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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 4 , P A G E S 5 9 4 – 6 1 2

STRONG X-ROBUSTNESS OF INTERVAL MAX-MIN
MATRICES

Helena Myšková and Ján Plavka

In max-min algebra the standard pair of operations plus and times is replaced by the pair
of operations maximum and minimum, respectively. A max-min matrix A is called strongly
robust if the orbit x,A⊗x,A2⊗x, . . . reaches the greatest eigenvector with any starting vector.
We study a special type of the strong robustness called the strong X -robustness, the case that
a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent
condition for the strong X -robustness is introduced and efficient algorithms for verifying the
strong X -robustness is described. The strong X -robustness of a max-min matrix is extended
to interval vectors X and interval matrices A using for-all–exists quantification of their interval
and matrix entries. A complete characterization of AE/EA strong X -robustness of interval
circulant matrices is presented.
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1. INTRODUCTION

This paper is concerned with a problem of max-min algebra, which is one of the sub-
areas of tropical mathematics. In a wider algebraic context, tropical mathematics (also
known as idempotent mathematics) can be viewed as a mathematical theory developed
over idempotent semi-rings. Note that the operation of taking maximum of two numbers
is the simplest and the most useful example of an idempotent addition.

Idempotent semi-rings can be used in a range of practical problems related to schedul-
ing and optimization. There are several monographs [9, 10, 12] and collections of papers
on tropical mathematics and its applications. Tropical algebra plays a crucial role in
the study of dynamic systems with discrete events associated with optimization prob-
lems, such as project planning or management, in which the target function depends on
maximum and minimum operations.

The development of idempotent semi-rings was motivated by multi-machine interac-
tion processes. In these processes we have n machines which work in stages. In the
algebraic model of their interactive work, the entries of a vector x(k) ∈ B(n) represent
the state of machines after some stage k, and the entries of a matrix A ∈ B(n, n) en-
code the influence of machines on each other. If we assume that A does not change from
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stage to stage then the orbit x, A⊗x, . . . Ak⊗x represents the evolution of such process.
Regarding the orbits, one wishes to know the set of starting vectors from which a given
objective can be achieved. One of objectives in is to achieve the greatest eigenvector.
Matrices for which the greatest eigenvector is achieved starting at each starting vector
are called strongly robust, see [21]. In general,the set of starting vectors from which
an eigenvector can be achieved, contains the set of all eigenvectors, but it can be also
as big as the whole space. Matrices with this property are called weakly robust, see [3].
Several types of the robustness in other extremal algebra, so-called max-plus algebra,
have been studied in [16, 22].

In practice, the values of starting vector are not exact numbers and usually they
are rather contained in some intervals. Considering matrices and vectors with interval
entries is therefore of practical importance, see [5, 14, 21]. Problems in which the input
data depends on the parameter can be considered as a predecessor of interval calculations
[19].

In the present paper, we consider a special type of the strong robustness called the
strong X-robustness, where X is a given interval vector. Matrices for which the greatest
eigenvector is achieved starting at each starting vector from X are called strongly X-
robust. In Theorem 3.3, we give the equivalent conditions for the strong X-robustness.
The strong X-robustness is extended to interval vectors X using for-all and exists-
quantification of their interval entries. We characterize the strong XEA-robustness and
XAE-robustness in Theorems 3.6 and 3.7.

Section 4 is devoted to the special type of matrices, so-called circulant matrices. We
give necessary and sufficient conditions to the possible, universal, AE and EA strong
X-robustness of interval circulant matrices in Theorems 4.17, 4.18, 4.20, 4.21 and 4.23.
Finally, the AE/EA strong XAE-robustness and the AE/EA strong XEA-robustness
are characterized in Theorem 4.26 and Theorem 4.27.

The concepts of XAE/EA robustness and AE/EA robustness of interval circulant
matrices were studied in [17] and [18].

2. BACKGROUND OF THE PROBLEM

2.1. Preliminaries

The max-min algebra B is the triple (I,⊕,⊗), where (I,≤) is a bounded linearly ordered
set with binary operations maximum and minimum, denoted by ⊕ and ⊗, respectively.
The least element in I will be denoted by O, the greatest one by I.

By N we denote the set of all natural numbers and we use the notation N0 for the
set N0 = N ∪ {0}. The greatest common divisor of a set S, S ⊆ N is denoted by gcdS
and the least common multiple by lcmS. For a, b ∈ N, the symbol a | b means that the
number a is a divisor of the number b. For a given natural number n ∈ N, we use the
notations N = {1, 2, . . . , n} and N0 = {0, 1, . . . , n− 1}.

For any n ∈ N and I(n, n) denotes the set of all square matrices of order n, I(n)
denotes the set of all n-dimensional column vectors over B. For a given α ∈ I a constant
vector is denoted by α∗ = (α, . . . , α)T . The matrix operations over B are defined formally
in the same manner (with respect to ⊕, ⊗) as matrix operations over any field. The rth
power of a matrix A is denoted by Ar.
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For A ∈ I(n, n) and C ∈ I(n, n) we write A ≤ C (A < C) if aij ≤ cij (aij < cij)
holds true for all i, j ∈ N .

By digraph we understand a pair G = (VG , EG), where VG is a non-empty finite set,
called the node set, and EG , EG ⊆ VG × VG is called the arc set. A digraph G′ is a
subdigraph of digraph G, if VG′ ⊆ VG and EG′ ⊆ EG . A path in G is the sequence of
nodes P = (v0, v1, . . . , vl) such that (vk−1, vk) ∈ EG for all k = 1, 2, . . . , l. The number
l ≥ 0 is called the length of P. If v0 = vl, then P is a cycle of length l. A cycle
is elementary if all nodes except the terminal node are distinct. A digraph is called
strongly connected if any two distinct nodes of G are contained in a common cycle.

By a strongly connected component of a digraph G = (VG , EG) we mean a subdigraph
K = (VK, EK), where the node set VK ⊆ VG is such that any two distinct nodes i, j ∈ VK
are contained in a common cycle, EK = EG ∩ (VK × VK) and VK is the maximal subset
with this property. A strongly connected component K of a digraph is called non-
trivial, if there is a cycle of positive length in K. For any non-trivial strongly connected
component K, the period of K is defined as

perK = gcd { `(c); c is a cycle in K, `(c) > 0 }.

If K is trivial, then we define perK = 1. By SCC∗ G we denote the set of all non-trivial
strongly connected components of G. The set of all strongly connected components of
G is denoted by SCCG. The period of G is defined as follows:

perG = lcm{perK; K ∈ SCC∗ G}.
For a given matrix A ∈ I(n, n) and a number h ∈ I, the threshold digraph G(A, h)

is the digraph with the node set VG(A,h) = N and the edge set EG(A,h) = {(i, j) ∈
N ×N ; aij ≥ h}.

The following lemma describes the relation between matrices and corresponding
threshold digraphs.

Lemma 2.1. (Molnárová et al. [13]) Let A, C ∈ I(n, n) and h, h1, h2 ∈ I.

(i) If A ≤ C then G(A, h) ⊆ G(C, h),

(ii) if h1 < h2 then G(A, h2) ⊆ G(A, h1).

For a given matrix A and a given vector x, define a threshold matrix A(h) and threshold
vector x(h), respectively, as follows:

(a(h))ij =

{
I if aij ≥ h,
O otherwise.

(x(h))i =

{
I if xj ≥ h,
O otherwise.

For a given matrix A ∈ I(n, n), denote H(A) = {aij ; i, j ∈ N}.
Lemma 2.2. (Semanč́ıková [24]) The decomposition of a matrix A over I to its thresh-
old matrices has the following properties:

(i) A =
⊕

h∈H(h⊗A(h)) for any set H such that H(A) ⊆ H ⊆ I.

(ii) For any two ⊗-compatible matrices A and B, (A ⊗ B)(h) = A(h) ⊗ B(h) for any
h ∈ I. Hence A ⊗ B =

⊕
h∈H(h ⊗ A(h) ⊗ B(h)) for any set H such that H(A) ∪

H(B) ⊆ H ⊆ I.
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2.2. Periodicity of matrices and orbits

Let λ ∈ I. A matrix A ∈ I(n, n) is ultimately λ-periodic if there are natural numbers p
and R such that the equality

Ak+p = λ⊗Ak

holds for each k ≥ R. The smallest natural number p with the above property is called
the period of A, denoted by per(A, λ). The smallest R with the above property is
called the defect of A, denoted by def(A, λ). It is well known that in max-min algebra,
def(A) ≤ (n− 1)2 + 1.

In case λ = I we us the notation perA instead of per(A, I).

Definition 2.3. For any A ∈ I(n, n) and x ∈ I(n) the orbit of A generated by x is the
vector sequence O(A, x) = (x(r); r ∈ N0) whose initial vector is x(0) = x and successive
members are defined by the formula x(r + 1) = A⊗ x(r). The ith coordinate of x(r) is
denoted by xi(r). The ith coordinate orbit is the sequence Oi(A, x) = (xi(r); r ∈ N0).

Both operations in max-min algebra are idempotent, so no new numbers are created
in the process of generating of matrix powers and an orbit. Hence a power sequence, an
orbit O(A, x) and a coordinate orbit Oi(A, x) are always ultimately periodic sequences.
Their periods will be called the period of A, the orbit period and the coordinate-orbit
period of O(A, x), in notation per(A), per(A, x) and per(A, x, i), respectively. Similarly,
we denote the defects by def(A, x) and def(A, x, i).

Theorem 2.4. (Gavalec [7], Semanč́ıková [24]) Let A ∈ I(n, n) and x ∈ I(n). Then

(i) per(A) = lcm
x∈I(n)

per(A, x);

(ii) per(A, x) = lcm
i∈N

per(A, x, i).

Corollary 2.5. Let A ∈ I(n, n) and x ∈ I(n). Then per(A, x) |per(A) for each x∈I(n).

Denote by G(A, x, h) the digraph with the same vertex set and edge set as G(A, h),
but with evaluated vertices as follows.

Denote by Oper(A, x) and Oper
i (A, x) the periodic part of O(A, x) and Oi(A, x),

respectively, i. e., Oper(A, x) = (x(r); r > def(A, x)) and Oper
i (A, x) = (xi(r); r >

def(A, x, i)). By (O) and (I) we understand the infinite sequences of the same elements
O and I, respectively.

2.3. Robustness of matrices

For a given matrix A ∈ I(n, n), define an eigenvalue and an eigenvector as a number
λ ∈ I and a vector x ∈ I(n) which satisfy the equality

A⊗ x = λ⊗ x.

An eigenspace V (A, λ) is defined as the set of all eigenvectors of A corresponding to
eigenvalue λ, i. e.,

V (A, λ) = {x ∈ I(n); A⊗ x = λ⊗ x}.
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An attraction set is the set defined as follows:

attr(A, λ) = {x ∈ I(n); O(A, x) ∩ V (A, λ) 6= ∅}.

For λ = I we will use notations V (A) and attr(A) instead of V (A, λ) and attr(A, λ),
respectively.

Let A = (aij) ∈ I(n, n), λ ∈ I be given. Define the greatest eigenvector x⊕(A, λ)
corresponding to a matrix A and λ as

x⊕(A, λ) =
⊕

x∈V (A,λ)

x.

For λ = I let us denote use abbreviation x⊕(A) instead of x⊕(A, I).
Denote

rj(A) =
⊕
i∈N

aij , c(A) =
⊗
i∈N

rj(A).

In [25] it was stated for a more general algebraic structure (distributive lattice) that
the greatest eigenvector x⊕(A, λ) exists for every matrix A and every λ ∈ B whereby
its entries are given by the efficient formula presented in the next theorem.

Theorem 2.6. (Yi-Jia Tan [26]) Let B(⊕,⊗) be a distributive lattice. Let A ∈ B(n, n)
and λ ∈ B be given. Then

x⊕j (A, λ) =

{
I, if λ⊕ rj(A) ≤ λ⊗ (An ⊗ I∗)j ,
λ⊗ (An ⊗ I∗)j , otherwise.

(1)

Corollary 2.7. Let A ∈ I(n, n) be given. Then x⊕(A) = An ⊗ I∗.

Computing the greatest eigenvector lying in the given interval X has been studied
in [23].

Denote by attr∗(A, λ) the set

attr∗(A, λ) = {x ∈ I(n);x⊕(A, λ) ∈ O(A, x)}.

It is easy to see that x⊕(A) ≥ c∗(A) = (c(A), . . . , c(A))T holds true and x⊕(A) can
not be reached with a vector x ∈ I(n) such that x < c∗(A).

Definition 2.8. Let A ∈ I(n, n) be given. Then A is called

1. robust if attr(A) = I(n),

2. strongly robust if attr∗(A) = I(n) \ {x ∈ I(n); x < c∗(A)}.

Theorem 2.9. (Plavka and Szabó [20]) Let A ∈ I(n, n), λ ∈ I be given. Then A is
robust if and only if per(A, λ) = 1.

Theorem 2.10. (Plavka and Szabó [20]) Let A ∈ I(n, n) be given. Then A is strongly
robust if and only if x⊕(A, λ) = c∗(A) and G(A, c(A)) is a strongly connected digraph
with period equal to 1.

The concepts of the robustness and strong robustness have been studied in [1, 2, 20].
Equivalent conditions and efficient algorithms for interval case have been presented in
[13, 21].



Robustness of interval max-min matrices 599

2.4. X-robustness

In this part, we will formulate the necessary and sufficient conditions for (strong) X-
robustness. Similarly as in [5, 13, 15, 17], we define an interval vector X as follows:

X = [x, x] = {x ∈ I(n); x ≤ x ≤ x } ,

where x, x ∈ I(n), x ≤ x.

Definition 2.11. Let A ∈ I(n, n) and X be given. Then A is called X-robust if
X ⊆ attr(A).

The following lemma follows directly from Definition 3.1.

Lemma 2.12. Let A,X be given. The following assertions are equivalent

1. A is X-robust,

2. (∀x ∈X)(∃k ∈ N)[Ak ⊗ x ∈ V (A) ∩X],

3. (∀x ∈X)[per(A, x) = 1].

Let X = [x, x] ⊂ I(n) be an interval vector. For a given index i ∈ N denote the
vector

x(i) = (x1, . . . , xi−1, xi, xi+1, . . . , xn)T .

Lemma 2.13. (Myšková and Plavka [15]) Let X be given and x ∈X. Then

x =

n⊕
i=1

xi ⊗ x(i).

Theorem 2.14. (Myšková and Plavka [15]) Let A ∈ I(n, n) and X be given. A matrix
A is X-robust if and only if per(A, x(j)) = 1 for each j ∈ N .

The decision whether a given matrix A is X-robust using Theorem 2.14 requires
O(n4 log n) arithmetic operations.

3. THE TYPES OF STRONG ROBUSTNESS WITH BOUNDED VECTOR

3.1. Strong X-robustness

Definition 3.1. Let A ∈ I(n, n) and X be given. Then A is called strongly X-robust
if X ⊆ attr∗(A).

It is easy to see that for a given matrix A and a given interval vector X, the strong
X-robustness of A implies its X-robustness. It can be expected that the converse
implication does not apply. In this part, we give the necessary and sufficient conditions
for the strong X-robustness.
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Lemma 3.2. Let A,X be given. A matrix A is strongly X-robust if and only if
An

2 ⊗ x = x⊕(A) for each x ∈X.

P r o o f . The assertion trivially follows from the above definitions and the fact that
def(A) ≤ (n−1)2 +1 ≤ n2. Therefore, the existence of k ∈ N such that Ak⊗x = x⊕(A)

we can replace with the condition An
2 ⊗ x = x⊕(A). �

Theorem 3.3. Let A,X be given. Then A is strongly X-robust if and only if x ∈
attr∗(A).

P r o o f . Let x ∈X be arbitrary. Then

x⊕(A) = An
2

⊗ x ≤ An
2

⊗ x ≤ An
2

⊗ x ≤ An
2

⊗ I∗ = x⊕(A),

where the last equality follows from Corollary 2.7. We have An
2 ⊗ x = x⊕(A) for each

x ∈X. By Lemma 3.2 a matrix A is strongly X-robust. �

Theorem 3.4. Let A and X be given. If A is strongly X-robust then maxi∈N xi ≥
maxk∈N x

⊕
k (A).

P r o o f . Suppose that the inequality xj < maxk∈N x
⊕
k (A) = x⊕t (A) holds for each

j ∈ N . Then we have

(An
2

⊗ x)t =
⊕
k∈N

an
2

tk ⊗ xk ≤
⊕
k∈N

xk < x⊕t (A).

Since An
2 ⊗ x 6= x⊕(A), by Theorem 3.3 the matrix A is not strongly X-robust. �

3.2. Strong XAE/XEA-robustness

In this part, we define the strong XAE and XEA-robustness and give equivalent condi-
tions for them. Similarly as in [11, 17, 18], each element of X can be associated either
with the universal, or with the existential quantifier. Then we can split the interval vec-
tor as X = X∀⊕X∃, where X∀ is the interval vector comprising universally quantified
coefficients and X∃ concerns existentially quantified coefficients.

Denote by N∀ (N∃) the set of indices corresponding with universal (existential) quan-
tifier in X, respectively. In the other words, x∃i = x∃i = O for each i ∈ N∀ and
x∀i = x∀i = O for each i ∈ N∃.

Definition 3.5. A matrix A is called

• strongly XEA-robust if

(∃x∃ ∈X∃)(∀x∀ ∈X∀) x∃ ⊕ x∀ ∈ attr∗(A),

• strongly XAE-robust if

(∀x∀ ∈X∀)(∃x∃ ∈X∃) x∃ ⊕ x∀ ∈ attr∗(A).
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Theorem 3.6. Let A,X be given. Then A is strongly XEA-robust if and only if
x∃ ⊕ x∀ ∈ attr∗(A).

P r o o f . Suppose that x∃⊕x∀ ∈ attr∗(A), i. e., An
2 ⊗ (x∃⊕x∀) = x⊕(A). Let x∀ ∈X∀

be arbitrary. We obtain

x⊕(A) = An
2

⊗ (x∃ ⊕ x∀) ≤ An
2

⊗ (x∃ ⊕ x∀) ≤ An
2

⊗ I∗ = x⊕(A).

Therefore there exists x∃ ∈ X∃, namely x∃ = x∃ such that An
2 ⊗ (x∃ ⊕ x∀) = x⊕(A)

for each x∀ ∈X∀. Hence A is strongly X-robust.
For the converse implication suppose that An

2 ⊗ (x∃ ⊕ x∀) 6= x⊕(A). Then there

exists i ∈ N such that [An
2 ⊗ (x∃⊕x∀)]i < x⊕i (A). Let x∃ ∈X∃ be arbitrary, but fixed.

We have
[An

2

⊗ (x∃ ⊕ x∀)]i ≤ [An
2

⊗ (x∃ ⊕ x∀)]i < x⊕i (A).

Since for each x∃ ∈ X∃ there exists x∀ ∈ X∀, namely x∀ = x∀ such that x∃ ⊕ x∀ /∈
attr∗(A), a matrix A is not XEA-robust. �

Theorem 3.7. Let A,X be given. Then A is strongly XEA-robust if and only if A is
strongly XAE-robust.

P r o o f . From Definition 3.5 it follows that the strong XEA-robustness implies the
strong XAE-robustness.

For the converse implication suppose that A is not strongly XEA-robust. According
to Theorem 3.6, x∃⊕x∀ /∈ attr∗(A), i. e., there exists i ∈ N such that [An

2⊗(x∃⊕x∀)]i <
x⊕i (A).

Let x∃ ∈X∃ be arbitrary, but fixed. We obtain

[An
2

⊗ (x∃ ⊕ x∀)]i ≤ [An
2

⊗ (x∃ ⊕ x∀)]i < x⊕i (A).

Therefore, there exists x∀ ∈ X∀, namely x∀ = x∀, such that for each x∃ ∈ X∃ we have
x∃ ⊕ x∀ /∈ attr∗(A). Hence A is not strongly XAE-robust. �

4. STRONG ROBUSTNESS OF INTERVAL CIRCULANT MATRICES

In this section we shall deal with the special class of matrices, the circulant matrices.
The notions of a possible, universal, AE and EA XEA/XAE strong robustness of an
interval circulant matrix are defined and the polynomial algorithms for checking of them
are introduced in this section.

Definition 4.1. A matrix A ∈ I(n, n) is called circulant, if it is of the form

A =


a0 a1 a2 . . . an−2 an−1
an−1 a0 a1 . . . an−3 an−2

...
...

...
...

...
a1 a2 a3 . . . an−1 a0

 .
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We denote a circulant matrix A by abbreviation A = C(a0, . . . , an−1).
For each k ∈ N0 the entries ak create the kth stripe. In the associated digraph G(A)

the arcs corresponding to the kth stripe are of the form (i, i + k) for i ∈ N , where all
the numbers here are considered modulo n. Denote by E(k) the set of all arcs (i, j) in
G(A) corresponding to the kth stripe. The arcs of E(k) fall into a set of disjoint cycles,

all with the same length equal to
n

gcd(n, k)
.

Realize that for a circulant matrix A we have H(A) = {ai; i ∈ N0}. Denote m(A) =
maxH(A) and J(A) = {i ∈ N0 : ai = m(A)}.

If a vector x is also given, denote H(A, x) = H(A) ∪ {xj ; j ∈ N}.

Lemma 4.2. (Molnárová et al. [13]) Let A ∈ I(n, n) be circulant matrix. The follow-
ing assertions hold true:

(i) For each h ∈ H(A) the threshold digraph G(A, h) is either strongly connected or
all strongly connected components are nontrivial.

(ii) If k, l ∈ N are not lying in the same strongly connected component in G(A, h)
then there is no edge from k to l.

The following theorem gives the formula for the computation the period of a circulant
matrix.

Theorem 4.3. (Gavalec [6]) Let A = C(a0, . . . , an−1) be a circulant matrix and J(A) =
{i0, i1, . . . , ik−1}. Then

per(A)=gcd

(
n

gcd(n, i0)
,

i0 − i1
gcd(n, i0, i1)

,
i0 − i2

gcd(n, i0, i1, i2)
, . . . ,

i0 − ik−1
gcd(n, i0, . . . , , ik−1)

)
.

According to [6] we can compute per(A) is O(n) time.

Corollary 4.4. Let A be a circulant matrix. Then per(A) ≤ n.

Definition 4.5. A path in G(A, x, h) with terminal node i is called an orbit path if
(x(h))i = I.

Theorem 4.6. (Cechlárová [4]) For A ∈ I(n, n), x ∈ I(n), h ∈ I, r ∈ N and i, j ∈ N ,

(i) (Ar)ij ≥ h if and only if there is a path in G(A, h) from i to j of length r,

(ii) Oi(A, x)(r) ≥ h if and only if there is an orbit path in G(A, x, h) of length r
starting at i.

Denote by G(A, x)[i] the strongly connected component of G(A, x) containing node i.

Lemma 4.7. (Myšková and Plavka [15]) Let A ∈ I(n, n) be a binary circulant matrix
and x ∈ I(n) be a binary vector and i ∈ N . Then Oper

i (A, x) 6= (O) if and only if A 6= O
and there exists j ∈ VG(A,x)[i] such that xj = I.
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Remark 4.8. Lemma 4.7 does not hold for a general binary matrix. If xj = O for each
j ∈ VG(A,x)[i] and there exists an edge from G(A, x)[i] to K ∈ SCC∗ G(A, x) such that
xl = I for some l ∈ VK then Oper

i (A, x) 6= (O).

For a given h ∈ I we shall use the following notations:

SCC∗0 G(A, x, h) = {K ∈ SCC∗ G(A, h); (x(h))i = O for each i ∈ VK},
SCC∗1 G(A, x, h) = {K ∈ SCC∗ G(A, h); (x(h))i = I for some i ∈ VK}.

Definition 4.9. Let A be a circulant matrix and h ∈ I. We say that a strongly con-
nected component K ∈ SCC∗1 G(A, x, h) has the property (P ), if for each i ∈ VK there
exist r ∈ N0 such that for each k > r there exists an orbit path from i in K of length k.

Theorem 4.10. (Myšková and Plavka [15]) Let AC = C(a0, a1, . . . , an−1) be a circulant
matrix, AC 6= O. Then per(A, x) = 1 if and only if each strongly connected component
K ∈ SCC∗1 G(A, x, h) has the property (P ) for each h ∈ H(A, x).

Lemma 4.11. (Myšková and Plavka [15]) Let A, C ∈ I(n, n), x ∈ I(n) and K1 ∈
SCC∗1 G(A, x, h1), K2 ∈ SCC∗1 G(C, x, h2) be such that K1 ⊆ K2, h1 ≥ h2 and K1 has the
property (P ). Then K2 has the property (P ).

According to Corollary 2.7, for a circulant matrix A = C(a0, ai, . . . , an−1) we obtain

x⊕(A) = m(A)∗ ∈ I(n). (2)

Theorem 4.12. Let A = C(a0, ai, . . . , an−1) and x ∈ I(n) be given. Then x ∈ attr∗(A)
if and only if for each K ∈ SCC∗ G(A,m(A)) the following assertions hold:

• K ∈ SCC∗1 G(A, x,m(A));

• K has property (P).

P r o o f . Denote h(A, x, i) = max{h ∈ H(A, x); Oper
i (A(h), x(h)) 6= (O)}. According to

Lemma 2.2 we have

xi(r) = (Ar ⊗ x)i =
⊕

h≤h(A,x,i), h∈H(A,x)

h⊗ (Ar(h) ⊗ x(h))i

for each r > maxh∈H(A,x) def(A(h), x(h), i), or equivalently, Oper
i (A, x) =

⊕
h≤h(A,x,i) h⊗

Oper
i (A(h), x(h)). A vector x belongs to attr∗(A) if and only if An

2 ⊗x = m∗(A) ∈ I(n).
This means that for each i ∈ N it has to be Oper

i (A(m(A)), x(m(A))) = (I).

Suppose that there exists K ∈ SCC∗ G(A,m(A)) such that either

K ∈ SCC∗0 G(Am(A), x(m(A))) or K does not have property (P).

In the first case, by Lemma 4.7, we obtain Oper
i (A(m(A)), x(m(A))) = (O) for each i ∈ VK.

Then x /∈ attr∗(A).
If K does not have property (P) then according to Theorem 4.10 we have per(A, x) 6= 1

which implies x /∈ attr(A) and consequently x /∈ attr∗(A).
For the converse implication suppose that for each K ∈ SCC∗ G(A,m(A)) we have K ∈

SCC∗1 G(A, x,m(A)) and K has property (P). Consequently, Oper
i (A(m(A)), x(m(A))) = (I)

for each i ∈ N which implies An
2 ⊗ x = x⊕(A). Hence x ∈ attr∗(A). �
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4.1. Possible and universal strong X-robustness of interval circulant
matrices

Definition 4.13. An interval circulant matrix AC is the set of all circulant matrices
A ∈ A where

A =


a0 a1 a2 . . . an−2 an−1

an−1 a0 a1 . . . an−3 an−2
...

...
...

...
...

a1 a2 a3 . . . an−1 a0

 ,

and ai = [ai, ai] for each i ∈ N0. We denote an interval circulant matrix AC by
abbreviation AC = C(a0, . . . ,an−1).

There are matrices in A that are not circulant, so A 6= AC . On the other hand
A, A ∈ AC , therefore the set AC is always non-empty.

Definition 4.14. An interval circulant matrix AC = C(a0, . . . ,an−1) is

• possibly strongly X-robust, if there exists A ∈ AC such that A is strongly X-
robust,

• universally strongly X-robust, if any matrix A ∈ AC is strongly X-robust.

To give a necessary and sufficient condition for the possible strong X-robustness let
us define the circulant matrix A∗ = C(a∗0, a∗1, . . . , a∗n−1) as follows:

a∗i = min{m(A), ai} (3)

for each i ∈ N0.

Lemma 4.15. (Molnárová et al. [13]) Let A ∈ AC be arbitrary and let A∗ be defined
by (3). Then J(A) ⊆ J(A∗) .

Lemma 4.16. (Myšková and Plavka [15]) Let x ∈ I(n). Then there exists a matrix
A ∈ AC such that per(A, x) = 1 if and only if per(A∗, x) = 1.

Theorem 4.17. An interval circulant matrix AC = C(a0, . . . ,an−1) is possibly strongly
X-robust if and only if the matrix A∗ defined by (3) is strongly X-robust.

P r o o f . Suppose that A∗ is not strongly X-robust. According to Theorem 3.3, we
have x /∈ attr∗(A∗). By Theorem 4.12 there exists K ∈ SCC∗ G(A∗,m(A∗)) such that
either K ∈ SCC∗0 G(A∗, x,m(A∗)) or K does not have property (P). Let A ∈ AC be
arbitrary, but fixed. It follows from Lemma 4.15 that G(A,m(A) ⊆ G(A∗,m(A∗)). We
shall distinguish two possibilities.

(i) If K ∈ SCC∗0 G(A∗, x,m(A∗)) then for each K1 ∈ SCC∗ G(A, (m(A))), K1 ⊆ K we
have K1 ∈ SCC∗0 G(A, x,m(A)). According to Theorem 4.12 we obtain x /∈ attr∗(A) and
by Theorem 3.3 the matrix A is not strongly X-robust.
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(ii) Let K ∈ SCC∗1 G(A∗, x,m(A∗)) be such that K does not have property (P)
and let K1 ∈ SCC∗ G(A,m(A)), K1 ⊆ K. If K1 ∈ SCC∗1 G(A, x,m(A)) then, ac-
cording to Lemma 4.11, K1 does not have property (P). Another possibility is that
K1 ∈ SCC∗0 G(A, x,m(A)).

In both cases, by Theorem 4.12, we obtain x /∈ attr∗(A). According to Theorem 3.3
the matrix A is not strongly X-robust.

The converse implication trivially follows. �

We will proceed with the universal strong X-robustness. For this purpose, for a given
number k ∈ N0 denote by A(k) the circulant matrix

A(k) = C(a0, a1, . . . , ak−1, ak, ak+1, . . . , an−1).

Theorem 4.18. An interval circulant matrix AC = C(a0, . . . ,an−1) is universally strongly
X-robust if and only if for each k ∈ N0 the matrix A(k) is strongly X-robust.

P r o o f . Suppose that AC is not universally strongly X-robust. We shall prove that
there exists l ∈ N0 such that the matrix A(l) is not strongly X-robust.

Let A ∈ AC be such that A is not strongly X-robust. According to Lemma 3.3, we
have x /∈ attr∗(A). By Theorem 4.12 there exists K ∈ SCC∗ G(A,m(A)) such that either
K ∈ SCC∗0 G(A, x,m(A)) or K does not have property (P).

Let l ∈ J(A). For the matrix A(l) we have m(A(l)) = al ≥ al = m(A) and
G(A(l),m(A(l))) ⊆ G(A,m(A)). We shall distinguish two possibilities.

(i) If K ∈ SCC∗0 G(A, x,m(A)) then for each K1 ∈ SCC∗ G(A(l), al), K1 ⊆ K we have
K1 ∈ SCC∗0 G(A(l), x, al). According to Theorem 4.12 we obtain x /∈ attr∗(A(l)) and by
Theorem 3.3 the matrix A(l) is not strongly X-robust.

(ii) Let K ∈ SCC∗1 G(A, x,m(A)), be such that K does not have property (P). Let
K1 ∈ SCC∗ G(A(l), al) , K1 ⊆ K be arbitrary. If K1 ∈ SCC∗1 G(A(l), x, al), then according
to Lemma 4.11, K1 does not have property (P). The second possibility is that K1 ∈
SCC∗0 G(A(l), x, al). In both cases, according to Theorem 4.12, we obtain x /∈ attr∗(A(l))
and by Theorem 3.3 the matrix A(l) is not strongly X-robust.

The converse implication is trivial. �

4.2. AE/EA strong X-robustness

Similarly as an interval vector, an interval matrix can be split as AC = A∀⊕A∃, where
A∀ is the interval matrix comprising universally quantified entries and A∃ concerns
existentially quantified entries. Thereafter we denote by N∃0 and N∀0 the corresponding
sets of indices. In other words, a∃i = a∃i = O for each i ∈ N∀0 and a∀i = a∀i = O for each
i ∈ N∃0 . We define the other two types of the strong X-robustness of interval circulant
matrices.
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Definition 4.19. An interval circulant matrix AC = C(a0, . . . ,an−1) is called

(i) EA strongly X-robust if there exists A∃ ∈ A∃ such that for each A∀ ∈ A∀ the
matrix A∃ ⊕A∀ is strongly X-robust;

(ii) AE strongly X-robust if for each A∀ ∈ A∀ there exists A∃ ∈ A∃ such that the
matrix A∃ ⊕A∀ is strongly X-robust.

Theorem 4.20. An interval circulant matrix AC = C(a0, . . . ,an−1) is AE strongly X-
robust if and only if for each j ∈ N∀0 ∪ {n} there exists A∃ ∈ A∃ such that A∃ ⊕ A∀(j)
is strongly X-robust.

P r o o f . Suppose that A is not AE strongly X-robust, i. e., there exists A∀ ∈ A∀ such
that for each A∃ ∈ A∃, the matrix A∃ ⊕ A∀ is not strongly X-robust. We shall prove
that there exists j ∈ N∀0 ∪{n} such that for each A∃ ∈ A∃, the matrix A∃⊕A∀(j) is not
strongly X-robust.

The assumption is equivalent to that the interval circulant matrix B = A∃⊕ [A∀, A∀]
is not possibly strongly X-robust. This means that the matrix B∗ defined

b∗i =

{
min{m(A∃ ⊕A∀), a∃i } for i ∈ N∃0 ;
a∀i for i ∈ N∀0 ,

(4)

is not strongly X-robust. It is easy to see that m(B∗) = m(A∃ ⊕ A∀). According
to Lemma 3.3 we have x /∈ attr∗(B∗). Hence, by Theorem 4.12, there exists K ∈
SCC∗ G(B∗,m(B∗)) such that K ∈ SCC∗0 G(B∗, x,m(B∗)) or K ∈ SCC∗1 G(B∗, x,m(B∗))
is such that K does not have property (P ). We shall distinguish two possibilities for
which we shall refer as Case 1 and Case 2.

Case 1. If m(B∗) = m(A∃), then the interval circulant matrix C = A∃⊕[A∀(n), A∀(n)]
is possibly strongly X-robust if and only if the matrix

c∗i =

{
min{m(A), a∃i } for i ∈ N∃0 ;
a∀i for i ∈ N∀0 .

(5)

obtained by (3) is X-robust. The equality m(B∗) = m(A∃) implies b∗i = c∗i for each
i ∈ N∃0 . Since m(B∗) = m(C∗) and C∗ ≤ B∗, there exists K1 ∈ SCC∗ G(C∗,m(C∗)),
K1 ⊆ K such that K1 ∈ SCC∗0 G(C∗, x,m(C∗)) or K1 does note have property (P). Since
x /∈ attr∗(C∗), C∗ is not strongly X-robust. According to Theorem 4.17, C is not
possibly strongly X-robust, which means that A is not AE strongly X-robust.

Case 2. If m(B∗) = m(A∀), then a∀j = m(B∗) for some j ∈ N∀0 . Let us define the

interval circulant matrix D = A∃ ⊕ [A∀(j), A∀(j)]. By (3), we obtain the matrix D∗

d∗i =

{
min{a∃i , a∀j } for i ∈ N∃0 ;

a
∀(j)
i for i ∈ N∀0 .

(6)

Since m(B∗) ≤ m(D∗) = a∀j , we obtain {i ∈ N∃0 ; d∗i = m(D∗)} ⊆ {i ∈ N∃0 ; b∗i =

m(B∗)}. The inequalities d∗i ≤ b∗i for i 6= j, i ∈ N∀0 and d∗j = m(D∗) imply that {i ∈
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N∀0 ; d∗i = m(D∗)} ⊆ {i ∈ N∀0 ; b∗i = m(B∗)}. We obtain G(D∗,m(D∗)) ⊆ G(B∗,m(B∗)).
Similarly as in Case 1 the matrix D∗ is not strongly X-robust, so there is no matrix
A∃ ∈ A∃ such that A∃ ⊕A∀(j) is strongly X-robust.

The converse implication trivially holds. �

4.3. EA strong X-robustness

To give the necessary and sufficient condition for the EA strong X-robustness let us
denote

m(A) = m(A∃ ⊕A∀), S(A∃) = {A∃ ∈ A∃;m(A∃ ⊕A∀(n)) ≥ m(A)}.

and define the matrix Ã∃ ∈ A∃ as follows:

ã∃i = min{a∃i ,m(A)} for each i ∈ N∃0 . (7)

Theorem 4.21. Let AC = C(a0, . . . ,an−1) be such that m(A
∃⊕A∀(n)) < m(A). Then

A is EA strongly X-robust if and only if min i ∈ Nxi ≥ m(A).

P r o o f . The assumption m(A
∃⊕A∀(n)) < m(A) is equivalent to that m(A) = m(A

∀
).

Suppose that mini∈N xi < m(A). Then there exist k ∈ N and j ∈ N∀0 be such

that xk = mini∈N xi < m(A
∀
) = a∀j . Let A∃ ∈ A∃ be arbitrary but fixed. For the

matrix A∃ ⊕ A∀(j) we have J(A∃ ⊕ A∀(j)) = {j}. Let K ∈ SCC∗ G(A∃ ⊕ A∀(j), a∀j )
be such that k ∈ VK. If j = 0 then K consists of a cycle of length zero, so K ∈
SCC∗0 G(A∃ ⊕ A∀(j), x, a∀j ). If j 6= 0, then K consists of a cycle of length l(c) = n

gcd(n,j) .

Since K ∈ SCC∗1 G(A∃ ⊕ A∀(j), x, a∀j ), there are no orbit paths of lengths t · l(c), t ∈ N
starting at point k in K. This means that K does not have property (P).

In both cases, according to Theorem 4.12, the vector x /∈ attr∗(A∃ ⊕ A∀(j)), so
A∃ ⊕A∀(j) is not strongly X-robust. Hence A is not EA strongly X-robust.

For the converse implication suppose that mini∈N xi ≥ m(A). Then for each A∃ ∈
A∃, for each A∀ ∈ A∀ and for each i ∈ N we have xi ≥ m(A∃ ⊕ A∀). Then for each
K ∈ SCC∗ G(A∃ ⊕A∀,m(A∃ ⊕A∀)) we have K ∈ SCC∗1 G(A∃ ⊕A∀, x,m(A∃ ⊕A∀)) and
each path in K is an orbit path. Since there are the paths of length r for each r ∈ N, K
has property (P). Hence x ∈ attr∗(A∃ ⊕A∀), so AC is EA strongly X-robust. �

Lemma 4.22. Let an interval circulant matrix AC = C(a0, . . . ,an−1) be such that

m(A
∃ ⊕A∀(n)) ≥ m(A). Then J(A∃ ⊕A∀(n)) ⊆ J(Ã∃ ⊕ A∀(n)) for each A∃ ∈ S(A∃).

P r o o f . The inequality m(A
∃ ⊕ A∀(n)) ≥ m(A) implies S(A∃) 6= ∅. It is easy to see

that m(Ã∃⊕A∀(n)) = m(A) and J(Ã∃⊕A∀(n)) = {i ∈ N∃0 ; a∃i ≥ m(A)}∪{i ∈ N∀0 ; a∀i =
a∀i = m(A)}. We shall distinguish two possibilities.

Case 1. If A∃ ∈ S(A∃) is such that there exists r ∈ N∃0 , r ∈ J(A∃ ⊕A∀(n)), then

a∃r ≥ a∃r ≥ m(A).

Hence r ∈ J(Ã∃ ⊕A∀(n)), which implies J(A∃ ⊕A∀(n)) ⊆ J(Ã∃ ⊕A∀(n))).
Case 2. If A∃ ∈ A∃ is such that J(A∃ ⊕ A∀(n)) = {i ∈ N∀0 ; a∀i = m(A)} then

J(A∃ ⊕A∀(n)) = J(Ã∃ ⊕A∀(n)). �
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Theorem 4.23. Let AC = C(a0, . . . ,an−1) be such that m(A
∃⊕A∀(n)) ≥ m(A). Then

A is EA strongly X-robust if and only if the matrix Ã∃⊕A∀(n) is strongly X-robust or
mini∈N xi ≥ m(A).

P r o o f . Suppose that the matrix Ã∃⊕A∀(n) is strongly X-robust or mini∈N xi ≥ m(A).

In the first case, according to Lemma 3.3, we have x ∈ attr∗(Ã∃⊕A∀(n)). By Theorem
4.12 for each K ∈ SCC∗ G(Ã∃⊕A∀(n),m(A)) we have K ∈ SCC∗1 G(Ã∃⊕A∀(n), x,m(A))
and K has property (P). Let A∀ ∈ A∀ be arbitrary. Since G(Ã∃ ⊕ A∀(n),m(A)) ⊆
G(Ã∃⊕A∀,m(A)), for each K1 ∈ SCC∗ G(Ã∃⊕A∀,m(A)) there exists K ∈ SCC∗ G(Ã∃⊕
A∀(n),m(A)) such that K ⊆ K1. Since K ∈ SCC∗1 G(Ã∃ ⊕ A∀(n), x,m(A)) and K has
property (P), K1 ∈ SCC∗1 G(Ã∃ ⊕ A∀, x,m(A)) and K has property (P). We obtain
x ∈ attr∗(Ã∃ ⊕ A∀) and consequently Ã∃ ⊕ A∀ is strongly X-robust. Hence A is EA
strongly X-robust.

In the second case suppose that mini∈N xi ≥ m(A). From m(A∃⊕A∀(n)) ≤ m(A∃⊕
A
∀
) = m(A) we obtain xk ≥ m(A∃ ⊕ A∀) for each A∀ ∈ A∀ and for each k ∈ N . This

is equivalent to (xk)(h) = I for each k ∈ N , where h = m(A∃ ⊕ A∀). Then for each

K ∈ SCC∗ G(A∃ ⊕A∀,m(A∃ ⊕A∀)) we have K ∈ SCC∗1 G(A∃ ⊕A∀, x,m(A∃ ⊕A∀)) and
each path in K is an orbit path. Since there are the paths of length r for each r ∈ N, K
has property (P). We obtain x ∈ attr∗(A∃ ⊕ A∀) and consequently A∃ ⊕ A∀ is strongly
X-robust. Since there exists A∃ ∈ A∃, namely A∃ = A∃, such that A∃ ⊕A∀ is strongly
X-robust for each A∀ ∈ A∀, an interval circulant matrix AC is EA strongly X-robust.

For the converse implication suppose that Ã∃ ⊕ A∀(n) is not strongly X-robust and
mini∈N xi < m(A). By Lemma 3.3 we have x /∈ attr∗(Ã∃ ⊕ A∀(n)). Hence, according
to Theorem 4.12, there exists K ∈ SCC∗ G(Ã∃ ⊕ A∀(n)) such that K ∈ SCC∗0 G(Ã∃ ⊕
A∀(n), x,m(Ã∃ ⊕ A∀(n))) or K does not have property (P ). Let A∃ ∈ A∃ be arbitrary.
We shall distinguish two possibilities.

(i) If A∃ ∈ S(A∃), then according to Lemma 4.22 we have

G(A∃ ⊕A∀(n),m(A∃ ⊕A∀(n))) ⊆ G(Ã∃ ⊕A∀(n),m(Ã∃ ⊕A∀(n))).

Hence there exists K1 ∈ SCC∗ G(A∃ ⊕ A∀(n)), K1 ⊆ K such that K1 ∈ SCC∗0 G(A∃ ⊕
A∀(n), x,m(A∃ ⊕A∀(n))) or K1 does not have property (P ).

It means that for each A∃ ∈ S(A∃) there exists A∀ ∈ A∀, namely A∀ = A∀(n) such
that A∃ ⊕A∀(n) is not strongly X-robust.

(ii) If A∃ /∈ S(A∃), then the inequality mini∈N xi < m(A) implies that there exist

k ∈ N and j ∈ N∀0 be such that xk = mini∈N xi < m(A
∀
) = a∀j . For the matrix

A∃ ⊕A∀(j) we have J(A∃ ⊕A∀(j)) = {j}. Similarly as in the proof of Theorem 4.21, for
the strongly connected component K ∈ SCC∗ G(A∃⊕A∀(j), a∀j ) containg node k we have

either K ∈ SCC∗0 G(A∃⊕A∀(j), x, a∀j ) or K does not have property (P). Hence A∃⊕A∀(j)
is not strongly X-robust.

In both cases, there exists A∀ ∈ A∀ such that A∃ ⊕ A∀ is not strongly X-robust.
Therefore, AC is not EA strongly X-robust. �
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Example 4.24. Let us have

A = ([3, 5], [4, 7], [6, 8], [5, 7], [4, 8], [5, 7]),X = ([7, 9], [8, 10], [8, 9], [7, 8], [4, 6], [5, 8])>

and N∃0 = {0, 1, 2, 3}, N∀0 = {4, 5}.
Decide whether the given interval circulant matrix is strongly EA X-robust and

strongly AE X-robust.

Solution. We have

A∃ = A∃([3, 5], [4, 7], [6, 8], [5, 7], [0, 0], [0, 0])

and
A∀ = A∀([0, 0], [0, 0], 0, 0], [0, 0], [4, 8], [5, 7]).

First, we check the strong EA X-robustness. Since m(A
∃ ⊕A∀(n)) = m(A) = 8 and

mini∈N xi = 4 < m(A), according to Theorem 4.23 we have to decide about the strong
X-robustness of Ã∃ ⊕A∀(n).

According to (7) we have Ã∃ = (5, 7, 8, 7, 0, 0) and Ã∃ ⊕ A∀(6) = (5, 7, 8, 7, 4, 5). We
obtain

O(Ã∃ ⊕A∀(6), x) =
(
(7, 8, 8, 7, 4, 5)T , (8, 7, 7, 7, 7, 8)T , (7, 7, 7, 8, 8, 7)T ,

(7, 8, 8, 7, 7, 7)T , (, 7, 7, 7, 7, 8)T , . . .
)
.

We can see that per(A∗∃⊕A(6), x) = 3, so the matrix A∗∃⊕A(6) is not strongly X-robust.
Hence the given interval circulant matrix is not EA strongly X-robust.

To check the strong AE X-robustness, we check the possible strong X-robustness od
interval matrices A∃ ⊕ [A(j), A(j)] for j = 4, 5, 6.

For j = 1, we obtain A∃ ⊕ [A(4), A(4)] = C([3, 5], [4, 7], [6, 8], [5, 7], [8, 8], [5, 5]). Ac-
cording to Theorem 4.17, we have to check the strong X-robustness of the matrix
A∗(4) = C(5, 7, 8, 7, 8, 5) computed by (3). We have

O(A∗(4), x) =
(
(7, 8, 8, 7, 4, 5)T, (8, 7, 7, 8, 8, 8)T, (8, 8, 8, 8, 8, 8)T, (8, 8, 8, 8, 8, 8)T, . . .

)
Since x⊕(A∗(4)) = (8, 8, 8, 8, 8, 8)T ∈ O(A∗(4), x), the matrix A∗(4) is strongly X-robust,
which means that A∃ ⊕ [A(4), A(4)] is possibly strongly X-robust.

For j = 5, we have A∃⊕ [A(5), A(5)] = C([3, 5], [4, 7], [6, 8], [5, 7], [4, 4], [7, 7]). We check
the strong X-robustness of the matrix A∗(5) = C(5, 7, 7, 7, 4, 7) computed by (3). We
have

O(A∗(5), x) =
(
(7, 8, 8, 7, 4, 5)T , (7, 7, 7, 7, 7, 7)T , (7, 7, 7, 7, 7, 7)T , . . .

)
which implies that the matrix A∗(5) is strongly X-robust because of x⊕(A∗(5)) =
(7, 7, 7, 7, 7, 7)T ∈ O(A∗(5), x). Hence A∃ ⊕ [A(5), A(5)] is possibly strongly X-robust.

At last, A∃ ⊕ [A(6), A(6)] = C([3, 5], [4, 7], [6, 8], [5, 7], [4, 4], [5, 5]) is possibly strongly
X-robust because of for the matrix A∗(6) = (5, 6, 6, 6, 4, 5) we obtain

O(A∗(6), x) =
(
(7, 8, 8, 7, 4, 5)T , (6, 6, 6, 6, 6, 6)T , (6, 6, 6, 6, 6, 6)T , . . .

)
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so x⊕(A∗(6)) = (6, 6, 6, 6, 6, 6)T ∈ O(A∗(6), x).

Since interval matrices A∃ ⊕ [A(4), A(4)], A∃ ⊕ [A(5), A(5)] and A∃ ⊕ [A(6), A(6)] are
possibly strongly X-robust, the given interval circulant matrix is AE strongly X-robust.√

4.4. AE/EA strong XAE/XEA-robustness

Definition 4.25. Let an interval circulant matrix AC = C(a0, . . . ,an−1) and an interval
vector X be given. An interval circulant matrix AC is called

(i) EA strongly XAE-robust (XEA-robust) if there exists A∃ ∈ A∃ such that for each
A∀ ∈ A∀ the matrix A∃ ⊕A∀ is strongly XAE-robust (XEA-robust);

(ii) AE strongly XAE-robust (XEA-robust) if for each A∀ ∈ A∀ there exists A∃ ∈ A∃

such that the matrix A∃ ⊕A∀ is XAE-robust (XEA-robust).

Theorem 4.26. An interval circulant matrix AC = C(a0, . . . ,an−1) is AE strongly
XAE-robust (XEA-robust) if and only if for each j ∈ N∀0 ∪ {n} there exists A∃ ∈ A∃

such that A∃ ⊕A∀(j) is strongly XAE-robust (XEA-robust), respectively.

P r o o f . The proof is similar to the proof of Theorem 4.20. �

Theorem 4.27. Let AC = C(a0, . . . ,an−1) and X be given. Then A is EA strongly
XAE-robust (XEA-robust) if and only if the matrix Ã∃⊕A∀(n) is strongly XAE-robust
(XEA-robust), respectively, or min{mini∈N∃ x∀i ,mini∈N∃ x∃i } ≥ m(A).

P r o o f . The proof is similar to the proofs of Theorem 4.21 and Theorem 4.23. �

5. CONCLUSION

In the paper, we dealt with max-min matrices for which the greatest eigenvector is
achieved by orbit starting at each vector from a given interval vector X. Such ma-
trices are called strongly X-robust matrices. We extended the studying of the strong
X-robustness by defining the strong XEA-robustness and XAE-robustness of a given
matrix A. These new types were created using the quantification of interval entries of
vector X by universal or existential quantifier.

Next we focused on a special type of matrices, circulant matrices and their interval
version. By quantifying its interval elements, we obtained other types of the strong
X-robustness, AE strong X-robustness and EA strong X-robustness. All presented
types of the strong X- robustness can be checked in polynomial time. Our goal for the
future is to extend the strong X-robustness to general interval matrices, which, to our
knowledge, has not yet been done.

(Received February 9, 2021)
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[2] P. Butkovič, R. A. Cuninghame-Green, and S. Gaubert: Reducible spectral theory with
applications to the robustness of matrices in max–algebra. SIAM J. Matrix Anal. A 21
(2009), 1412–1431. DOI:10.1137/080731232
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