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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 4 , PAGES 6 8 8 – 7 1 3

SYMMETRIC IMPLICATIONAL RESTRICTION METHOD
OF FUZZY INFERENCE

Yiming Tang, Wenbin Wu, Youcheng Zhang, Witold Pedrycz, Fuji Ren
and Jun Liu

The symmetric implicational method is revealed from a different perspective based upon
the restriction theory, which results in a novel fuzzy inference scheme called the symmetric
implicational restriction method. Initially, the SIR-principles are put forward, which constitute
optimized versions of the triple I restriction inference mechanism. Next, the existential require-
ments of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved
from some properties of fuzzy implications. The conditions are obtained for the supremum to
become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are
provided, and it is shown that the new method is better than the triple I restriction method,
because the former is able to let the inference more compact, and lead to more and superior
particular inference schemes.

Keywords: fuzzy inference, fuzzy entropy, compositional rule of inference, continuity

Classification: 03B52, 94D05

1. INTRODUCTION

Fuzzy inference [8, 11, 14] is a process of inference from an imprecise set of premises to
a possible imprecise conclusion. In the human mind, the process of inference is often
approximate. For example, from the rule “if a tomato is red, then it is ripe” and the
premise “it is very red”, one can immediately conclude that “the tomato is very ripe”.
The essential problems of fuzzy inference are FMP (fuzzy modus ponens) and FMT
(fuzzy modus tollens) which assume the following forms:

FMP: for a rule A→ B and premise A∗, calculate B∗, (1)

FMT: for a rule A→ B and premise B∗, calculate A∗, (2)

where A,A∗ ∈ F (U) and B,B∗ ∈ F (V ) (F (U), F (V ) respectively represent the sets of
all fuzzy subsets of universes U , V ).

Focusing on these problems, the CRI (compositional rule of inference) method pre-
sented by Zadeh has become the most widely known strategy to acquire the solutions
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for (1) and (2) (see [5, 15, 33]). To make better such approach, Wang [30] proposed the
triple I method.

The solution to the triple I method was the smallest B∗ ∈ F (V ) (or the largest
A∗ ∈ F (U)) making

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) (3)

take its maximum for any u ∈ U, v ∈ V , in which→ denoted a fuzzy implication on [0,1].
Moreover it was extended to the α-triple I method, and corresponding ideal solution was
the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U)) letting

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) ≥ α (4)

hold (u ∈ U , v ∈ V , α ∈ (0, 1]). Later, for (4), starting from the opposite perspective
based on the restriction theory, Song et al. put forward the triple I restriction method
[19], which focused on the following formula (α ∈ (0, 1]):

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) < α, (5)

whose optimal solution was the largest B∗ ∈ F (V ) (or the smallest A∗ ∈ F (U)) such
that (5) holds (u ∈ U , v ∈ V ). The triple I restriction method has provided essential
theoretical basis to achieve index analyses of fuzzy controller [18].

Peng and Song et al. established the triple I restriction method, the restriction
method and the reverse triple I method (see [18, 19, 20]). Liu and Wang [10] gave a
unified form of the triple I restriction methods. Pei [23] presented the unified α-triple
I method employing R-implications. Dai et al. analyzed the robustness of the triple
I method and fully implicational restriction method [3]. Luo et al. presented a triple
I method based upon interval-valued fuzzy sets, and revealed its robustness [13]. To
sum up, the triple I method had many interesting and useful points (such as continuity,
robustness, logical foundation, see [12, 22, 23] for details). But, it was revealed that it
was not ideal from the angle of some fuzzy system, due to that it had weak response
ability and only generated a few useful fuzzy systems (see [6, 7, 9]).

In response to this problem, we reformulated the triple I method. In fact, the middle
implication in (3) reflected the “if-then” relation, while the first and third ones could be
thought of as the implication connective in logic system. In view of such idea, the triple
I method was developed to the symmetric implicational method in [27]. The symmetric
implicational method tries to go in quest of the smallest B∗ ∈ F (V ) (or the largest
A∗ ∈ F (U)) letting that

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v)), (6)

is maximized (u ∈ U, v ∈ V ), in which →1 and →2 can be distinct.
What is more, we established more comprehensive α-symmetric implicational strat-

egy, which came from (α ∈ [0, 1])

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v)) ≥ α. (7)

It was validated that the symmetric implicational method produced a sound inference
strategy (see [27, 28]).
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Inspired by the idea of the triple I restriction method, the key formula (7) of the
α-symmetric implicational mechanism can be analyzed from the opposite perspective
based upon the restriction theory, i. e., (α ∈ (0, 1])

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v)) < α. (8)

The fuzzy inference scheme constructed from (8) is said to be the symmetric implicational
restriction method.

The objective of this paper is to systematically investigate the symmetric implica-
tional restriction method. The originality of this work lies in three aspects. First,
the symmetric implicational framework is enriched from the angle of restriction theory.
Second, the SIR-principles for FMP and FMT are brought forward. Lastly, a uniform
mode of the ideal solutions of the novel method is built, which is distilled from some key
properties of fuzzy implications.

2. PRELIMINARIES

We briefly recall some prerequisites to make the paper self-contained.

Definition 2.1. (Klement et al. [15]) A mapping T : [0, 1]2 → [0, 1] is called a t-norm
if T is commutative, associative, increasing with the property T (1, x) = x (x ∈ [0, 1]).

Definition 2.2. (Baczyński and Jayaram [1]) A mapping [0, 1]2 → [0, 1] I is said to be
a fuzzy implication on [0, 1] when I has the following properties:

(C1) I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

(C2) I(a, b) is decreasing for a,

(C3) I(a, b) is increasing for b,

I(a, b) can be denoted as a→ b (a, b ∈ [0, 1]).

In the light of Definition 2.2,

(C4) I(0, a) = I(a, 1) = 1 (a ∈ [0, 1])

holds for any fuzzy implication I (noting I(0, 1) = 1 evidently holds).

Definition 2.3. (Novák et al.[17]) Suppose that T, I are two [0, 1]2 → [0, 1] mappings.
If the residual condition holds:

T (a, b) ≤ c ⇐⇒ b ≤ I(a, c) (a, b, c ∈ [0, 1]), (9)

then (T, I) is called a residual couple.

Definition 2.4. (Monserrat et al. [16]) A fuzzy implication I : [0, 1]2 → [0, 1] is called
an R-implication when there is a t-norm T making the following formula hold:

I(a, b) = sup{x ∈ [0, 1]| T (a, x) ≤ b}, a, b ∈ [0, 1]. (10)
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Lemma 2.5. (Fodor and Roubens [4], Wang and Fu [31]) If I is an R-implication with
left-continuous t-norm T , then I satisfies:

(C5) a ≤ b ⇐⇒ I(a, b) = 1,

(C6) I(1, a) = a,

(C7) I(a, I(b, c)) = I(b, I(a, c)),

(C8) I(T (a, b), c) = I(a, I(b, c)),

(C9) I(supx∈X x, a) = infx∈X I(x, a),

(C10) I(a, infx∈X x) = infx∈X I(a, x),

(C11) a ≤ I(b, c) ⇐⇒ b ≤ I(a, c),

in which a, b, c, x ∈ [0, 1] and X ⊂ [0, 1], X 6= ∅.

Since (C4) implies

{x ∈ [0, 1] | I(a, x) = 1} 6= ∅ (a ∈ [0, 1]),

one has Proposition 2.6 from [27].

Proposition 2.6. (Tang and Yang [27]) Suppose that I is a fuzzy implication satisfying

(C12) I(a, b) is right-continuous w.r.t. b,

then the mapping T : [0, 1]2 → [0, 1] expressed as

T (a, b) = inf{x ∈ [0, 1] | b ≤ I(a, x)}, a, b ∈ [0, 1]

is residual to I, and (10) holds.

Definition 2.7. (Wang and Zhou [32]) Suppose that F (Z) is the set of all fuzzy subsets
on a non-empty set Z, if

A ≤F B ⇐⇒ A(z0) ≤ B(z0), z0 ∈ Z, A,B ∈ F (Z),

then ≤F is said to be a partial order relation on F (Z).

Lemma 2.8. (Wang and Zhou [32]) 〈F (Z), ≤F 〉 is a complete lattice.

Example 2.9. (Klement et al. [15]) The following operations are all fuzzy implications
which satisfy (C12) (where a, b ∈ [0, 1], and x′ represents 1− x).

ILK(a, b) =

{
1, a ≤ b,
a′ + b, a > b,

IFD(a, b) =

{
1, a ≤ b,
a′ ∨ b, a > b, ([21]),

IGG(a, b) =

{
1, a ≤ b,
b/a, a > b,
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IGD(a, b) =

{
1, a ≤ b,
b, a > b,

IRC(a, b) = a′ + a× b,

IGR(a, b) =

{
1, a ≤ b,
0, a > b,

IKD(a, b) = a′ ∨ b,
IY G(a, b) = ba (IY G(0, 0) = 1),

IEP (a, b) =

{
1, a ≤ b,
(2b− ab)/(a+ b− ab), a > b, ([29]).

Furthermore, the mappings residual to ILK , IFD, IGG, IGD, IRC , IGR, IKD, IY G ,
IEP are:

TLK(a, b) =

{
a+ b− 1, a+ b > 1,

0, a+ b ≤ 1,

TFD(a, b) =

{
a ∧ b, a+ b > 1,

0, a+ b ≤ 1,

TGG(a, b) = a× b,
TGD(a, b) = a ∧ b,

TRC(a, b) =

{
(a+ b− 1)/a, a+ b > 1,

0, a+ b ≤ 1,

TGR(a, b) =

{
a, b > 0,

0, b = 0,

TKD(a, b) =

{
b, a+ b > 1,

0, a+ b ≤ 1,

TY G(a, b) =

{
a
√
b, a > 0,

0, a = 0,

TEP (a, b) = ab/[2− (a+ b− ab)].

3. THE SYMMETRIC IMPLICATIONAL RESTRICTION METHOD OF FMP

Turning in the direction of the FMP problem (1), from the angle of the symmetric
implicational idea and restriction mode, the following principle is provided:

SIR-Inference Principle for FMP: The conclusion B∗ (in 〈F (V ), ≤F 〉) of FMP (1)
is the largest fuzzy set which makes (8) hold.

Such principle improves the triple I restriction principle for FMP in [10, 19], due to
the fact that the symmetric implicational mechanism is superior over the triple I method.

Definition 3.1. Let A,A∗ ∈ F (U), B ∈ F (V ), if B∗ (in 〈F (V ), ≤F 〉) makes (8) hold
for any u ∈ U, v ∈ V , then B∗ is called a symmetric restriction solution of FMP.
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Definition 3.2. Suppose that A,A∗ ∈ F (U), B ∈ F (V ), and that the non-empty
set G is the set of all symmetric restriction solutions of FMP, and finally that D∗ (in
〈F (V ), ≤F 〉) is the supremum of G. Then D∗ is called a SIR-SupP-solution. And, if
D∗ is the maximum of G, then D∗ is also called a SIR-MaxP-solution.

Theorem 3.3. Let A,A∗ ∈ F (U), B ∈ F (V ), α ∈ (0, 1], and →1, →2 are two fuzzy
implications. Then there exists B∗ ∈ F (V ) as a symmetric restriction solution of FMP
iff

(A(u)→1 B(v))→2 (A∗(u)→1 0) < α (11)

holds for any u ∈ U, v ∈ V .

P r o o f . On the one hand, if (11) holds, then we take

B∗ ≡ 0,

obviously B∗ satisfies (8) and hence B∗ is a symmetric restriction solution of FMP.
On the other hand, if there exists B∗ ∈ F (V ) which is a symmetric restriction solution

of FMP, then B∗ satisfies (8), and since →1 satisfies (C3) we have that

A∗(u)→1 B
∗(v) ≥ A∗(u)→1 0,

and

α > (A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v))

≥ (A(u)→1 B(v))→2 (A∗(u)→1 0),

i. e. (11) holds. �

In a similar way Proposition 3.4 can be obtained.

Proposition 3.4. If C1 is a symmetric restriction solution of FMP, and C2 ≤F C1(in
which C1, C2 ∈ 〈F (V ), ≤F 〉). Then C2 is a symmetric restriction solution of FMP.

Remark 3.5. Suppose that (11) holds and C∗1 is any symmetric restriction solution of
FMP. By virtue of Proposition 3.4, each fuzzy set C∗2 satisfying

C∗2 ≤F C∗1 ,

is a symmetric restriction solution of FMP (where C∗1 , C
∗
2 ∈ 〈F (V ), ≤F 〉) ). As a result,

it can be found that there are lots of symmetric restriction solutions of FMP, which
incorporate

C∗3 (v) ≡ 0 (v ∈ V ).

C∗3 is a special case, due to that (8) holds from start to finish regardless of what A→1 B
and A∗ are employed. Consequently, when the ideal symmetric restriction solution of
FMP exists, it is better to be the supremum (or the largest one).
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Theorem 3.6. If →1,→2 are fuzzy implications satisfying (C12), and T1, T2 are the
functions residual to →1,→2, and (11) holds. Then the SIR-SupP-solution is as follow:

B∗(v) = inf
u∈U
{T1(A∗(u), T2(A(u)→1 B(v), α))}, v ∈ V. (12)

P r o o f . Let

G1 = {v ∈ V | B∗(v) = 0}, G2 = {v ∈ V | B∗(v) > 0}.

Suppose that C ∈ F (V ), and that C(v) = 0 for v ∈ G1, C(v) < B∗(v) for v ∈ G2. We
verify that C is a symmetric restriction solution of FMP, that is,

(A(u)→1 B(v))→2 (A∗(u)→1 C(v)) < α (13)

holds for any u ∈ U, v ∈ V .
If v ∈ G1, then we get from (11) that C(v) = 0 satisfies (13) for any u ∈ U .
If v ∈ G2, then we have from (12) and C(v) < B∗(v) that

C(v) < T1(A∗(u), T2(A(u)→1 B(v), α)) (14)

holds for any u ∈ U . Here the proof is carried out by contradiction. Assume that (13)
does not hold. Then there exist u0 ∈ U, v0 ∈ V making

(A(u0)→1 B(v0))→2 (A∗(u0)→1 C(v0)) ≥ α

hold (evidently v0 ∈ G2). Hence one has from the residual condition (9) that

T2(A(u0)→1 B(v0), α) ≤ A∗(u0)→1 C(v0),

and
T1(A∗(u0), T2(A(u0)→1 B(v0), α)) ≤ C(v0),

which contradicts (14). Thus (13) holds for any u ∈ U, v ∈ V . Therefore, C is a
symmetric restriction solution of FMP.

Moreover, we show that B∗ determined by (12) is the supremum of all symmetric
restriction solutions of FMP. Suppose that

D(v0) > B∗(v0).

We verify that D is not a symmetric restriction solution of FMP. Actually, one has from
(12) that there exists u0 ∈ U letting

D(v0) > T1(A∗(u0), T2(A(u0)→1 B(v0), α))

hold. It follows from (9) that

T2(A(u0)→1 B(v0), α) ≤ A∗(u0)→1 D(v0),

and
α ≤ (A(u0)→1 B(v0))→2 (A∗(u0)→1 D(v0)).

So D is not a symmetric restriction solution of FMP.
Summarizing above, B∗ expressed by (12) is the SIR-SupP-solution. �
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Proposition 3.7. Suppose that →2 is a fuzzy implication which satisfies (C12), and
that T2 is the mapping residual to→2, and that (11) holds, then the SIR-SupP-solution
is as follows (v ∈ V ):

(i) If →1 takes ILK , then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u) + T2(A(u)→LK B(v), α)− 1}.

(ii) If →1 takes IGD, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u) ∧ T2(A(u)→GD B(v), α)}.

(iii) If →1 takes IGG, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u)× T2(A(u)→GG B(v), α)}.

(iv) If →1 takes IFD, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u) ∧ T2(A(u)→FD B(v), α)}.

(v) If →1 takes IRC , then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{[A∗(u) + T2(A(u)→RC B(v), α)− 1]/A∗(u)}.

(vi) If →1 takes IGR, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u)}.

(vii) If →1 takes IKD, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{T2(A(u)→KD B(v), α)}.

(viii) If →1 takes IY G, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{T2(A(u)→Y G B(v), α)

1
A∗(u) }.

(ix) If →1 takes IEP , then the SIR-SupP-solution is B∗(v) = infu∈U{(A∗(u) ×
T2(A(u)→EP B(v), α))/(2− (A∗(u) + T2(A(u)→EP B(v), α)−A∗(u)× T2(A(u)→EP

B(v), α)))}.
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P r o o f . If →1∈ {ILK , IGD, IGG, IFD, IRC , IGR, IKD, IY G, IEP } and →2 is a fuzzy im-
plication which satisfies (C12), then it follows from Theorem 3.6, we have that the
SIR-SupP-solution is

B∗(v) = inf
u∈U
{T1(A∗(u), T2(A(u)→1 B(v), α))}, v ∈ V,

where T1, T2 are the functions residual to →1,→2.
Then we need to provide the specific expression of B∗. We show the case of ILK as

an example, the other cases can be verified in the same manner.
Let →1 take ILK . Note that TLK is the mapping residual to ILK .
It follows from (11) that we have

(A(u)→1 B(v))→2 (A∗(u)→1 0) < α,

which implies that
A∗(u) > 0

and
(A(u)→LK B(v))→2 (1−A∗(u)) < α (u ∈ U, v ∈ V ).

Following that,
α ≤ (A(u)→LK B(v))→2 (1−A∗(u))

does not hold. Then we have from the residual condition (9) that

T2(A(u)→LK B(v), α) ≤ 1−A∗(u)

does not hold. So one has that

T2(A(u)→LK B(v), α) > 1−A∗(u).

Then
A∗(u) + T2(A(u)→LK B(v), α) > 1.

Finally we obtain

B∗(v) = inf
u∈U
{TLK(A∗(u), T2(A(u)→LK B(v), α))}

= inf
u∈U
{A∗(u) + T2(A(u)→LK B(v), α)− 1} , v ∈ V.

�

Theorem 3.8. Under the same condition as Theorem 3.6, the condition which the
SIR-SupP-solution B∗ becomes the SIR-MaxP-solution, is shown in Table 1 (for any

u ∈ U ,v ∈ V ), where Ψ(u, v) = A∗(u)×T2(A(u)→EPB(v),α)
2−(A∗(u)+T2(A(u)→EPB(v),α)−A∗(u)×T2(A(u)→EPB(v),α)) .

P r o o f . If the SIR-SupP-solution B∗ is a symmetric restriction solution of FMP, then
it is evident that B∗ is the SIR-MaxP-solution (which B∗ lets (8) hold for any u ∈ U, v ∈
V ). The situations of ILK , IEP are proved through examples.
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→1 The SIR-SupP-solution B∗ The condition which B∗ is the SIR-MaxP-solution

ILK infu∈U
{
A∗(u) + T2(A(u) →LK B(v), α) − 1

} A∗(u) + T2(A(u) →LK B(v), α) >
infu∈U

{
A∗(u) + T2(A(u) →LK B(v), α)

}
IGD infu∈U

{
A∗(u) ∧ T2(A(u) →GD B(v), α)

}
A∗(u) ∧ T2(A(u) →GD B(v), α) > B∗(v)

IGG infu∈U
{
A∗(u) × T2(A(u) →GG B(v), α)

}
A∗(u) × T2(A(u) →GG B(v), α) > B∗(v)

IFD infu∈U
{
A∗(u) ∧ T2(A(u) →FD B(v), α)

}
A∗(u) ∧ T2(A(u) →FD B(v), α) > B∗(v)

IRC infu∈U
{
[A∗(u) + T2(A(u) →RC B(v), α) − 1]/A∗(u)

}
(A∗(u) + T2(A(u) →RC B(v), α) − 1)/A∗(u) > B∗(v)

IGR infu∈U
{
A∗(u)

}
A∗(u) > B∗(v)

IKD infu∈U
{
T2(A(u) →KD B(v), α)

}
T2(A(u) →KD B(v), α) > B∗(v)

IY G infu∈U{T2(A(u) →YG B(v), α)

1
A∗(u) } T2(A(u) →YG B(v), α)

1
A∗(u) > B∗(v)

IEP infu∈U {Ψ(u, v)} Ψ(u, v) > B∗(v)

Tab. 1. Some Conclusions of the Symmetric Implicational

Restriction Inference Algorithm of FMP.

(i) Let →1 employ ILK . We get from Theorem 3.6 that the SIR-MaxP-solution is

B∗(v) = inf
u∈U
{A∗(u) + T2(A(u)→LK B(v), α)− 1} .

In the light of the condition given in (i), we have (u ∈ U, v ∈ V )

B∗(v) = inf
u∈U
{A∗(u) + T2(A(u)→LK B(v), α)− 1}

= inf
u∈U
{A∗(u) + T2(A(u)→LK B(v), α)} − 1

< A∗(u) + T2(A(u)→LK B(v), α)− 1.

Note that
T2(A(u)→LK B(v), α)− 1 ≤ 0,

then
A∗(u) ≥ A∗(u) + T2(A(u)→LK B(v), α)− 1 > B∗(v)

holds. So
T2(A(u)→LK B(v), α) ≤ 1−A∗(u) +B∗(v)

does not hold, and thus we have from (9) that

α ≤ (A(u)→LK B(v))→2 (1−A∗(u) +B∗(v))

does not hold, then

α > (A(u)→LK B(v))→2 (1−A∗(u) +B∗(v)).

Consequently, one has (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v))

= (A(u)→1 B(v))→2 (1−A∗(u) +B∗(v))

< α.
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So B∗ lets (8) hold for any u ∈ U ,v ∈ V , and thus it is a symmetric restriction solution
of FMP. As a result, the SIR-SupP-solution B∗ becomes the SIR-MaxP-solution.

(ii) Let→1 take IEP . We get the SIR-SupP-solution B∗ from Theorem 3.6. According
to the condition provided in (ix), we have (u ∈ U, v ∈ V )

T2(A(u)→EP B(v), α) >
2B∗(v)−A∗(u)×B∗(v)

A∗(u) +B∗(v)−A∗(u)×B∗(v)
.

Thus

T2(A(u)→EP B(v), α) ≤ 2B∗(v)−A∗(u)×B∗(v)

A∗(u) +B∗(v)−A∗(u)×B∗(v)

does not hold, so

α ≤ (A(u)→EP B(v))→2

(
2B∗(v)−A∗(u)×B∗(v)

A∗(u) +B∗(v)−A∗(u)×B∗(v)

)
does not hold, one has

α > (A(u)→EP B(v))→2

(
2B∗(v)−A∗(u)×B∗(v)

A∗(u) +B∗(v)−A∗(u)×B∗(v)

)
.

From the condition provided in (ix), it is easy to find

0 <
T2(A(u)→EP B(v), α)

2− (A∗(u) + T2(A(u)→EP B(v), α)−A∗(u)× T2(A(u)→EP B(v), α))
< 1,

it follows that A∗(u) > B∗(v).

Summarizing above, we obtain (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v))

= (A(u)→1 B(v))→2

(
2B∗(v)−A∗(u)×B∗(v)

A∗(u) +B∗(v)−A∗(u)×B∗(v)

)
< α.

So B∗ makes (8) hold for any u ∈ U ,v ∈ V , and thus the SIR-SupP-solution B∗ becomes
the SIR-MaxP-solution. �

Example 3.9. Assume that (11) holds.

(i) If →1 takes IGD, and →2 takes IGG, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u) ∧ ((A(u)→GD B(v))× α)} .

(ii) If →1 takes ILK , and →2 takes IGG, then the SIR-SupP-solution is

B∗(v) = inf
u∈U
{A∗(u) + ((A(u)→LK B(v))× α)− 1} .
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P r o o f . (i) Suppose that →1 takes IGD, and →2 takes IGG. Note that TGD is the
function residual to IGD, and TGG is the function residual to IGG. Thus the SIR-SupP-
solution is

B∗(v) = inf
u∈U
{TGD(A∗(u), TGG(A(u)→1 B(v), α))}

= inf
u∈U
{TGD(A∗(u), (A(u)→1 B(v))× α))}

= inf
u∈U
{A∗(u) ∧ ((A(u)→GD B(v))× α)} .

(ii) Suppose that →1 takes ILK , and that →2 takes IGG. Note that TLK is the
function residual to ILK , and that TGG is the function residual to IGG. By (11), one
has that

A∗(u) > 0, A∗(u)→1 0 = 1−A∗(u),

1−A∗(u) < α× (A(u)→1 B(v)).

We further obtain that A∗(u) + (A(u)→1 B(v))×α > 1 holds for any u ∈ U, v ∈ V . So
the SIR-SupP-solution is

B∗(v) = inf
u∈U
{TLK(A∗(u), TGG(A(u)→1 B(v), α))}

= inf
u∈U
{TLK(A∗(u), (A(u)→1 B(v))× α)}

= inf
u∈U
{A∗(u) + ((A(u)→LK B(v))× α)− 1} .

�

Example 3.10. Let U = V = [0, 1], A(u) = (u + 3)/4, B(v) = (1 + 3v)/4, A∗(u) =
(2 − u)/2, α = 1/2, in which u ∈ U, v ∈ V . Suppose that →1= IGD, →2= IGG in
the symmetric restriction method of FMP. Here we show the computing process of the
SIR-SupP-solution.

To begin with, we have

A(u)→1 B(v) =

{
1 u+3

4 ≤ 1+3v
4

1+3v
4

u+3
4 > 1+3v

4

=

{
1 u ≤ 3v − 2

1+3v
4 u > 3v − 2

.

It is easy to verify that (11) holds.
Furthermore, we get from Example 3.9 that SIR-SupP-solution is as follows (v ∈ V ):

B∗(v) = inf
u∈U
{A∗(u) ∧ ((A(u)→GD B(v))× α)}

= inf
u∈[0,1]

{
2− u

2
∧ 1

2

∣∣∣u ≤ 3v − 2

}
∧

inf
u∈[0,1]

{
2− u

2
∧
(

1 + 3v

4
× 1

2

) ∣∣∣u > 3v − 2

}
.

It can be divided into three cases.
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(i) Suppose v = 1, then

1 ∈ {u ∈ [0, 1]|u ≤ 3v − 2},

{u ∈ [0, 1]|u > 3v − 2} = ∅.

Since 2−u
2 is decreasing w.r.t. u, we have

B∗(v) =
1

2
∧ (inf∅) =

1

2
∧ 1 =

1

2
.

(ii) Suppose 1 > v ≥ 2
3 , then

1 ∈ {u ∈ [0, 1]|u > 3v − 2}.

Since 2−u
2 is decreasing w.r.t. u, we have

B∗(v) =

(
2− (3v − 2)

2
∧ 1

2

)
∧
(

2− 1

2
∧ 1 + 3v

8

)
=

1

2
∧
(

1

2
∧ 1 + 3v

8

)
=

1 + 3v

8
.

(iii) Suppose 2
3 > v ≥ 0, then

{u ∈ [0, 1]|u ≤ 3v − 2} = ∅,

1 ∈ {u ∈ [0, 1]|u > 3v − 2}.

Thus we have

B∗(v) = (inf∅) ∧
(

2− 1

2
∧ 1 + 3v

8

)
= 1 ∧

(
1

2
∧ 1 + 3v

8

)
=

1 + 3v

8
.

To sum up, we have that the SIR-SupP-solution is as follows:

B∗(v) =
1 + 3v

8
.

Example 3.11. Let U, V,A,B,A∗, α take the same values in Example 3.10. Assume
that →1= IGG, →2= IGG in the symmetric restriction method of FMP, which degener-
ates into the triple I restriction method for FMP using IGG.

By doing a similar calculation, we obtain that the SIR-SupP-solution can be obtained
as follows:

B∗(v) =
1 + 3v

16
.
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Remark 3.12. On the one hand, aiming at the same U, V,A,B,A∗, α in Example 3.10
and Example 3.11, since

0 ≤ v ≤ 1⇒ 1 + 3v

8
>

1 + 3v

16
,

the SIR-SupP-solution (derived from the symmetric implicational restriction method)
in Example 3.10 is bigger than the optimal solution from the triple I restriction method
in Example 3.11. According to the idea of the SIR-principle for FMP (which finds the
largest one such that (8) holds), the symmetric implicational restriction method for
FMP in Example 3.10 can make the inference more compact, then it is better than
the triple I restriction method for FMP in Example 3.11. On the other hand, focusing
on the scope of {ILK , IGD, IGG, IFD, IRC , IGR, IKD, IY G, IEP }, from the symmetric
implicational restriction method we can get

9 ∗ 9 = 81

kinds of particular fuzzy inference strategies for FMP, in which →1,→2 respectively
take such 9 implications. However, from the triple I restriction inference method, it is
obvious that there are only 9 kinds of particular strategies for FMP. To sum up, the
symmetric implicational restriction method can give more and better specific strategies
than the triple I restriction method, and then it is superior over the latter.

4. THE SYMMETRIC IMPLICATIONAL RESTRICTION METHOD OF FMT

Facing up to the FMT problem (2), from the viewpoint of the symmetric implicational
idea and restriction mode, we can provide the following principle:

SIR-Inference Principle for FMT: The conclusion A∗ (in 〈F (U), ≤F 〉 ) of FMT
(2) is the smallest fuzzy set which makes (8) hold.

Such principle improves the triple I restriction inference principle for FMT in [10, 19],
since the symmetric implicational mechanism is better than the triple I method.

Definition 4.1. Let A ∈ F (U), B,B∗ ∈ F (V ), if A∗ (in 〈F (U), ≤F 〉 ) makes (8) hold
for any u ∈ U, v ∈ V , then A∗ is called a symmetric restriction solution of FMT.

Definition 4.2. Suppose that A ∈ F (U), B,B∗ ∈ F (V ), and that the non-empty
set F is the set of all symmetric restriction solutions of FMT, and finally that C∗ (in
〈F (U), ≤F 〉 ) is the infimum of F. Then C∗ is called a SIR-InfT-solution. And, if C∗ is
the minimum of F, then C∗ is also called a SIR-MinT-solution.

Theorem 4.3. Suppose that →1,→2 are two fuzzy implications, A ∈ F (U), B,B∗ ∈
F (V ), α ∈ (0, 1]. Then there exists an A∗ ∈ F (U) as a symmetric restriction solution of
FMT iff the following inequality holds for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (1→1 B
∗(v)) < α. (15)
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P r o o f . If (15) holds, then we take

A∗ ≡ 1,

obviously A∗ satisfies (8) and hence A∗ is a symmetric restriction solution of FMT.
Moreover, if there exists A∗ ∈ F (U) which is a symmetric restriction solution of

FMT, then A∗ satisfies (8). Because →1,→2 satisfy (C2) and (C3), one has that

A∗(u)→1 B
∗(v) ≥ 1→1 B

∗(v),

and
α > (A(u)→1 B(v))→2 (A∗(u)→1 B

∗(v))

≥ (A(u)→1 B(v))→2 (1→1 B
∗(v)),

i. e. (15) holds. �

Similar to Theorem 4.3, we can get Proposition 4.4.

Proposition 4.4. Suppose that C1 is a symmetric restriction solution of FMT, and
that C1 ≤F C2 (in which C1, C2 ∈ 〈F (U),≤F 〉).Then C2 is a symmetric restriction
solution of FMT.

Remark 4.5. Suppose that (15) holds and C∗1 is any symmetric restriction solution of
FMT. In the light of Proposition 4.4, each fuzzy set C∗2 which is larger than C∗1 , is a
symmetric restriction solution of FMT (in which C∗1 , C

∗
2 ∈ 〈F (U), ≤F 〉) ). Consequently,

there are lots of symmetric restriction solutions of FMT, which incorporate

C∗3 (u) ≡ 1 (u ∈ U).

C∗3 is a particular solution, since (8) holds from start to finish regardless of what A→1 B
and B∗ are employed. Therefore, if the optimal symmetric restriction solution of FMT
exists, then it should be the infimum (or the smallest one).

Theorem 4.6. If the fuzzy implication →1 satisfies (C11), and the fuzzy implication
→2 satisfies (C12), and T is the function residual to →2, and (15) holds. Then the
SIR-InfT-solution can be expressed as follows:

A∗(u) = sup
v∈V
{T (A(u)→1 B(v), α)→1 B

∗(v)}, u ∈ U. (16)

P r o o f . Because the fuzzy implication →2 satisfies (C12), the residual condition (9)
holds for →2. Let

H1 = {u ∈ U |A∗(u) = 1},
H2 = {u ∈ U |A∗(u) < 1}.

Assume that C ∈ F (U), and that C(u) = 1 for u ∈ H1, C(u) > A∗(u) for u ∈ H2.
We shall verify that C is a symmetric restriction solution of FMT, that is, the following
formula holds for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (C(u)→1 B
∗(v)) < α. (17)
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If u ∈ H1, then we have from (15) that C(u) = 1 satisfies (17) for any v ∈ V .
If u ∈ H2, then one has from (16) and C(u) > A∗(u) that

C(u) > T (A(u)→1 B(v), α)→1 B
∗(v) (18)

holds for any v ∈ V . We use the proof by contradiction. Assume that (17) does not
hold. Then there exist u0 ∈ U and v0 ∈ V making

(A(u0)→1 B(v0))→2 (C(u0)→1 B
∗(v0)) ≥ α

hold (evidently u0 ∈ H2). So we have from (9) that

T (A(u0)→1 B(v0), α) ≤ C(u0)→1 B
∗(v0),

and since (C11) holds for →1 we get

C(u0) ≤ T (A(u0)→1 B(v0), α)→1 B
∗(v0),

which contradicts (18). So (15) holds for any u ∈ U, v ∈ V . Consequently, C is a
symmetric restriction solution of FMT.

Furthermore, we prove that A∗ expressed by (16) is the infimum of symmetric re-
striction solution of FMT. Assume that

D(u0) < A∗(u0).

We prove that D is not a symmetric restriction solution of FMT. In fact, we have from
(16) that there exists v0 ∈ V such that

D(u0) < T (A(u0)→1 B(v0) , α)→1 B
∗(v0)

holds. Due to that (C11) holds for →1, it follows that

T (A(u0)→1 B(v0), α) ≤ D(u0)→1 B
∗(v0),

and the residual condition (9) holds for →2, so we have

α ≤ (A(u0)→1 B(v0))→2 (D(u0)→1 B
∗(v0))

Thus, D is not a symmetric restriction solution of FMT.
As a result, A∗ expressed by (16) is the infimum of symmetric restriction solution of

FMT, i. e., the SIR-InfT-solution. �

Proposition 4.7. If→2∈ {ILK , IGD, IGG, IFD, IRC , IGR, IKD, IY G, IEP }, and the fuzzy
implication →1 satisfies (C11) and (15) holds, then the SIR-InfT-solution is as follows
(u ∈ U):

(i) If →2 takes ILK , then

A∗(u) = sup
v∈V
{((A(u)→1 B(v)) + α− 1)→1 B

∗(v)}.
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(ii) If →2 takes IGD, then

A∗(u) = sup
v∈V
{((A(u)→1 B(v)) ∧ α)→1 B

∗(v)}.

(iii) If →2 takes IGG, then

A∗(u) = sup
v∈V
{((A(u)→1 B(v))× α)→1 B

∗(v)}.

(iv) If →2 takes IFD, then

A∗(u) = sup
v∈V
{((A(u)→1 B(v)) ∧ α)→1 B

∗(v)}..

(v) If →2 takes IRC , then A∗(u) = supv∈V {[((A(u) →1 B(v)) + α − 1)/(A(u) →1

B(v))]→1 B
∗(v)}.

(vi) If →2 takes IGR, then

A∗(u) = sup
v∈V
{(A(u)→1 B(v))→1 B

∗(v)}.

(vii) If →2 takes IKD, then

A∗(u) = sup
v∈V
{α→1 B

∗(v)}.

(viii) If →2 takes IY G, then

A∗(u) = sup
v∈V
{α

1
A(u)→1B(v) →1 B

∗(v)}.

(ix) If →2 takes IEP , then A∗(u) = supv∈V {((A(u) →1 B(v)) × α)/(2 − (A(u) →1

B(v))− α+ (A(u)→1 B(v))× α)→1 B
∗(v)}.

P r o o f . If →2∈ {ILK , IGD, IGG, IFD, IRC , IGR, IKD, IY G}, then it follows form Theo-
rem 4.6 that the SIR-InfT-solution is

A∗(u) = sup
v∈V
{T (A(u)→1 B(v), α)→1 B

∗(v)}, u ∈ U.

We prove the case of ILK as an example, the rest can be proved in the same way.
Suppose that →2 takes ILK . It follows from (15) that (u ∈ U, v ∈ V )

1 > B∗(v),
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→2 The SIR-InfT-solution A∗ The condition which A∗ is the SIR-MinT-solution

ILK supv∈V
{
((A(u) →1 B(v)) + α − 1) →1 B

∗(v)
}

((A(u) →1 B(v)) + α − 1) →1 B
∗(v) < A∗

IGD supv∈V {((A(u) →1 B(v)) ∧ α) →1 B
∗(v)} ((A(u) →1 B(v)) ∧ α) →1 B

∗(v) < A∗

IGG supv∈V
{
((A(u) →1 B(v)) × α) →1 B

∗(v)
}

((A(u) →1 B(v)) × α) →1 B
∗(v) < A∗

IFD supv∈V {((A(u) →1 B(v)) ∧ α) →1 B
∗(v)} ((A(u) →1 B(v)) ∧ α) →1 B

∗(v) < A∗

IRC supv∈V {
(A(u)→1B(v))+α−1

A(u)→1B(v)
→1 B

∗(v)} (A(u)→1B(v))+α−1
A(u)→1B(v)

→1 B
∗(v) < A∗

IGR supv∈V {(A(u) →1 B(v)) →1 B
∗(v)} (A(u) →1 B(v)) →1 B

∗(v) < A∗

IKD supv∈V {α →1 B
∗(v)} α →1 B

∗(v) < A∗

IY G supv∈V {α
1

A(u)→1B(v) →1 B
∗(v)} α

1
A(u)→1B(v) →1 B

∗(v) < A∗

IEP supv∈V
{
Φ(u, v) →1 B

∗(v)
}

Φ(u, v) →1 B
∗(v) < A∗

Tab. 2. Some Conclusions of the Symmetric Implicational

Restriction Inference Algorithm of FMT.

1− (A(u)→1 B(v)) + (1→1 B
∗(v)) < α.

We further obtain that (u ∈ U, v ∈ V )

(A(u)→1 B(v)) + α > 1.

Thus, we obtain (u ∈ U)

A∗(u) = sup
v∈V
{TLK(A(u)→1 B(v), α)→1 B

∗(v)}

= sup
v∈V
{((A(u)→1 B(v)) + α− 1)→1 B

∗(v)} .

�

Theorem 4.8. Under the same condition as Theorem 4.6, the condition which the
SIR-InfT-solution A∗ becomes the SIR-MinT-solution, is shown in Table 2 (for any

u ∈ U ,v ∈ V ), where Φ(u, v) = (A(u)→1B(v))×α
2−(A(u)→1B(v))−α+(A(u)→1B(v))×α .

P r o o f . If the SIR-InfT-solution A∗ is a symmetric restriction solution of FMT, then A∗

is the minimum of symmetric restriction solutions of FMT, i. e., the SIR-MinT-solution
(which A∗ should make (8) hold for any u ∈ U, v ∈ V ). We prove the cases of ILK , IGD
as examples.

(i) Let →2 take ILK . It follows from Proposition 4.7 that the SIR-InfT-solution is
(u ∈ U)

A∗(u) = sup
v∈V
{((A(u)→1 B(v)) + α− 1)→1 B

∗(v)}.

From the condition given in (i), we have (u ∈ U, v ∈ V )

A∗(u) > ((A(u)→1 B(v)) + α− 1)→1 B
∗(v).

From another angle,

A∗(u) ≤ ((A(u)→1 B(v)) + α− 1)→1 B
∗(v)
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does not hold. Note that →1 satisfies (C11), then one has that

(A(u)→1 B(v)) + α− 1 ≤ A∗(u)→1 B
∗(v)

does not hold. In other words,

(A(u)→1 B(v)) + α− 1 > A∗(u)→1 B
∗(v) (19)

holds (u ∈ U, v ∈ V ), and hence

A(u)→1 B(v) > A∗(u)→1 B
∗(v). (20)

To sum up, we obtain from (19) and (20) that (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v))

= 1− (A(u)→1 B(v)) + (A∗(u)→1 B
∗(v))

< α.

So A∗ lets (8) hold for any u ∈ U ,v ∈ V , and thus it is a symmetric restriction solution
of FMP. Consequently, the SIR-InfT-solution A∗ becomes the SIR-MinT-solution.

(ii) Let →2 take IGD. We have from Proposition 4.7 that the SIR-InfT-solution is
(u ∈ U)

A∗(u) = sup
v∈V
{((A(u)→1 B(v)) ∧ α)→1 B

∗(v)}.

From the condition given in (ii), we get (u ∈ U, v ∈ V )

A∗(u) > ((A(u)→1 B(v)) ∧ α)→1 B
∗(v).

Then
A∗(u) ≤ ((A(u)→1 B(v)) ∧ α)→1 B

∗(v)

does not hold. Because →1 satisfies (C11), one has that

(A(u)→1 B(v)) ∧ α ≤ A∗(u)→1 B
∗(v)

does not hold. In other words, we have (u ∈ U, v ∈ V )

(A(u)→1 B(v)) ∧ α > A∗(u)→1 B
∗(v) (21)

and thus
A(u)→1 B(v) > A∗(u)→1 B

∗(v), α > A∗(u)→1 B
∗(v). (22)

To sum up, we get from (21) and (22) that (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→1 B
∗(v))

= A∗(u)→1 B
∗(v) < α.

Thus A∗ makes (8) hold for any u ∈ U ,v ∈ V , and hence it is a symmetric restriction
solution of FMT. As a result, the SIR-InfT-solution A∗ becomes the SIR-MinT-solution.

�
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Example 4.9. Suppose that (15) holds.

(i) If →1 takes IGD, and →2 takes IGG, then the SIR-InfT-solution is

A∗(u) = sup
v∈V
{B∗(v)} .

(ii) If →1 takes ILK , and →2 takes IGG, then the SIR-InfT-solution is

A∗(u) = sup
v∈V
{1− (A∗(u)→LK B∗(v))× α+B∗(v)} .

P r o o f . (i) Suppose that→1 takes IGD, and that→2 takes IGG. Note that TGG is the
function residual to IGG. By (15), we have that

B∗(v)

A(u)→GD B(v)
< α.

Thus one has from Theorem 4.6 that the SIR-InfT-solution is as follows:

A∗(u) = sup
v∈V
{TGG(A(u)→1 B(v), α)→1 B

∗(v)}

= sup
v∈V
{((A(u)→GD B(v))× α)→GD B∗(v)}

= sup
v∈V
{B∗(v)} .

(ii) Suppose that →1 takes ILK , and that →2 takes IGG. By (15), one has that

B∗(v)

A(u)→LK B(v)
< α.

One further gets that the SIR-InfT-solution is

A∗(u) = sup
v∈V
{TGG(A(u)→1 B(v), α)→1 B

∗(v)}

= sup
v∈V
{((A(u)→LK B(v))× α)→LK B∗(v)}

= sup
v∈V
{1− (A(u)→LK B(v))× α+B∗(v)} .

�

Example 4.10. Suppose that U = V = [0, 1], A(u) = (3 − u)/4, B(v) = (2 + v)/4,
B∗(v) = (1− v)/4, α = 3/4, in which u ∈ U, v ∈ V . Assume that →1= ILK , →2= IGG
in the symmetric restriction method of FMT. Here we show the computing process of
the SIR-InfT-solution.

To begin with, we have

A(u)→1 B(v) = ILK(A(u), B(v))

=

{
1 3−u

4 ≤ 2+v
4

1− 3−u
4 + 2+v

4
3−u
4 > 2+v

4

=

{
1 u+ v ≥ 1

u+v+3
4 u+ v < 1

.
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Here (15) evidently holds.
Moreover, it is easy to verify that

(A(u)→1 B(v))× α > B∗(v).

Then it follows from Proposition 4.7 that the SIR-InfT-solution is as follows (v ∈ V ):

A∗(u) = sup
v∈V
{((A(u)→1 B(v))× α)→1 B

∗(v)}

= sup
v∈[0,1]

{
1− ((A(u)→1 B(v))× α) +B∗(v)

∣∣∣ u+ v < 1
}
∨

sup
v∈[0,1]

{
1− ((A(u)→1 B(v))× α) +B∗(v)

∣∣∣ u+ v ≥ 1
}

= sup
v∈[0,1]

{
1− 3× (3 + u+ v)

4× 4
+

1− v
4

∣∣∣ u+ v < 1
}
∨

sup
v∈[0,1]

{
1− 3

4
+

1− v
4

∣∣∣ u+ v ≥ 1
}

= sup
v∈[0,1]

{11− 3u− 7v

16

∣∣∣ u+ v < 1
}
∨

sup
v∈[0,1]

{2− v
4

∣∣∣ u+ v ≥ 1
}
.

It can be divided into two situations.

(i) Suppose u = 1, then {v ∈ [0, 1] | u+ v < 1} = ∅, and

0 ∈ {v ∈ [0, 1] | u+ v ≥ 1}.

Since 2−v
4 is decreasing w.r.t. v, we get

A∗(u) = sup∅ ∨ 2

4
= 0 ∨ 2

4
=

1

2
.

(ii) Suppose 1 > u ≥ 0, then

0 ∈ {v ∈ [0, 1] | u+ v < 1}.

Because 11−3u−7v
16 , 2−v

4 are decreasing w.r.t. v, we have

A∗(u) =
11− 3u

16
∨ 2− (1− u)

4
=

11− 3u

16
.

To sum up, we obtain that SIR-InfT-solution is:

A∗(u) =
11− 3u

16
.
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Example 4.11. Let U, V,A,B,B∗, α employ the same values in Example 4.10. As-
sume that →1= ILK , →2= ILK in the symmetric restriction method of FMT, which
degenerates into the triple I restriction method for FMT using ILK .

A similar calculation is performed, then we achieve that the SIR-InfT-solution is as
follows:

A∗(u) =
3− u

4
.

Remark 4.12. For one thing, aiming at the same U, V,A,B,B∗, α in Example 4.10 and
Example 4.11, because

u = 1⇒ 11− 3u

16
=

3− u
4

,

0 ≤ u < 1⇒ 11− 3u

16
<

3− u
4

,

the SIR-InfT-solution from the symmetric implicational restriction method in Example
4.10 is smaller than the optimal solution from the triple I restriction method in Example
4.11. From the angle of SIR-principle for FMT (which tries to find the smallest one such
that (8) holds), the symmetric implicational restriction method for FMT in Example
4.10 lets the inference closer, then it is more reasonable than the triple I restriction
method for FMT in Example 4.11. For another, in the environment of {ILK , IGD,
IGG, IFD, IRC , IGR, IKD, IY G, IEP }, the symmetric implicational restriction method can
lead to 9 ∗ 9 = 81 kinds of particular fuzzy inference strategies for FMT, while the triple
I restriction inference method only can result in 9 kinds. In summary, the symmetric
implicational restriction method can generate more and better specific strategies than
the triple I restriction method, and thus it performs better than the latter.

The symmetric implicational restriction method is different from the symmetric im-
plicational method to a large extent. Taking into consideration that the α-symmetric
implicational method is a generalization of the basic symmetric implicational method,
here we show the major differences between the α-symmetric implicational method and
the symmetric implicational restriction method. First, the fundamental idea is different.
The idea of the α-symmetric implicational method is derived from (4). However, the
idea of the symmetric implicational restriction method comes from (5). Second, the
existing condition of basic solution is disparate. For this point, the symmetric implica-
tional restriction method needs (11) for FMP and (15) for FMT. But there are no such
harsh conditions for the symmetric implicational method. Third, the optimal solution
is different. The SIR-SupP-solution of the symmetric implicational restriction method
is expressed as (12) for FMP (noting that the condition (11) demands to be satisfied
in advance) and the SIR-InfT-solution is expressed as (16) for FMT (noting that the
condition (15) needs to be satisfied ahead of time). But the optimal solution of the
symmetric implicational method is different (see Theorem 5.2, Theorem 5.4, Theorem
5.5 in [27]), in which the conditions (11) and (15) are not demanded. Note that the
idea of proving process is also disparate. Lastly, the symmetric implicational restriction
method needs special condition which lets the supremum to become the maximum (or
the infimum to be the minimum). But such condition is not required for the symmetric
implicational method.
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It is important to emphasize that fuzzy reasoning is unlikely to solve all problems in
a method. In fact, each method often has its own unique advantages. Aiming at the
symmetric implicational restriction method and the symmetric implicational method, it
is difficult to say which one is better, because both approaches have different advantages.
At the same time, it is not possible to replace one directly with the other.

As for the symmetric implicational method, its idea is basically in the same line as
the CRI method and the triple I method. Of course, compared with the triple I method,
the symmetric implicational method forms a more optimal inference strategy from the
dual perspectives of logical system and inference model. Moreover, the symmetric im-
plicational method also has a solid logical basis. To be specific, Dai [2] established a
predicate formal representation of the solution for the symmetric implicational method
on account of a formal logic system, which has offered a sound logic foundation for the
symmetric implicational method.

As for the symmetric implicational restriction method, its idea comes from the re-
verse thinking of the symmetric implicational method. The special advantages of the
symmetric implicational restriction method are further explained here. In practical ap-
plication, when we investigate the universal approximation problem for a fuzzy system
constructed by the symmetric implicational method, the phenomenon of rule explosion
often appears. To alleviate such tough problem, the highlight of restriction idea is that
the number of elements in the fuzzy rule base can be greatly reduced in the given pre-
cision when designing fuzzy rules and corresponding fuzzy system [18, 19]. This is also
the key advantage of the symmetric implicational restriction method. In addition, the
research results of the symmetric implicational restriction method can further improve
and enrich the theory system of fuzzy inference, which is able to provide the necessary
theoretical basis for the study of performance indexes of new fuzzy controllers.

5. CONCLUSIONS

The symmetric implicational restriction method is put forward and studied with em-
phasis on the following points.

(i) We propose the SIR-principles, which form optimized versions of the triple I
restriction principles.

(ii) We give the existential requirement of basic solutions of the symmetric implica-
tional restriction method.

(iii) We achieve the supremum (or infimum) of the symmetric implicational restriction
solutions for FMP (or FMT) from some properties of fuzzy implications. We show
conditions for the supremum to be the maximum (or, the infimum to be the minimum).

(iv) We provide four concrete computing examples. We draw the conclusion that
the symmetric implicational restriction method is superior over the triple I restriction
method, because the former is able to make the inference more compact from the angle
of SIR-principles (which find the optimal fuzzy set such that (8) holds), and lead to
more and better particular inference schemes.

In future studies it is worth focusing on the symmetric implicational restriction
method being considered from the perspective of fuzzy system. Moreover, one may
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extend it to granular fuzzy inference strategy by fusing the idea of granular computing
(see [24, 25, 26]).
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