xk) can be obtained as

û(xk) = −1

2
R−1gT (xk)

(
∂j(xk)

∂xk

)T

W(xk). (52)

According to the equations (11) and (52), and the boundedness of

∥∥∥∥∂j(xk)

∂xk

∥∥∥∥ and

‖∆W (xk)‖, we can get

û(xk)− u∗(xk)|| ≤

∥∥∥∥∥−1

2
R−1gT (xk)

(
∂j(xk)

∂xk

)T

∆W(xk)

∥∥∥∥∥
≤ λmax

(
R−1gM jMεM

)
= εu.

(53)

Similarly, the optimal estimation d̂(xk) can be obtained

d̂(xk) =
1

2γ2
S−1hT (xk)

(
∂j(xk)

∂xk

)T

W(xk) (54)
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we can get

d̂(xk)− d∗(xk)|| ≤

∥∥∥∥∥ 1

2γ2
S−1hT (xk)

(
∂j(xk)

∂xk

)T

∆W(xk)

∥∥∥∥∥
≤ λmax

(
1

2γ2
S−1hM jMεM

)
= εd.

(55)

Therefore, û(xk) and d̂(xk) converge to the Nash equilibrium point of the zero-sum
game. The proof is complete. �

5. SIMULATION STUDY

Considering the following discrete-time nonlinear system

xk+1 = f(xk) + g(xk)uk + h(xk)dk

where

f (xk) =

[
cos(0.2x1k − 0.6x2k)
sin(0.5x1k − x2k) + 1.6x2k

]
,

g (xk) =

[
0
−x2k

]
,h (xk) =

[
0
0.2

]
.

The cost function is defined by the equation (2), where Q and R are the matrices of
appropriate dimensions,let Q = diag {5, 10} , R = 2I, S = I, I represents a unit matrix
with appropriate dimensions. Let γ = 5.

Next, two neural network structures are selected for simulation to verify the effec-
tiveness of the proposed method.

In two neural network structures, the algorithm is executed to complete 200 iterations,
and each iteration includes 500 trainings for the three networks to achieve the given
calculation accuracy e = 10−6. The neural network parameters are initialized. Assume
that the weights from the input layer to the hidden layer are 1. The initial values of the
weights from the hidden layer to the output layer are randomly selected from [-0.5, 0.5].
All the activation functions are selected as sigmoid( · ).

(1) The neural networks with the structures 2-8-1,2-6-1 and 2-6-1 are established to
fit the evaluation network, execution network and disturbance network respectively. The
learning rates of the three networks are selected as αc = 0.15, αa = 0.25 and αd = 0.15.
Let disturbance dk = 0.02 sin(0.2k).

In this NN structure,the convergence curve of the value function is shown in Figure 2.
The convergence curve of the weights for the evaluation network, execution network and
disturbance network is shown in Figure 3 to Figure 5. The trajectory curves of the
system states are shown in Figure 6. The optimal control curve is shown in Figure 7.

(2) The neural networks with the structures 2-4-1,2-3-1 and 2-3-1 are established to
fit the evaluation network, execution network and disturbance network respectively. The
learning rates of the three networks are selected as αc = 0.1, αa = 0.15 and αd = 0.25.
Let disturbance dk = 0.02 cos(0.3k).

In this structure, the convergence curve for the value function is shown in Figure 8.The
convergence curves of the weights for the evaluation network, execution network and
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Fig. 2. The value of cost function.
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Fig. 3. The weights of the evaluation network.

disturbance network is shown in Figure 9 to Figure 11. The trajectory curves of the
system states are shown in Figure 12. The optimal control curve is shown in Figure 13.

In two neural network structures,it can be seen from Figure 2 and Figure 8 that the
value function is upper bound, and it is stable after about 40 iterations. The effectiveness
of the algorithm is confirmed.

The convergence curves of the weights for the evaluation network are shown in Fig-
ure 3 and Figure 9. The convergence curves of the weights for the execution network
are shown in Figure 4 and Figure 10. The convergence curves of the weights for the
disturbance network are shown in Figure 5 and Figure 11. In two neural network struc-
tures, all three networks weights can be stable after training. It shows the boundedness
of the NN estimation. The proposed optimization design has been verified to achieve
good performance.

The trajectory curves of the system states are shown in Figure 6 and Figure 12.
The optimal control curves are shown in Figure 7 and Figure 13. It shows that the
proposed neural network optimization design can obtain good control performance, and
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Fig. 4. The weights of the execution network.
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Fig. 5. The weights of the disturbance network.

can ensure that the signal in the closed loop system is bounded, which is consistent
with the theoretical analysis. The feasibility and effectiveness of the proposed design
are verified.

6. CONCLUSION

In this paper, based on the zero-sum differential game theory, by using the approxi-
mate dynamic programming algorithm, the constrained optimization control problem
is solved for the nonlinear systems. The neural network is used to fit the evaluation
network, the execution network and the disturbance network in order to obtain the ap-
proximate solution of the HJI equation. The Lyapunov stability theory is used to prove
the uniform convergence, and the system control output converges to the neighborhood
of the target reference value. Finally, the simulation example verifies the effectiveness
of the algorithm. But there are still some challenges. For example, the guideline of
simulation parameters adjustment is not discussed in this paper. In fact, this is indeed
an important subject that needs further research.
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k-number of iterations

0 50 100 150 200

c
o

n
tr

o
l 
in

p
u

t 
u

-1

0

1

2

3

4

Fig. 13. The curve of optimal control input u.
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