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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 4 , PAGES 6 4 7 – 6 7 0

DISTRIBUTIVITY OF ORDINAL SUM IMPLICATIONS
OVER OVERLAP AND GROUPING FUNCTIONS

Deng Pan and Hongjun Zhou

In 2015, a new class of fuzzy implications, called ordinal sum implications, was proposed
by Su et al. They then discussed the distributivity of such ordinal sum implications with
respect to t-norms and t-conorms. In this paper, we continue the study of distributivity of such
ordinal sum implications over two newly-born classes of aggregation operators, namely overlap
and grouping functions, respectively. The main results of this paper are characterizations
of the overlap and/or grouping function solutions to the four usual distributive equations of
ordinal sum fuzzy implications. And then sufficient and necessary conditions for ordinal sum
implications distributing over overlap and grouping functions are given.

Keywords: distributivity, fuzzy implication functions, ordinal sum, overlap functions,
grouping functions

Classification: 03B52, 03E72

1. INTRODUCTION

1.1. Brief overview on overlap and grouping functions

In recent years, two kinds of binary aggregation functions, called overlap and group-
ing functions respectively, were introduced by Bustince et al. [8, 9]. Those two func-
tions arise from problems in image processing, decision making and classification [6, 9,
19, 20, 21, 23] based on fuzzy preference relations, where the associativity property is
not strongly required in reality, and thus it’s not necessary to consider t-norms and
t-conorms as models of operations. In image processing, for example, in 2007, scholars
such as Bustince et al. used the so-called restricted equivalent function to calculate
the threshold value of images [6]. In decision making, in 2017, Elkano et al. [21] gave
a consensus method via penalty functions for decision making in ensembles of fuzzy
rule based classification systems and introduced a method for constructing confidence
and support measures from overlap functions. In classification, in 2015, Elkano et al.
[20] adapted the inference system of fuzzy association rule classification model replacing
the product triangular norm with n-dimensional overlap function for high-dimensional
problems. This enables us to obtain more sufficient output from the one-to-one and
one-to-more pattern subsequent clustering of the basic classifier.
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On the other hand, overlap and grouping functions are also developing rapidly in
theory and many profound results have been obtained, such as the construction of the
corresponding fuzzy implications [10, 13, 16, 17, 40], the properties of migrativity, ho-
mogeneity, idempotency and limiting [4, 7, 14, 50, 51], the modularity equation between
overlap (grouping) functions and other aggregation functions [42, 48, 49], the addi-
tive and multiplicative generator pairs [15, 32], the n-dimensional extension concepts of
overlap functions [22] and general overlap functions [12], the notions of interval overlap
[36] and grouping functions, and the notion of interval-valued ordered weight averaging
(OWA) operators with interval weights derived from interval-valued overlap functions
[5].

1.2. Significance and development of distributivity of fuzzy implications
over aggregation functions

The solution of functional equations is one of the oldest research topics in the field of
mathematical analysis, and many great mathematicians including Euler, Cauchy and
Abel, have been concerned with solving functional equations [1, 26]. Distribution equa-
tion is a kind of functional equations which have been widely concerned in the literature.

The distributivity equations of fuzzy implications over two aggregation functions have
become a focus of research. In classical logic, the distributivity of one binary operator
over another determines the basic structure of the algebra imposed by these operators.
Generally, there are four classical distributive equations involving implications as fol-
lows [2]:

(p ∨ q)→ r ≡ (p→ r) ∧ (q → r) (1)

(p ∧ q)→ r ≡ (p→ r) ∨ (q → r) (2)

p→ (q ∧ r) ≡ (p→ q) ∧ (p→ r) (3)

p→ (q ∨ r) ≡ (p→ q) ∨ (p→ r) (4)

Note that the above equivalences are tautologies in classical logic. A new direction of
studies focused on distributivity between implication functions and aggregation func-
tions like t-norms (t-conorms) that is important in the framework of logical connectives.
On the one hand, there is a great deal of literature studying and exploring the general-
izations of these distributivity equations to fuzzy connectives, especially involving fuzzy
implications. On the other hand, it is well known that fuzzy systems can approximate
any continuous function to any desired precision. However, it usually takes a large rule
base to achieve accuracy. In order to avoid the explosion of combinatorial rules, many
researchers studied distributive equations. This idea was first proposed by Combs and
Andrews [11] based on the logical validity of (2) in classical propositional logic. And then,
in 2002, Trillas and Alsina [41] studied the general form I(T (p, q), r) = S(I(p, r), I(q, r))
of (2). Later, in [3, 24], Baczyński and Jayaram investigated the distributivity of f-
implication over t-norms and t-conorms, implication over nilpotent or strict t-conorm,
respectively. Recently, Zhou [47] characterized the t-norm and t-conorm solutions and
continuous Archimedean t-conorm solutions for k-generated implications. Since then,
lots of scholars have studied various distributive equations [27, 29, 38, 39, 45, 46].
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The above are finding t-norm and t-conorm solutions to equations (1) – (4) for given
fuzzy implications, some other studies found the fuzzy implication solutions to equations
(1) – (4) for given t-norms and t-conorms. For example, Xie et al. [43] studied the
equation I(x, S1(y, z)) = S2(I(x, y), I(x, z)) of (4), where S1 and S2 are two continuous
t-conorms given as ordinal sums, they characterized all solutions of I when I is restricted
to fuzzy implications continuous on (0, 1]× [0, 1]. Qin et al. [30] characterized the fuzzy
implication solutions which are continuous everywhere except at (0, 0), to (3) when T1
is a continuous t-norm and T2 is a continuous Archimedean t-norm. Along this method,
others are already illustrated in the following works [31, 43, 44].

1.3. Motivation of our research

Fuzzy implication is one of main logical connectives of fuzzy set theory, which plays an
important role in many branches of fuzzy mathematics. The research on distributive
equations of fuzzy implications over other logical connectives is a hot topic with impor-
tant theoretical significance and application value. And so many researches have done
a lot of research to this subject and achieved fruitful results. Such an active research
topic deserves further exploration. In 2015, a new class of fuzzy implications, called
ordinal sum implications, was proposed by Su et al. [37]. Moreover, they studied some
basic properties of this new class of fuzzy implications, such as neutral property, ex-
change principle, consequent boundary and so on. So far, although many researchers
have studied various distributivity equations as mentioned above, few have studied the
distributivity of ordinal sum implication over overlap and grouping functions, only Qiao
and Hu [33, 35] have studied general implication solutions related to overlap and group-
ing functions. Therefore, in this paper, as a supplement of this research topic from
this point of view, we study the distributivity of ordinal sum implications over overlap
and grouping functions. More precisely, we characterize the structure of overlap and
grouping functions in the following equations for a given ordinal sum implication:

I(G(x, y), z) = O(I(x, z), I(y, z)) (5)

I(O(x, y), z) = G(I(x, z), I(y, z)) (6)

I(x,O1(y, z) = O2(I(x, y), I(x, z)) (7)

I(x,G1(y, z) = G2(I(x, y), I(x, z)) (8)

for all x, y, z ∈ [0, 1], where I is an ordinal sum implication, O,O1, O2 are overlap
functions and G,G1, G2 are grouping functions.

The rest of this paper is organized as follows. Section 2 presents the basic concepts
that are necessary to understand the paper, including the concepts related to fuzzy
implication functions, overlap and grouping functions. Section 3 is the main part of this
paper, where we investigate the sufficient and necessary conditions under which ordinal
sum implications satisfy the equations (5) – (8) with respect to overlap and grouping
functions respectively. Section 4 concludes the paper with final remarks and further
works.
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2. PRELIMINARIES

In this section, we will assume that the reader is familiar with the theory of t-norms,
t-conorms and aggregation operators as well as all necessary results [2, 25]. We recall
here only some fundamental concepts and results which shall be used in the paper. We
begin with the definition of fuzzy implication function.

Definition 2.1. (Baczyński and Jayaram [2]) A binary function I : [0, 1]2 → [0, 1] is
called a fuzzy implication if it satisfies the following conditions:

(I1) I is non-increasing in its first variable;

(I2) I is non-decreasing in its second variable;

(I3) I(0, 0) = 1;

(I4) I(1, 1) = 1;

(I5) I(1, 0) = 0.

Let I be a fuzzy implication, from the definition, it follows that I(0, x) = 1 and
I(x, 1) = 1 for all x ∈ [0, 1]. Then we recall some important properties of fuzzy implica-
tions.

Definition 2.2. (Baczyński and Jayaram [2]) Let I be a fuzzy implication. Then I is
said to satisfy:

(OP) The ordering property, if, for all x, y ∈ [0, 1], I(x, y) = 1 if and only if x ≤ y.

(NP) The left neutrality property, if I(1, y) = y for all y ∈ [0, 1].

(IP) The identity principle if I(x, x) = 1 for all x ∈ [0, 1].

(EP) The exchange principle, if I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1].

(CB) The consequent boundary, if I(x, y) ≥ y for all x, y ∈ [0, 1].

Example 2.3. (Baczyński and Jayaram [2]) Define a function I : [0, 1]2 → [0, 1] as
follows:

(1) ∀x, y ∈ [0, 1], ILK(x, y) = min{1− x+ y, 1}.

(2) ∀x, y ∈ [0, 1], IGG(x, y) =

{
1, x ≤ y,
y
x , x > y.

(3) ∀x, y ∈ [0, 1], IRS(x, y) =

{
1, x ≤ y,
0, x > y.

(4) ∀x, y ∈ [0, 1], IWB(x, y) =

{
1, x < 1,

y, x = 1.

(5) ∀x, y ∈ [0, 1], IGD(x, y) =

{
1, x ≤ y,
y, x > y.
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Then ILK , IGG, IRS , IWB , IGD are all fuzzy implications.

Definition 2.4. (Baczyński and Jayaram [2]) A function N : [0, 1] → [0, 1] is called a
fuzzy negation if it satisfies the following conditions:

(N1) N(0) = 1 and N(1) = 0,

(N2) N(y) ≤ N(x) for all x, y ∈ [0, 1] with x ≤ y.

Definition 2.5. (Su et al. [37]) Let (Ik)k∈A be a family of fuzzy implications, and
([ak, bk])k∈A be a family of pairwise disjoint close subintervals of [0, 1] with bk > ak > 0
for all k ∈ A. Define the binary function I: [0, 1]2 → [0, 1] by

I(x, y) =

{
ak + (bk − ak)Ik( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

IGD(x, y), otherwise.
(9)

We call I given by (9) an ordinal sum of fuzzy implications (Ik)k∈A, denoted by I =
(〈ak, bk, Ik〉)k∈A.

Theorem 2.6. (Su et al. [37]) Let (Ik)k∈A be a family of fuzzy implications. Then
I = (〈ak, bk, Ik〉)k∈A given by (9) in Definition 2.5 is a fuzzy implication, if and only if
Ik satisfies (CB), whenever k ∈ A and bk < 1.

From now on, we call I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication if it is a fuzzy
implication.

Proposition 2.7. (Su et al. [37]) Let (Ik)k∈A be a family of fuzzy implications satis-
fying (CB) and I given by (9) in Definition 2.5. Then:

(1) I satisfies (CB).

(2) If bk < 1 for all k ∈ A, then I satisfies (NP).

(3) If there exists k0 ∈ A, such that bk0 = 1, then I satisfies (NP) if and only if Ik0

satisfies (NP).

(4) If there exists k0 ∈ A, such that bk0 < 1, then I satisfies neither (IP) nor (OP).

(5) If there exists I = (〈a, 1, I0〉) with a > 0, then I satisfies (OP) if and only if I0
satisfies (OP).

Definition 2.8. (Bustince et al. [7, 8]) A binary function O : [0, 1]2 → [0, 1] is said to
be an overlap function if it satisfies the following conditions:

(O1) O is commutative;

(O2) O(x, y) = 0 if and only if xy = 0;

(O3) O(x, y) = 1 if and only if xy = 1;

(O4) O is increasing;

(O5) O is continuous.



652 D. PAN AND H. J. ZHOU

Note that if an overlap function O has a neutral element e, then by (O3), this element
e is necessarily equal to 1. Moreover, O is said to satisfy the property 1-section deflation
[13] if

(O6) O(1, y) ≤ y for all y ∈ [0, 1]

and the property 1-section inflation [13] if

(O7) O(1, y) ≥ y for all y ∈ [0, 1].

An overlap function O is called idempotent if O(x, x) = x for all x ∈ [0, 1] [14], we
write Oid as the family of idempotent overlap functions.

In the following example, we list some commonly-used overlap functions [4, 15].

Example 2.9. (1) Any continuous t-norm without non-trivial zero divisors is an over-
lap function.

(2) For any p > 0, the function Op : [0, 1]2 → [0, 1] given by

Op(x, y) = xpyp

is an overlap function.

(3) The function ODB : [0, 1]2 → [0, 1] given by

ODB(x, y) =

{ 2xy
x+y , if x+ y 6= 0,

0, if x+ y = 0

is an overlap function.

(4) The function OmM : [0, 1]2 → [0, 1] given by

OmM (x, y) = min{x, y}max{x2, y2}

is a non-associative overlap function with 1 as the neutral element.

Definition 2.10. (Bustince et al. [9]) A binary function G : [0, 1]2 → [0, 1] is said to
be a grouping function if it satisfies the following conditions:

(G1) G is commutative;

(G2) G(x, y) = 0 if and only if x = y = 0;

(G3) G(x, y) = 1 if and only if x = 1 or y = 1;

(G4) G is increasing;

(G5) G is continuous.

Note that if a grouping function G has a neutral element e′, then by (G2), this
element e′ is necessarily equal to 0. Moreover, G is said to satisfy the property 0-section
deflation [13] if
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(G6) G(0, y) ≥ y for all y ∈ [0, 1]

and the property 0-section inflation [13] if

(G7) G(0, y) ≤ y for all y ∈ [0, 1].

A grouping function G is called idempotent if G(x, x) = x for all x ∈ [0, 1] [4], we
write Gid as the family of idempotent grouping functions.

In the following example, we list some commonly-used grouping functions [4, 15].

Example 2.11. (1) Any continuous t-conorm without non-trivial one divisors is a
grouping function.

(2) For any p > 0, the function Gp : [0, 1]2 → [0, 1] given by

Gp(x, y) = 1− (1− x)p(1− y)p

is a grouping function.

(3) The function GDB : [0, 1]2 → [0, 1] given by

GDB(x, y) =

{ x+y−2xy
2−(x+y) , if x+ y 6= 2,

1, if x+ y = 2

is a grouping function.

(4) The function GmM : [0, 1]2 → [0, 1] given by

GmM (x, y) = 1−min{1− x, 1− y}max{(1− x)2, (1− y)2}

is a non-associative grouping function with 0 as the neutral element.

Like the dual relationship between t-norm and t-conorm, the overlap function and
the grouping function have similar dual relationship. Let N be a strong fuzzy nega-
tion (N ◦ N = id[0,1]) and G a grouping function, then, the expression O(x, y) =
N(G(N(x), N(y))) is called the dual overlap function of G. Analogously, the grouping
function G given by G(x, y) = N(O(N(x), N(y))) is called the dual grouping function
of O [4].

Definition 2.12. (Dimuro and Bedregal [14]) Let A be an at most countable index
set, (Ok)k∈A be a family of overlap functions, and ([ak, bk])k∈A be a family of pairwise
disjoint close subintervals of [0, 1]. The ordinal sum of (Ok)k∈A is the binary function
(〈ak, bk, Ok〉)k∈A : [0, 1]2 → [0, 1] defined for all x, y ∈ [0, 1], by:

(〈ak, bk, Ok〉)k∈A(x, y) =

{
ak + (bk − ak)Ok( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(fA(x), fA(y)), otherwise,

where fA : [0, 1]→ [0, 1] is given by:

fA(x) =

{
ak + (bk − ak)Ok( x−ak

bk−ak
, 1), ∃k ∈ A, s.t. x ∈ [ak, bk],

x, otherwise.

Notice that fA(x) = x for all x ∈ [0, 1] while Ok has 1 as a neutral element. O is an
overlap function if and only if O is representable as an ordinal sum of overlap functions
(Ok)k∈A.
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Theorem 2.13. (Qiao and Hu [34]) Let O be an overlap function with 1 as a neutral
element. If there is α ∈ [0, 1] such that

(i) O(α, x) = α ∧ x for all x ∈ [0, 1],

(ii) O(x, y) = α implies x = α or y = α for all x, y ∈ [α, 1].

Then there exist overlap functions O1 and O2 such that O = (〈0, α,O1〉, 〈α, 1, O2〉).

We can show the dual concept of ordinal sum of grouping functions and give the
sufficient conditions that one can be written as ordinal sum of two grouping functions
[42]. We omit them here.

3. DISTRIBUTIVITY OF THE ORDINAL SUM IMPLICATIONS OVER
OVERLAP AND GROUPING FUNCTIONS

In this section, we want to study distributive equations (5) – (8) in four parts for the
ordinal sum implications over overlap and grouping functions.

3.1. Solution to I(G(x, y), z) = O(I(x, z), I(y, z))

Proposition 3.1. (Qiao and Hu [33]) Let O be an overlap function, G a grouping
function and I a fuzzy implication satisfying (NP) in Eq.(5). Then O = TM .

Proposition 3.2. (Qiao and Hu [33]) Let O be an overlap function, G a grouping
function and I a fuzzy implication satisfying (OP) in Eq.(5). Then G = SM .

Proposition 3.3. (Qiao and Hu [33]) Let O be an overlap function, G a grouping func-
tion and I a fuzzy implication satisfying (NP) and (OP) in Eq.(5). Then the following
are equivalent.

(i) O and G are the solution of Eq.(5).

(ii) O = TM and G = SM .

At the beginning, we have the following corollary from Proposition 3.3.

Corollary 3.4. LetO be an overlap function, G a grouping function and I = (〈ak, bk, Ik〉)k∈A
an ordinal sum implication given by (9) in Definition 2.5. If (O,G, I) satisfies (5), and
I satisfies (NP) and (OP), then O = TM and G = SM .

Proposition 3.5. Let O be an overlap function with the neutral element 1, G a group-
ing function and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Defi-
nition 2.5 satisfying (5). If there exists k0 ∈ A such that bk0

= 1, O(x, y) = ak0
implies

x = ak0 or y = ak0 for all x, y ∈ [ak0 , 1] and Ik0 does not satisfy (NP), then

O(x, y) =

{
ak0

+ (bk0
− ak0

)Ok0
(

x−ak0

bk0
−ak0

,
y−ak0

bk0
−ak0

), x, y ∈ [ak0
, bk0

],

min(x, y), otherwise,
(10)

where Ok0 is an overlap function with 1 as a neutral element.
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P r o o f . First let x = y = 1, z = ak0 > 0, since (O,G, I) satisfies (5), we have that

I(G(1, 1), ak0
) = O(I(1, ak0

), I(1, ak0
))

I(1, ak0
) = ak0

by the definition of I, then ak0
= O(ak0

, ak0
). If x ∈ [0, ak0

], it follows
from

I(G(1, 1), x) = O(I(1, x), I(1, x))

so we have x = O(x, x) and x = O(x, x) ≤ O(ak0 , x) ≤ O(1, x) ≤ x. Thus O(ak0 , x) =
x. If x ∈ [ak0

, 1], we have ak0
= O(ak0

, ak0
) ≤ O(ak0

, x) ≤ O(ak0
, 1) ≤ ak0

. Thus
O(ak0

, x) = ak0
. From the above, we conclude that O(ak0

, x) = min(ak0
, x) for all

x ∈ [0, 1].
Next, for all x, y ∈ [ak0 , 1], O(x, y) = ak0 , implies x = ak0 or y = ak0 by the given

condition. It follows from the Theorem 2.13 that O = (〈0, ak0 , O1〉, 〈ak0 , 1, Ok0〉) for
some overlap functions O1 and Ok0

, that is

O(x, y) =


ak0

+ (1− ak0
)Ok0

(
x−ak0

1−ak0
,
y−ak0

1−ak0
), x, y ∈ [ak0 , 1],

ak0
O1( x

ak0
, y
ak0

), x, y ∈ [0, ak0
],

min(fA(x), fA(y)), otherwise,

where fA : [0, 1]→ [0, 1] is given by:

fA(x) =

{
ak0

+ (1− ak0
)Ok0

(
x−ak0

1−ak0
, 1), x ∈ [ak0

, 1],

ak0O1( x
ak0

, 1), x ∈ [0, ak0 ].

Let x, y ∈ [0, ak0
], without loss of generality, we assume that x ≤ y, then x =

O(x, x) ≤ O(x, y) ≤ O(x, 1) = x, and thus O(x, y) = x = min(x, y). In particular, for
all x ∈ [0, ak0 ], ak0O1( x

ak0
, 1) = O(ak0 , x) = x. On the other hand, for all x ∈ [ak0 , 1],

since O has a neutral element, we have ak0
+ (1− ak0

)Ok0
(
x−ak0

1−ak0
, 1) = O(x, 1) = x. We

conclude that fA(x) = x for all x ∈ [0, 1] and Ok0
also with 1 as a neutral element. Then

O has the ordinal sum of the form of (10). �

Proposition 3.6. Let O be an overlap function, G a grouping function with the neutral
element 0 and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition
2.5 satisfying (5). If there exists k0 ∈ A such that bk0

< 1 or I = (〈a, 1, I0〉) with a > 0
and I0 does not satisfy (OP), and G(x, y) = ak implies x = ak or y = ak for all
x, y ∈ [0, ak], G(x, y) = bk implies x = bk or y = bk for all x, y ∈ [0, bk], then

G(x, y) =

{
ak + (bk − ak)Gk( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

max(x, y), otherwise,
(11)

where {Gk|k ∈ A} is a family of grouping functions with 0 as a neutral element.

P r o o f . Let’s first prove that ak, bk are idempotent elements of G for all k ∈ A.
If there exists k0 ∈ A, such that ak0 = 0 or bk0 = 1, then the conclusion clearly
holds. Now we consider for any k ∈ A, such that bk < 1. For any strictly decreasing
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sequence (xn)n∈N /∈ [ak, bk], such that (xn)n∈N ↘ bk, since (O,G, I) satisfies (5), then
I(G(bk, bk), xn) = O(I(bk, xn), I(bk, xn)) = 1, and hence G(bk, bk) ≤ xn for all n ∈ N .
Let n → ∞ , we have G(bk, bk) ≤ bk. On the other hand, G(bk, bk) ≥ G(bk, 0) = bk,
thus G(bk, bk) = bk for all k ∈ A. And in the same way we can get G(ak, ak) = ak for all
k ∈ A. For any strictly increasing sequence (yn)n∈N /∈ [ak, bk] such that (yn)n∈N ↗ ak,
since (O,G, I) satisfies (5), then I(G(yn, yn), yn) = O(I(yn, yn), I(yn, yn)) = 1, thus
G(yn, yn) ≤ yn for all n ∈ N . By the continuity of G, we know that G(ak, ak) ≤ ak. On
the other hand, G(ak, ak) ≥ G(ak, 0) = ak, thus G(ak, ak) = ak for all k ∈ A.

By the duality between grouping and overlap functions, we know many properties of
grouping functions can be obtained in parallel. By the virtue of the proof of Proposition
2.3 (ii) in [25], we have for all k ∈ A,

G(ak, x) = max(ak, x), G(bk, x) = max(bk, x) for all x ∈ [0, 1].

Next, by mathematical induction and Theorem 2.6 in [42] and Proposition 3.48 in
[25], we can get that G has the ordinal sum of the form G = (〈ak, bk, Gk〉) for some
grouping functions Gk, that is

G(x, y) =

{
ak + (bk − ak)Gk( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

max(fB(x), fB(y)), otherwise,

where fB : [0, 1]→ [0, 1] is given by:

fB(x) =

{
ak + (bk − ak)Gk( x−ak

bk−ak
, 0), x ∈ [ak, bk],

x, otherwise.

In particular, for all x ∈ [ak, bk], ak+(bk−ak)Gk( x−ak

bk−ak
, 0) = G(x, ak) = x. We conclude

that fB(x) = x for all x ∈ [0, 1] and Gk have 0 as a neutral element. Then we know
that G has the ordinal sum of the form of (11). �

Proposition 3.7. Let O be an overlap function given by (10) in Proposition 3.5, G a
grouping function given by (11) in Proposition 3.6 and I = (〈ak, bk, Ik〉)k∈A an ordinal
sum implication given by (9) in Definition 2.5. Then (G,O, I) satisfies (5), if and only
if

(1) (Gk, TM , Ik) satisfies (5), when k 6= k0,

(2) (Gk0
, Ok0

, Ik0
) satisfies (5).

P r o o f . (⇒) (1) Let k 6= k0. For any x1, y1, z1 ∈ [0, 1], then there exists x, y, z ∈ [ak, bk]
such that x1 = x−ak

bk−ak
, y1 = y−ak

bk−ak
, z1 = z−ak

bk−ak
. If x1 = 0 or y1 = 0, obviously,

Ik(Gk(x1, y1), z1) = TM (Ik(x1, z1), Ik(y1, z1)); If x1 6= 0 and y1 6= 0, then x 6= ak
and y 6= bk. We have I(x, z) = ak + (bk−ak)Ik( x−ak

bk−ak
, z−ak

bk−ak
) = ak + (bk−ak)Ik(x1, z1),

and I(y, z) = ak + (bk − ak)Ik( y−ak

bk−ak
, z−ak

bk−ak
) = ak + (bk − ak)Ik(y1, z1), we can also

have G(x, y) = ak + (bk − ak)Gk( x−ak

bk−ak
, y−ak

bk−ak
) = ak + (bk − ak)Gk(x1, y1) ∈ [ak, bk],

since (G,O, I) satisfies (5), then I(G(x, y), z) = O(I(x, z), I(y, z)), thus ak + (bk −
ak)Ik(Gk(x1, y1), z1) = TM (ak + (bk − ak)Ik(x1, z1), ak + (bk − ak)Ik(y1, z1)). In con-
clusion, we can get Ik(Gk(x1, y1), z1) = TM (Ik(x1, z1), Ik(y1, z1)). (2) For the case of



Distributivity of OSI over overlap and grouping functions 657

k = k0, the proof is similar as above.

(⇐) We consider the relation between z and [ak, bk] by the following three cases:

Case 1, z /∈ [ak, bk] for any k ∈ A.

Case 1.1, x ≤ z and y ≤ z. No matter whether x, y is a member of interval or not,
we all have G(x, y) ≤ z, then I(G(x, y), z) = 1 = O(I(x, z), I(y, z)).

Case 1.2, x ≤ z and y > z. Then G(x, y) = max(x, y) > z, I(x, z) = 1, I(y, z) = z.
So we conclude that I(G(x, y), z) = z = O(I(x, z), I(y, z)).

Case 1.3, x > z and y ≤ z. Similar to Case 1.2.

Case 1.4, x > z and y > z. No matter whether x, y is a member of interval or
not, we all have G(x, y) > z, then I(x, z) = z, I(y, z) = z. Thus I(G(x, y), z) = z =
O(I(x, z), I(y, z)).

Case 2, There exists k0 ∈ A, such that bk0
= 1 and z ∈ [ak0

, bk0
].

Case 2.1, x, y /∈ [ak0
, bk0

]. No matter whether x, y is a member of interval or not,
we all have G(x, y) ≤ z, then I(x, z) = 1, I(y, z) = 1. Thus I(G(x, y), z) = 1 =
O(I(x, z), I(y, z)).

Case 2.2, x ∈ [ak0
, bk0

] and y /∈ [ak0
, bk0

]. Then G(x, y) = max(x, y) = x, I(y, z) = 1,
we have that I(G(x, y), z) = I(x, z) = O(I(x, z), I(y, z)).

Case 2.3, x /∈ [ak0 , bk0 ] and y ∈ [ak0 , bk0 ]. Similar to Case 2.2.

Case 2.4, x, y ∈ [ak0
, bk0

]. It’s a direct consequence from the fact that (Gk0
, Ok0

, Ik0
)

satisfies (5).
Case 3, There exists k ∈ A, such that z ∈ [ak, bk], and k 6= k0.

Case 3.1, x, y /∈ [ak, bk] for any k ∈ A. Then G(x, y) = max(x, y). Without loss
of generality, we assume x ≤ y. Whenever y < ak, then I(x, z) = 1, I(y, z) = 1
and I(G(x, y), z) = 1 = O(I(x, z), I(y, z)); Whenever x < ak and y > bk, then
I(x, z) = 1, I(y, z) = z and I(G(x, y), z) = z = O(I(x, z), I(y, z)); Whenever x > bk,
then I(x, z) = z, I(y, z) = z and I(G(x, y), z) = z = O(I(x, z), I(y, z)).

Case 3.2, x ∈ [ak, bk] and y /∈ [ak, bk]. Whenever y < ak, then G(x, y) = max(x, y) =
x, and I(y, z) = 1, thus I(G(x, y), z) = I(x, z), O(I(x, z), I(y, z)) = min(I(x, z), 1) =
I(x, z); Whenever y > bk, then G(x, y) = max(x, y) = y, and I(y, z) = z, we have
I(G(x, y), z) = I(y, z) = z, O(I(x, z), I(y, z)) = min(I(x, z), z), since I(x, z) ≥ z by I
satisfies (CB), we get I(G(x, y), z) = z = O(I(x, z), I(y, z)).

Case 3.3, x /∈ [ak, bk] and y ∈ [ak, bk]. Similar to Case 3.2.

Case 3.4, x, y ∈ [ak, bk]. It’s a direct consequence from the fact that (Gk, TM , Ik)
satisfies (5). �

Observe the Proposition 2.7, we can conclude that I satisfies (NP) and (OP), i. e., for
index set A, |A| = 1, I = (〈a, 1, I0〉) with a > 0 and I0 satisfies (NP) and (OP). By these
conclusions and the propositions above whether I satisfies (NP) and (OP), we have the
following theorems.
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Theorem 3.8. Let O be an overlap function, G a grouping function and I = (〈a, 1, I0〉)
with a > 0 an ordinal sum implication given by (9) in Definition 2.5, respectively. If I0
satisfies (NP) and (OP), then (G,O, I) satisfies (5), if and only if O = TM , G = SM .

Theorem 3.9. Let O be an overlap function with the neutral element 1, G a grouping
function with the neutral element 0 and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication
given by (9) in Definition 2.5, respectively. If I satisfies neither (NP) nor (OP), i. e., for
index set A, whenever |A| = 1, I = (〈a, 1, I0〉) with a > 0 and I0 satisfies neither (NP)
nor (OP) , or whenever |A| > 1, there exist k0 ∈ A, such that bk0

= 1 and Ik0
does

not satisfies (NP). O(x, y) = ak0
implies x = ak0

or y = ak0
for all x, y ∈ [ak0

, 1], and
G(x, y) = ak implies x = ak or y = ak for all x, y ∈ [0, ak], G(x, y) = bk implies x = bk
or y = bk for all x, y ∈ [0, bk]. Then (G,O, I) satisfies (5), if and only if O is given by
(10), G is given by (11), and

(1) (Gk, TM , Ik) satisfies (5), when k 6= k0,

(2) (Gk0 , Ok0 , Ik0) satisfies (5).

Example 3.10. (i) Let I = (〈 23 , 1, IRS〉), O = (〈 23 , 1, O1〉) and G = SM . Then

I(x, y) =


1 x ≤ y,
2
3 (x, y) ∈ [ 23 , 1]2 and x > y,

y (x, y) ∈ [0, 1]2 \ [ 23 , 1]2 and x > y,

and

O(x, y) =

{
2
3 + 3(x− 2

3 )(y − 2
3 ) (x, y) ∈ [ 23 , 1]2,

min(x, y) otherwise.

I does not satisfies (NP), and we can easily verify that (SM , O, I) satisfies (5).

(ii) Let I = (〈 14 ,
1
2 , IWB〉), G = (〈 14 ,

1
2 , G1〉) and O = TM . Then

I(x, y) =


1
2 (x, y) ∈ [ 14 ,

1
2 ]2, x < 1

2 ,

1 (x, y) ∈ [0, 1]2 \ [ 14 ,
1
2 ]2, x ≤ y,

y (x, y) ∈ [0, 1]2 \ [ 14 ,
1
2 )× [ 14 ,

1
2 ], x > y.

and

G(x, y) =

{
x+ y − 1

4 − 4(x− 1
4 )(y − 1

4 ) (x, y) ∈ [ 14 ,
1
2 ]2,

max(x, y) otherwise.

I does not satisfies (OP), and we can easily verify that (G,TM , I) satisfies (5).

(iii) Let I = (〈 13 , 1, ILK〉), G = SM and O = TM . Then (SM , TM , ILK) satisfies (5),
and

I(x, y) =


min(1, 1− x+ y) (x, y) ∈ [ 13 , 1]2,

1 (x, y) ∈ [0, 1]2 \ [ 13 , 1]2, x ≤ y,
y (x, y) ∈ [0, 1]2 \ [ 13 , 1]2, x > y.
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I satisfies (NP) and (OP), it is easy to verify that (G,O, I) satisfies (5).

(iv) Let

I0(x, y) =

{
1 y = 1,

1− x y < 1.

Then I0 is a fuzzy implication which does not satisfy (NP). It is easy to verify that
(G1, TM , IWB) and (GmM , OmM , I0) satisfy (5). Now let I = (〈 14 ,

1
2 , IWB〉, 〈 34 , 1, I0〉) sat-

isfy neither (NP) nor (OP),G = (〈 14 ,
1
2 , G1〉, 〈 34 , 1, GmM 〉) andO = (〈 14 ,

1
2 , TM 〉, 〈

3
4 , 1, OmM 〉).

Then we can verify that (G,O, I) satisfies (5) by Theorem 3.9. In fact

I(x, y) =


1
2 (x, y) ∈ [ 14 ,

1
2 )× [ 14 ,

1
2 ],

7
4 − x (x, y) ∈ [ 34 , 1]× [ 34 , 1),

1 (x, y) ∈ [0, 1]2 \ {[ 14 ,
1
2 )× [ 14 ,

1
2 ] ∪ [ 34 , 1]× [ 34 , 1)}, x ≤ y,

y (x, y) ∈ [0, 1]2 \ {[ 14 ,
1
2 )× [ 14 ,

1
2 ] ∪ [ 34 , 1]× [ 34 , 1)}, x > y.

G(x, y) =


x+ y − 1

4 − 4(x− 1
4 )(y − 1

4 ) (x, y) ∈ [ 14 ,
1
2 ]2,

1−min(1− x, 1− y) max((4− 4x)2, (4− 4y)2) (x, y) ∈ [ 34 , 1]2,

max(x, y) otherwise,

and

O(x, y) =

{
3
4 + 1

4 min(4x− 3, 4y − 3) max((4x− 3)2, (4y − 3)2) (x, y) ∈ [ 34 , 1]2,

min(x, y) otherwise.

In Example 3.10(iv), we use OmM and GmM to induce O and G, respectively, but
OmM and GmM are not associative, then O and G in this case are not associative. Thus,
the distributivity equation of ordinal sum implications over t-norms and t-conorms is
generalized. The plots of fuzzy implication I, group function G and overlap function O
in Example 3.10(iv) are given in Figure 1 (a), (b) and (c), respectively.

3.2. Solution to I(O(x, y), z) = G(I(x, z), I(y, z))

The analysis of this subsection is similar to that of Eq.(5). We will just list some results
and present some differences.

Proposition 3.11. (Qiao and Hu [33]) Let O be an overlap function, G a grouping
function and I a fuzzy implication satisfying (NP) in Eq.(6). Then G ∈ Gid.

Proposition 3.12. (Qiao and Hu [33]) Let O be an overlap function, G a grouping
function and I a fuzzy implication satisfying (OP) and (NP) in Eq.(6). Then O = TM .

Proposition 3.13. (Qiao and Hu [33]) Let O be an overlap function, G a grouping
function satisfying (G6) and I a fuzzy implication satisfying (NP) and (OP) in Eq.(6).
Then the following are equivalent.

(i) O and G are the solution of Eq.(6).

(ii) O = TM and G = SM .
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(a) (b)

(c)

Fig. 1. Plots of Example 3.10(iv).

Corollary 3.14. Let O be an overlap function, G a grouping function with the neutral
element 0 and I a fuzzy implication satisfying (NP) in Eq.(6). Then G = SM .

P r o o f . It’s straight from Proposition 3.11 and Proposition 3.2 in [33]. �

Corollary 3.15. Let O be an overlap function, G a grouping function satisfying (G6)
and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition 2.5. If
(O,G, I) satisfies (6), and I satisfies (NP) and (OP), then O = TM and G = SM .

Proposition 3.16. Let O be an overlap function, G a grouping function with the neu-
tral element 0 and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in
Definition 2.5 satisfying (6). If there exists k0 ∈ A such that bk0

= 1, G(x, y) = ak0

implies x = ak0
or y = ak0

for all x, y ∈ [0, ak0
] and Ik0

does not satisfy (NP), then

G(x, y) =

{
ak0 + (bk0 − ak0)Gk0(

x−ak0

bk0
−ak0

,
y−ak0

bk0
−ak0

), x, y ∈ [ak0
, bk0

],

max(x, y), otherwise,
(12)

where Gk0
is a grouping function with 0 as a neutral element.
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Proposition 3.17. Let O be an overlap function with the neutral element 1, G a group-
ing function satisfying (G6) and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given
by (9) in Definition 2.5 satisfying (6). If I does not satisfies (OP) and (NP), and
O(x, y) = ak implies x = ak or y = ak for any x, y ∈ [ak, 1], O(x, y) = bk implies x = bk
or y = bk for all x, y ∈ [bk, 1], then

O(x, y) =

{
ak + (bk − ak)Ok( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(x, y), otherwise,
(13)

where {Ok|k ∈ A} is a family of grouping functions with 1 as a neutral element.

Proposition 3.18. Let O be an overlap function given by (13) in Proposition 3.17, G a
grouping function given by (12) in Proposition 3.16 and I = (〈ak, bk, Ik〉)k∈A an ordinal
sum implication given by (9) in Definition 2.5. Then (G,O, I) satisfies (6), if and only
if

(1) (SM , Ok, Ik) satisfies (6), when k 6= k0,

(2) (Gk0
, Ok0

, Ik0
) satisfies (6).

By these conclusions and the propositions above whether I satisfies (NP) and (OP),
we have the following theorems.

Theorem 3.19. Let O be an overlap function, G a grouping function satisfying (G6)
and I = (〈a, 1, I0〉) with a > 0 an ordinal sum implication given by (9) in Definition
2.5. If I0 satisfies (NP) and (OP), then (G,O, I) satisfies (6), if and only if O = TM ,
G = SM .

Theorem 3.20. Let O be an overlap function with the neutral element 1, G a grouping
function with the neutral element 0 and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication
given by (9) in Definition 2.5. If I satisfies neither (NP) nor (OP), i. e., for index set
A, whenever |A| = 1, I = (〈a, 1, I0〉) with a > 0 and I0 satisfies neither (NP) nor (OP),
or whenever |A| > 1, there exist k0 ∈ A, such that bk0 = 1 and Ik0 does not satisfies
(NP). G(x, y) = ak0

implies x = ak0
or y = ak0

for all x, y ∈ [0, ak0
], and O(x, y) = ak

implies x = ak or y = ak for all x, y ∈ [ak, 1], G(x, y) = bk implies x = bk or y = bk for
all x, y ∈ [bk, 1]. Then (G,O, I) satisfies (6), if and only if O is given by (13), G is given
by (12), and

(1) (SM , Ok, Ik) satisfies (6), when k 6= k0,

(2) (Gk0
, Ok0

, Ik0
) satisfies (6).

3.3. Solution to I(x,O1(y, z)) = O2(I(x, y), I(x, z))

Proposition 3.21. (Qiao and Hu [33]) Let O1, O2 be two overlap functions, and I be a
fuzzy implication satisfying (NP) and (OP) in Eq.(7). Then the following are equivalent.

(i) O1 and O2 are the solution of Eq.(7).

(ii) O1 = O2 = TM .
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Corollary 3.22. Let O1, O2 be two overlap functions, and I an ordinal sum implication
given by (9) in Definition 2.5. If (O1, O2, I) satisfies (7), and I satisfies (NP) and (OP),
then O1 = O2 = TM .

Proposition 3.23. Let O be an overlap function with the neutral element 1, and I an
ordinal sum implication given by (9) in Definition 2.5. If O has an ordinal sum of the
form

O(x, y) =

{
ak + (bk − ak)Ok( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(x, y), otherwise,
(14)

where Ok is a family of overlap functions with 1 as a neutral element, then (O,O, I)
satisfies (7) if and only if (Ok, Ok, Ik) satisfies (7) for all k ∈ A.

P r o o f . (⇒) Let k ∈ A, for any x1, y1, z1 ∈ [0, 1], then there exists x, y, z ∈ [ak, bk]
such that x1 = x−ak

bk−ak
, y1 = y−ak

bk−ak
, z1 = z−ak

bk−ak
. Since (O,O, I) satisfies (7), then

I(x,O(y, z)) = O(I(x, y), I(x, z)). Thus

I(x,O(y, z)) = ak + (bk − ak)Ik(
x− ak
bk − ak

, Ok(
y − ak
bk − ak

,
z − ak
bk − ak

))

= ak + (bk − ak)Ik(x1, Ok(y1, z1)).

and

O(I(x, y), I(x, z)) = ak + (bk − ak)Ok(Ik(
x− ak
bk − ak

,
y − ak
bk − ak

), Ik(
x− ak
bk − ak

,
z − ak
bk − ak

))

= ak + (bk − ak)Ok(Ik(x1, y1), Ik(x1, z1)).

We conclude that Ik(x1, Ok(y1, z1) = Ok(Ik(x1, y1), Ik(x1, z1)).
(⇐) If x = 0, then I(x,O(y, z)) = 1 = O(I(x, y), I(x, z)). If x 6= 0, we will consider

the following cases:

Case 1, x /∈ [ak, bk] for any k ∈ A.

Case 1.1, y, z /∈ [ak, bk] for any k ∈ A. Then O(y, z) = min(y, z), without loss of
generality, let’s assume y ≤ z. If x ≤ y, then O(I(x, y), I(x, z)) = O(1, 1) = 1 =
I(x,O(y, z)); If y ≤ x ≤ z, then O(I(x, y), I(x, z)) = O(y, 1) = y = I(x,O(y, z)); If
z ≤ x, then O(I(x, y), I(x, z)) = O(y, z) = y = I(x,O(y, z)).

Case 1.2, There exists k0 ∈ A such that y, z ∈ [ak0 , bk0 ]. Then O(y, z) = ak0 +

(bk0 − ak0)Ok0(
y−ak0

bk0
−ak0

,
z−ak0

bk0
−ak0

) ∈ [ak0 , bk0 ]. If x < ak0 , then I(x, y) = I(x, z) = 1,

thus O(I(x, y), I(x, z)) = O(1, 1) = 1 = I(x,O(y, z)). If x > bk0
, then I(x, y) = y, and

I(x, z) = z, thus O(I(x, y), I(x, z)) = O(y, z) = I(x,O(y, z)).

Case 1.3, There exists k0 ∈ A such that y ∈ [ak0
, bk0

], and z /∈ [ak, bk] for any k ∈ A.
If x < ak0

, when z < ak0
, then I(x, y) = 1 and O(y, z) = z, thus O(I(x, y), I(x, z)) =

O(1, I(x, z)) = I(x, z) = I(x,O(y, z)); When z > bk0
, thenO(I(x, y), I(x, z)) = O(1, 1) =

1 = I(x,O(y, z)). If x > bk0
, when z < ak0

, then I(x, y) = y and I(x, z) = z,
thus O(I(x, y), I(x, z)) = O(y, z) = z = I(x, z) = I(x,O(y, z)); When z > bk0 , then
O(I(x, y), I(x, z)) = O(y, 1) = y = I(x,O(y, z)).
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Case 1.4, There exists k0 ∈ A such that z ∈ [ak0 , bk0 ], and y /∈ [ak, bk] for any k ∈ A.
Similar to Case 1.3.

Case 2, There exists k0 ∈ A such that x ∈ [ak0 , bk0 ]. We need to consider the following
four subcases.

Case 2.1, y, z /∈ [ak0
, bk0

]. If y, z ∈ [ak1
, bk1

] for k1 6= k0, then O(y, z) = ak1
+

(bk1
− ak1

)Ok1
(

y−ak1

bk1
−ak1

,
z−ak1

bk1
−ak1

) ∈ [ak1
, bk1

]. Whenever bk1
< ak0

, then I(x, y) = y

and I(x, z) = z, thus O(I(x, y), I(x, z)) = O(y, z) = I(x,O(y, z)); Whenever ak1 < bk0 ,
then I(x, y) = I(x, z) = 1, thus O(I(x, y), I(x, z)) = O(1, 1) = 1 = I(x,O(y, z)). If
y, z /∈ [ak, bk] for any k ∈ A, then O(y, z) = min(y, z). Without loss of generality, we
assume that y ≤ z. Whenever y ≤ z ≤ x, then I(x, y) = y and I(x, z) = z, thus
O(I(x, y), I(x, z)) = O(y, z) = y = I(x,O(y, z)); Whenever y ≤ x ≤ z, then I(x, y) = y
and I(x, z) = 1, thus O(I(x, y), I(x, z)) = O(y, 1) = y = I(x,O(y, z)); Whenever x ≤
y ≤ z, then I(x, y) = I(x, z) = 1, thus O(I(x, y), I(x, z)) = O(1, 1) = 1 = I(x,O(y, z)).

Case 2.2, y ∈ [ak0
, bk0

], z /∈ [ak0
, bk0

]. If z < ak0
, no matter whether z is a mem-

ber of interval or not, we all have I(x, z) = z < I(x, y), then O(I(x, y), I(x, z)) =
O(I(x, y), z) = z, thus I(x,O(y, z)) = I(x, z) = z; If z > bk0 , no matter whether z is a
member of interval or not, we all have I(x, z) = 1 ≥ I(x, y), then O(I(x, y), I(x, z)) =
O(I(x, y), 1) = I(x, y), thus I(x,O(y, z)) = I(x, y).

Case 2.3, y /∈ [ak0 , bk0 ], z ∈ [ak0 , bk0 ]. Similar to Case 2.2.

Case 2.4, y, z ∈ [ak0
, bk0

]. It’s a direct consequence from the fact that (Ok, Ok, Ik)
satisfies (7). �

Proposition 3.24. Let O1, O2 be two overlap functions with 1 as a neutral element and
I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition 2.5 satisfying
(7). If I satisfies neither (NP) nor (OP), O(x, y) = ak implies x = ak or y = ak for all
x, y ∈ [ak, 1], O(x, y) = bk implies x = bk or y = bk for all x, y ∈ [bk, 1], O ∈ {O1, O2},
then O1 and O2 have the ordinal sum of the forms as follows:

O1(x, y) =

{
ak + (bk − ak)O1k( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(x, y), otherwise,
(15)

O2(x, y) =

{
ak + (bk − ak)O2k( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(x, y), otherwise,
(16)

where {O1k|k ∈ A} and {O2k|k ∈ A} are two families of overlap functions with 1 as a
neutral element.

P r o o f . We only prove the structure of O1, let’s first prove that ak, bk are idempotent
elements of O1 for all k ∈ A. Now we consider k ∈ A, for any strictly increasing
sequence (yn)n∈N /∈ [ak, bk], such that (yn)n∈N ↗ ak. Since (O1, O2, I) satisfies (7), then
I(yn, O1(ak, ak)) = O2(I(yn, ak), I(yn, ak)) = O2(1, 1) = 1, and hence O1(ak, ak) ≥ yn.
Let n → ∞ , we have O1(ak, ak) ≥ ak. On the other hand, O1(ak, ak) ≤ ak, thus
O1(ak, ak) = ak for all k ∈ A. And in the same way we can get O1(bk, bk) = bk for all
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k ∈ A. Since O1 is continuous and ak, bk are idempotent elements of O1, then by virtue
of Proposition 2.3 [25] we have for all k ∈ A,

O1(ak, x) = min(ak, x), O1(bk, x) = min(bk, x) for all x ∈ [0, 1].

Next, by mathematical induction and the Theorem 2.13 , we can get that O1 has the
ordinal sum of the form O1 = (〈ak, bk, O1k〉) for some overlap functions O1k, that is

O1(x, y) =

{
ak + (bk − ak)O1k( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

min(fA(x), fA(y)), otherwise,

where fA : [0, 1]→ [0, 1] is given by:

fA(x) =

{
ak + (bk − ak)O1k( x−ak

bk−ak
, 1), x ∈ [ak, bk],

x, otherwise.

In particular, for all x ∈ [ak, bk], ak + (bk − ak)O1k( x−ak

bk−ak
, 1) = O1(x, bk) = x. We

conclude that fA(x) = x for all x ∈ [0, 1] and O1k has 1 as a neutral element, we can
get that O1 has the ordinal sum of the form of (15). �

By the propositions above and the conditions about whether I satisfying (NP) and
(OP), we have the following theorems.

Theorem 3.25. Let O1, O2 be two overlap functions, and I = (〈a, 1, I0〉) with a > 0
an ordinal sum implication given by (9) in Definition 2.5, respectively. If (O1, O2, I)
satisfies (7), and I0 satisfies (NP) and (OP), if and only if O1 = O2 = TM .

Theorem 3.26. Let O1, O2 be two overlap functions with 1 as a neutral element and
I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition 2.5. If I
satisfies neither (NP) nor (OP), i. e., for index set A, whenever |A| = 1, I = (〈a, 1, I0〉)
with a > 0 and I0 satisfies neither (NP) nor (OP), or whenever |A| > 1, there exists
k0 ∈ A such that bk0

= 1 and Ik0
does not satisfy (NP). O(x, y) = ak implies x = ak or

y = ak for all x, y ∈ [ak, 1], O(x, y) = bk implies x = bk or y = bk for all x, y ∈ [bk, 1],
O ∈ {O1, O2}. Then (O1, O2, I) satisfies (7), if and only if O1 is given by (15), O2 is
given by (16), and (O1k, O2k, Ik) satisfies (7), for all k ∈ A.

Example 3.27. (i) Let I = (〈 23 , 1, IGG〉), and O1 = O2 = TM . Then (TM , TM , IGG)
satisfies (7), and

I(x, y) =


2
3 + 1

3 ( 3y−2
3x−2 ) (x, y) ∈ [ 23 , 1]2, x > y,

1 x ≤ y,
y (x, y) ∈ [0, 1]2 \ [ 23 , 1]2, x > y.

I satisfies (NP) and (OP), it is easy to verify that (O1, O2, I) satisfies (7).

(ii) Let

I0(x, y) =

{
1 y = 1,

1− x y < 1.
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Then I0 is a fuzzy implication satisfies neither (NP) nor (OP), let I = (〈 35 , 1, I0〉),
O1 = (〈 35 , 1, OmM 〉) and O2 = TM . It is easy to verify that (OmM , TM , I0) satisfy (7).
In fact

I(x, y) =


8
5 − x (x, y) ∈ [ 35 , 1]× [ 35 , 1),

1 (x, y) ∈ [0, 1]2 \ [ 35 , 1]× [ 35 , 1) and x ≤ y,
y (x, y) ∈ [0, 1]2 \ [ 35 , 1]× [ 35 , 1) and x > y.

and

O1(x, y) =

{
3
5 + 2

5 min( 5x−3
2 , 5y−32 ) max(( 5x−3

2 )2, ( 5y−3
2 )2) (x, y) ∈ [ 35 , 1]2,

min(x, y) otherwise.

we can easily conclude that (O1, O2, I) satisfies (7) by Theorem 3.26.

In Example 3.27 (ii), we use OmM to induce O, but OmM is not associative, then O in
this case is not associative. Thus, the distributivity equation of ordinal sum implications
over t-norms and t-conorms is generalized.

The plots of fuzzy implication I and overlap function O1 in Example 3.27(ii) are given
in Figure 2 (a) and (b), respectively.

(a) (b)

Fig. 2. Plots of Example 3.27(ii).

3.4. Solution to I(x,G1(y, z)) = G2(I(x, y), I(x, z))

The analysis of this subsection is similar to that of Eq.(7). We will just list some results
and present some differences.

Proposition 3.28. (Qiao and Hu [33]) Let G1, G2 be two grouping functions, and
I be a fuzzy implication satisfying (NP) and (OP) in Eq.(8). Then the following are
equivalent.
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(i) G1 and G2 are the solution of Eq.(8).

(ii) G1 = G2 = SM .

Corollary 3.29. Let G1, G2 be two grouping functions, and I an ordinal sum implica-
tion given by (9) in Definition 2.5. If (G1, G2, I) satisfies (8), and I satisfies (NP) and
(OP), then G1 = G2 = SM .

Proposition 3.30. Let G be a grouping function with the neutral element 0, and I an
ordinal sum implication given by (9) in Definition 2.5. If G has an ordinal sum of the
form

G(x, y) =

{
ak + (bk − ak)Gk( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

max(x, y), otherwise,
(17)

where Gk is a family of grouping functions with 0 as a neutral element, then (G,G, I)
satisfies (8) if and only if (Gk, Gk, Ik) satisfies (8) for all k ∈ A.

Proposition 3.31. Let G1, G2 be two grouping functions with 0 as a neutral element
and I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition 2.5
satisfying (8). If I satisfies neither (NP) nor (OP), G(x, y) = ak implies x = ak or
y = ak for all x, y ∈ [0, ak], G(x, y) = bk implies x = bk or y = bk for all x, y ∈ [0, bk],
G ∈ {G1, G2}, then G1 and G2 have the ordinal sum of the forms as follows:

G1(x, y) =

{
ak + (bk − ak)G1k( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

max(x, y), otherwise,
(18)

G2(x, y) =

{
ak + (bk − ak)G2k( x−ak

bk−ak
, y−ak

bk−ak
), x, y ∈ [ak, bk],

max(x, y), otherwise,
(19)

where {G1k|k ∈ A} and {G2k|k ∈ A} are two families of grouping functions with 0 as a
neutral element.

By these conclusions and the propositions above whether I satisfies (NP) and (OP),
we have the following theorems.

Theorem 3.32. Let G1, G2 be two grouping functions, and I = (〈a, 1, I0〉) with a > 0
an ordinal sum implication given by (9) in Definition 2.5, respectively. If (G1, G2, I)
satisfies (8), and I0 satisfies (NP) and (OP), if and only if G1 = G2 = SM .

Theorem 3.33. Let G1, G2 be two grouping functions with 0 as a neutral element and
I = (〈ak, bk, Ik〉)k∈A an ordinal sum implication given by (9) in Definition 2.5. If I
satisfies neither (NP) nor (OP), i. e., for index set A, whenever |A| = 1, I = (〈a, 1, I0〉)
with a > 0 and I0 satisfies neither (NP) nor (OP), or whenever |A| > 1, there exists
k0 ∈ A such that bk0

= 1 and Ik0
does not satisfies (NP). G(x, y) = ak implies x = ak

or y = ak for all x, y ∈ [0, ak], G(x, y) = bk implies x = bk or y = bk for all x, y ∈ [0, bk],
G ∈ {G1, G2}. Then (G1, G2, I) satisfies (8), if and only if G1 is given by (18), G2 is
given by (19), and (G1k, G2k, Ik) satisfies (8), for all k ∈ A.
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4. CONCLUDING REMARKS

In this paper, we have studied the four distributive equations of a new class of ordinal
sum fuzzy implication proposed by Su et al. [37] with respect to two newly-born aggre-
gate operators, viz., overlap and grouping functions. Sufficient and necessary conditions
for ordinal sum implications satisfy (5) – (8) are given. This research will bring benefits
to the related fields such as approximate reasoning and fuzzy control. In the past year,
the research on the structure of ordinal sum of fuzzy implications and distributivity of
fuzzy implication over t-norms and t-conorms have made a lot of achievements. See
references [52, 53]. As a future work, we intend to focus on studying the distributivity
and conditional distributivity of the general ordinal sum implications over overlap and
grouping functions.
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