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Abstract. We combine the techniques of sequence spaces and general Orlicz functions
that are broader than the classical cases of N-functions. We give three criteria for the
weakly compact sets in general Orlicz sequence spaces. One criterion is related to ele-
ments of dual spaces. Under the restriction of lim

u→0
M(u)/u = 0, we propose two other

modular types that are convenient to use because they get rid of elements of dual spaces.
Subsequently, by one of these two modular criteria, we see that a set A in Riesz spaces lp
(1 < p < ∞) is relatively sequential weakly compact if and only if it is normed bounded, that

says sup
u∈A

∞∑

i=1
|u(i)|p < ∞. The result again confirms the conclusion of the Banach-Alaoglu

theorem.

Keywords: compact set; weak topology; Banach space; dual space; Orlicz sequence spaces

MSC 2020 : 46E30, 46B20

1. Introduction and preliminaries

Since the inception of the study of Banach spaces, one of the main topics has been

the study of compactness. A set A in a topological space X is called compact if any

cover of open sets for A has a finite subcover; sequentially compact if any sequence

of A has a convergent subsequence; countably compact if any countable subset of A

has a cluster point in A, see [15]. The three compact types coincide if the topology

is metrizable.
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These types of compactness play important roles not only in theory but also in

practical applications. In 1880s, Arzelà-Ascoli’s criterion was given for a compact

set in a continuous function space, see [3]. Kolmogorov’s criterion and Riesz’s cri-

terion for a compact set were given in Riesz function spaces and Orlicz function

spaces, see [1], [17]. In 1912, Brouwer gave a fixed point theorem in compact settings

(see [5]), which led to a broad and thorough development, see [6], [7]. Since then

Brouwer’s fixed point theorem has been a powerful tool in many theoretical and

applied fields, see [8], [12], [16], [18]. A significant contribution was made by Eber-

lein and Smulian who proved that for the weak topology over a normed space, the

three types of compactness coincide, see [14], [23]. James gave a powerful criterion

for a weakly compact set in Banach spaces related to attainable functional and

reflexivity, see [13].

Orlicz spaces are the extensions of Riesz spaces that have been widely adopted in

recent years, especially in nonlinear problems, see [19]. In 1962, Andô gave criteria

for weakly σ(LM , LN )-compact sets in the Orlicz function space, see [2]. In 1982,

Wu studied normed compact sets and weakly compact sets in the same spaces in

general sense, see [24]. In 1997, Zhang and Shi gave a criterion for normed compact

sets in the Orlicz sequence space, see [26]. In 2009, Montesinos investigated the weak

compactness in L1 (using different techniques), see [10]. We refer the reader to the

surveys in [4], [9], [14], [20] for an outline of the development and applications of this

theory. This paper contributes to the literature on the criterion for weak compactness

of Orlicz sequence spaces. We combine the techniques and ideas of sequence spaces

and Orlicz functions that are much different from N -functions, see [17]. In the end,

we also give some criteria which are convenient to use.

In the following part of Section 1 of the paper, we illustrate basic notions, ter-

minology, and original results. In Section 2, some criteria of weak compactness are

presented.

Let X be a real Banach space, and let B(X) and S(X) be the closed unit ball

and the unit sphere of X , respectively. By X∗ we denote the dual space of X . In

the sequel, N and R denote the set of natural numbers and the set of real numbers,

respectively. M : R → [0,∞], where the∞ value may be possible, is called an Orlicz

function if M is vanishing and continuous at zero, convex, even, left continuous

on (0,∞) and not identically equal to zero on (−∞,∞). Let p(u) be the right-

side derivative of M(u). For every Orlicz function M , we define the complementary

function N : R → [0,∞] by the formula

N(v) = sup{u|v| −M(u) : u > 0}.

The complementary function N is also an Orlicz function. Let q(v) be the right-side

derivative of N(v). Young’s inequality uv 6 M(u) +N(v) (u, v ∈ R) holds and the
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equality in Young’s inequality applies if and only if v = p(u) or u = q(v), see [21].

For a given Orlicz function M and a scalar sequence u = (u(1), u(2), . . .), we define

a convex function by

̺
M
(u) = ̺

M
(|u|) =

∞
∑

i=1

M(|u(i)|),

where |u| = (|u(1)|, |u(2)|, . . . , |u(i)|, . . .). We introduce the Orlicz sequence space l
M

generated by an Orlicz function M by the formula

lM = {u : ̺M (λu) < ∞ for some λ > 0 depending on u}.

This family is linear and is usually equipped with one of the two following equivalent

norms:

⊲ the Luxemburg norm defined by:

‖u‖(M) = inf
{

λ > 0: ̺Φ

(u

λ

)

6 1
}

⊲ or the Orlicz norm defined by:

‖u‖M = sup
̺N (v)61

∞
∑

i=1

u(i)v(i).

It forms a Banach space which is called an Orlicz sequence space, denoted by

l(M) = (lM , ‖·‖(M)), lM = (lM , ‖·‖M ).

Let h0 = {u = (u(1), . . . , u(i), 0, . . .) : i = 1, 2, . . .}. The closure of h0 in l(M) or lM

is denoted by h(M) or hM , respectively. Further details about Orlicz spaces can be

found in [11], [22].

Below we recall the basic facts about Orlicz sequence spaces that will be used in

this paper. The proofs can be found in [22].

Lemma 1.1 ([22]). For all u ∈ l(M),

(1) ‖u‖(M) 6 1 if and only if ̺
M
(u) 6 1;

(2) ‖u‖(M) 6 ‖u‖M 6 2‖u‖(M);

(3) ‖u‖(M) 6 1 implies ̺
M
(u) 6 ‖u‖(M).

Lemma 1.2 ([22]). Hölder’s inequality:

∞
∑

i=1

|u(i)||v(i)| 6 ‖u‖(M)‖v‖N (u ∈ l(M), v ∈ lN ),

∞
∑

i=1

|u(i)||v(i)| 6 ‖u‖M‖v‖(N) (u ∈ lM , v ∈ l(N)).
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Lemma 1.3 ([22]). Representation of Riesz type. In the Orlicz sequence space,

h∗
(M)

∼= lN , h∗
M

∼= l(N),

where 〈u, v〉 =
∞
∑

i=1

u(i)v(i) for all u ∈ h(M), v ∈ lN or u ∈ hM , v ∈ l(N).

2. Main results

We recall that a set A is said relatively (sequentially, countably) compact in a topo-

logical space if the closure ofA is (sequentially, countably) compact. In the sequel, we

assume A 6= {θ} because it is trivial to discuss the compactness of a singleton set A.

Theorem 2.1 ([25]). For a set A in an Orlicz sequence space l(M), A is relatively

sequentially weakly σ(l(M), lN )-compact if and only if

(1) A is normed bounded,

(2) for each v ∈ lN

lim
I→∞

sup
u∈A

∞
∑

i=I

|u(i)||v(i)| = 0.

P r o o f. Sufficiency: Since l(M) is the dual space of hN (see [22]), we have that the

normed bounded A is w∗-compact according to the Banach-Alaoglu theorem. That

says, A is relatively weakly σ(l(M), hN)-compact. Since hN is normed seperable

(see [17], [22]), the w∗-topology on A can be metrizable, thus the bounded set A is

relatively sequentially weakly σ(l(M), hN )-compact. We obtain that for any sequence

un ∈ A, there exist u ∈ lM and a subsequence unk
such that unk

→ u σ(l(M), hN )-

weakly. Moreover, unk
(i) → u(i) for all natural numbers i.

For each v ∈ lN and for any positive number ε, by the condition (2), we have

a natural number I0 such that

sup
u∈A

∞
∑

i=I0

|u(i)v(i)| <
ε

4
.

By Hölder’s inequality,
∞
∑

i=1

|u(i)||v(i)| < ∞, there exists a natural number I1 > I0

such that
∞
∑

i=I1

|u(i)v(i)| <
ε

4
.

From unk
(i) → u(i) for all natural numbers i, we have a natural number k0 such

that for all k > k0
I1
∑

i=1

|(unk
− u)(i)||v(i)| <

ε

4
.
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Therefore, for all k > k0

|〈v, unk
− u〉| =

∣

∣

∣

∣

∞
∑

i=1

(unk
(i)− u(i))v(i)

∣

∣

∣

∣

=

∣

∣

∣

∣

I1
∑

i=1

(unk
− u)(i)v(i) +

∞
∑

i=I1+1

(unk
− u)(i)v(i)

∣

∣

∣

∣

6

∣

∣

∣

∣

I1
∑

i=1

(unk
− u)(i)v(i)

∣

∣

∣

∣

+

∣

∣

∣

∣

∞
∑

i=I1+1

(unk
− u)(i)v(i)

∣

∣

∣

∣

6

I1
∑

i=1

|(unk
− u)(i)||v(i)|+

∞
∑

i=I1+1

|(unk
− u)(i)||v(i)|

6

I1
∑

i=1

|(unk
− u)(i)||v(i)|+

∞
∑

i=I1+1

|unk
(i)||v(i)|+

∞
∑

i=I1+1

|u(i)||v(i)|

6

I1
∑

i=1

|(unk
− u)(i)||v(i)|+ sup

u∈A

∞
∑

i=I0

|u(i)v(i)|+
∞
∑

i=I1+1

|u(i)||v(i)|

6
ε

4
+

ε

4
+

ε

4
< ε.

It follows that for all v ∈ lN , 〈v, unk
− u〉 → 0, that says, A is relatively sequentially

weakly σ(l(M), lN )-compact.

Necessity: At first, A is relatively sequentially weakly σ(l(M), lN)-compact implies

that A is σ(l(M), lN )-bounded and by the Banach all bounded principle, we get (1),

i.e., A is normed bounded.

Next we prove (2), i.e., for all v ∈ lN

lim
I→∞

sup
u∈A

∞
∑

i=I

|u(i)||v(i)| = 0.

Otherwise, for some v ∈ lN and positive ε0, there must exist a strictly increasing

sequence of natural numbers In such that

sup
u∈A

∞
∑

i=In

|u(i)v(i)| > ε0.

We take un ∈ A such that
∞
∑

i=In

|un(i)v(i)| > ε0.

Since A is relatively sequentially weakly σ(l(M), lN )-compact, we deduce that the

sequence {un} has a subsequence and we still write {un} for simplicity. For this sub-

sequence, there is u ∈ lM such that un → u σ(l(M), lN )-weakly. Then un(i) → u(i)
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for all natural numbers i. By Hölder’s inequality, we see that
∞
∑

i=1

|u(i)||v(i)| 6

‖u‖(M)‖v‖N < ∞. So there is a natural number I ′ such that

∞
∑

i=I′

|u(i)||v(i)| 6
ε0
2
.

Thus for all In > I ′,

∞
∑

i=In

|(un(i)− u(i))v(i)| >

∞
∑

i=In

|un(i)v(i)| − |u(i))v(i)|

=

∞
∑

i=In

|un(i)v(i)| −

∞
∑

i=In

|u(i)v(i)| > ε0 −
ε0
2

=
ε0
2
.

For simplicity, we write un − u as wn. Then for all natural numbers n,

∞
∑

i=In

|wn(i)v(i)| >
ε0
2
.

Since wn is σ(l(M), lN)-weakly convergent to θ, we see that wn(i) → 0 for all natural

numbers i.

By Hölder’s inequality,
∞
∑

i=1

|w1(i)||v(i)| < ∞. We write I1 = 0 and we take a nat-

ural number I ′1 > I1 such that
∞
∑

i=I′

1
+1

|w1(i)||v(i)| <
1
8ε0. We write wn1

= w1 and we

have

I′

1
∑

i=I1+1

|wn1
(i)||v(i)| =

∞
∑

i=I1+1

|w1(i)||v(i)| −

∞
∑

i=I′

1
+1

|w1(i)||v(i)|

>
ε0
2

−
ε0
8

=
3ε0
8

.

Since wn(i) → 0 for all natural numbers i, we take a natural number n2 such that

In2
> I ′1,

I′

1
∑

i=1

|wn2
(i)||v(i)| < 1

8ε0.

By Hölder’s inequality,
∞
∑

i=1

|wn2
(i)||v(i)| < ∞. We take a natural number I ′n2

> In2

such that
∞
∑

i=I′

n2
+1

|wn2
(i)||v(i)| < 1

8ε0, then

I′

n2
∑

i=I′

n1
+1

|wn2
(i)v(i)|=

In2
∑

i=I′

n1
+1

|wn2
(i)v(i)|+

I′

n2
∑

i=In2
+1

|wn2
(i)v(i)|>

I′

n2
∑

i=In2
+1

|wn2
(i)v(i)|

=

∞
∑

i=In2
+1

|wn2
(i)v(i)| −

∞
∑

i=I′

n2
+1

|wn2
(i)v(i)|>

ε0
2

−
ε0
8
>

3ε0
8

.
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In the induction procedure, since wn(i) → 0 for all natural numbers i, we take

a natural number nk such that Ink
> I ′nk−1

and

I′

n
k−1
∑

i=1

|wnk
(i)||v(i)| <

ε0
8
.

By Hölder’s inequality,
∞
∑

i=1

|wnk
(i)||v(i)| < ∞. We take a natural number I ′nk

> Ink

such that
∞
∑

i=I′

n
k
+1

|wnk
(i)||v(i)| <

ε0
8
.

Then we have

I′

n
k

∑

i=I′

n
k−1

+1

|wnk
(i)v(i)|=

In
k

∑

i=I′

n
k−1

+1

|wnk
(i)v(i)|+

I′

n
k

∑

i=In
k
+1

|wnk
(i)v(i)|>

I′

n
k

∑

i=In
k
+1

|wnk
(i)v(i)|

=

∞
∑

i=In
k
+1

|wnk
(i)v(i)| −

∞
∑

i=I′

n
k
+1

|wnk
(i)v(i)|>

ε0
2

−
ε0
8
=

3ε0
8

.

We set ṽ(i) = |v(i)| signwnk
(i) as I ′nk−1

< i 6 I ′nk
, where I ′n0

= 0. Obviously,

|ṽ(i)| = |v(i)| for all i. Since lN is symmetric, we get ṽ ∈ lN . But for all k,

〈ṽ, wnk
〉 =

∞
∑

i=1

wnk
(i)ṽ(i)

=

I′

n
k−1
∑

i=1

wnk
(i)ṽ(i) +

I′

n
k

∑

i=I′

n
k−1

+1

wnk
(i)ṽ(i) +

∞
∑

i=I′

n
k
+1

wnk
(i)ṽ(i)

=

I′

n
k−1
∑

i=1

wnk
(i)ṽ(i) +

I′

n
k

∑

i=I′

n
k−1

+1

|wnk
(i)||v(i)|+

∞
∑

i=I′

n
k
+1

wnk
(i)ṽ(i)

> −

I′

n
k−1
∑

i=1

|wnk
(i)ṽ(i)|+

I′

n
k

∑

i=I′

n
k−1

+1

|wnk
(i)||v(i)| −

∞
∑

i=I′

n
k
+1

|wnk
(i)ṽ(i)|

=

I′

n
k

∑

i=I′

n
k−1

+1

|wnk
(i)||v(i)| −

I′

n
k−1
∑

i=1

|wnk
(i)ṽ(i)| −

∞
∑

i=I′

n
k
+1

|wnk
(i)v(i)|

>
3ε0
8

−
ε0
8

−
ε0
8

=
ε0
8
.

This is a contradiction with that wn is σ(l(M), lN)-weakly convergent to θ. It ends

the proof. �
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If a set A is sequentially weakly σ(l(M), lN)-compact, A is σ(l(M), lN )-closed. We

have immediately:

Corollary 2.2 ([25]). Given a set A in an Orlicz sequence space l(M), A is se-

quentially weakly σ(l(M), lN)-compact if and only if

(1) A is σ(l(M), lN )-closed,

(2) A is normed bounded,

(3) for each v ∈ lN

lim
I→∞

sup
u∈A

∞
∑

i=I

|u(i)||v(i)| = 0.

Next, we give a modular criterion, which gets rid of the elements of lN of Theo-

rem 2.1 and is easier to use.

Theorem 2.3 ([2], [25]). Given lim
u→0

M(u)/u = 0, a set A in an Orlicz sequence

space l(M) is relatively sequentially weakly σ(l(M), lN )-compact if and only if

lim
ξ→0

sup
u∈A

̺
M
(ξu)

ξ
= 0.

P r o o f. Sufficiency: It is enough to show that the conditions (1) and (2) of

Theorem 2.1 hold. As lim
ξ→0

sup
u∈A

̺M (ξu)/ξ = 0, we take 0 < ξ1 6 1 such that

sup
u∈A

̺M (ξ1u)/ξ1 6 1. Then sup
u∈A

̺
M
(ξ1u) 6 ξ1 6 1. By Lemma 1.1, sup

u∈A

‖ξ1u‖(M) 6 1,

sup
u∈A

‖u‖(M) 6 1/ξ1. We get that (1) holds, i.e., A is normed bounded.

For each v ∈ lN , by the definition of lN , we take a positive number λ with

̺
N
(λv) < ∞. For any ε > 0, by the given condition, there exists a positive number ξ

such that

sup
u∈A

̺
M
(ξu)

ξ
<

λε

2
.

We take a natural number I0 such that
∞
∑

i=I0+1

N(λv(i)) < 1
2λξε. Then for all u ∈ A

and all natural numbers I > I0

∞
∑

i=I

|u(i)v(i)|6
∞
∑

i=I0

|u(i)v(i)|=
1

ξλ

∞
∑

i=I0

ξ|u(i)|λ|v(i)|6
1

ξλ

∞
∑

i=I0

M(ξ|u(i)|) +N(λ|v(i)|)

=
1

ξλ

∞
∑

i=I0

M(ξu(i)) +
1

ξλ

∞
∑

i=I0

N(λv(i))

6
1

ξλ
̺

M
(ξu(i)) +

1

ξλ

∞
∑

i=I0

N(λv(i))<
ε

2
+

ε

2
=ε.
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Hence, (2) of Theorem 2.1 holds:

lim
I→∞

sup
u∈A

∞
∑

i=I

|u(i)v(i)| = 0.

Combing (1) and (2), by Theorem 2.1 we get that A is relatively sequentially weakly

σ(l(M), lN )-compact.

Necessity: We will prove that

lim
ξ→0

sup
u∈A

̺
M
(ξu)

ξ
= 0.

Otherwise, there exists a positive number ε0 such that

inf
ξ>0

sup
u∈A

̺M (ξu)

ξ
= lim

ξ→0
sup
u∈A

̺M (ξu)

ξ
> ε0,

where the identity holds due to M(u)/u being nondecreasing. We take un ∈ lM such

that for each natural number n

̺
M

( un

2n+1

)

2n+1 > ε0.

From Young’s inequality [17], we see that

N
(

p
(un(t)

2n+1

))

6 N
(

p
(un(t)

2n+1

))

+M
(un(t)

2n+1

)

6 M
(

2
un(t)

2n+1

)

.

By Lemma 1.1, we have that for each n

̺
N

(

p
( un

2n+1

))

6 ̺
M

(

2
un

2n+1

)

6 2
1

2n+1
̺

M
(un) 6 2

1

2n+1
=

1

2n
.

We set

v(i) = sup
n

p
(un(i)

2n+1

)

, i = 1, 2, . . .

By the left continuity of an Orlicz function N , we have

̺
N
(v) =

∞
∑

i=1

N(v(i)) =

∞
∑

i=1

N
(

sup
n

p
(un(i)

2n+1

))

=

∞
∑

i=1

sup
n

N
(

p
(un(i)

2n+1

))

6

∞
∑

i=1

∞
∑

n=1

N
(

p
(un(i)

2n+1

))

=

∞
∑

n=1

∞
∑

i=1

N(p
(un(i)

2n+1

)

6

∞
∑

n=1

̺
N

(

p
( un

2n+1

))

6

∞
∑

n=1

1

2n
= 1.
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Now v is well defined and v ∈ lN . SinceA is relatively sequentially weakly σ(l(M), lN)-

compact, by Theorem 2.1, there exists a natural number I such that

sup
u∈A

∞
∑

i=I

|u(i)v(i)| 6
ε0
4
.

We note that |u(i)| 6 c, where c := inf{t > 0: M(t) > 1} < ∞ for all u ∈ A and

lim
u→0

M(u)/u = 0. Then we deduce that for n large enough

I
∑

i=1

M
(un(i)

2n+1

)

2n+1 6 IM
( c

2n+1

)

2n+1 6
ε0
4
.

We reache a contradiction:

ε0 < ̺
M

( un

2n+1

)

2n+1 =

I
∑

i=1

M
(un(i)

2n+1

)

2n+1 +

∞
∑

i=I+1

M
(un(i)

2n+1

)

2n+1

6

I
∑

i=1

M
(un(i)

2n+1

)

2n+1 +

∞
∑

i=I+1

M
(un(i)

2n+1

)

2n+1 +

∞
∑

i=I+1

N
(

p
( u(i)

2n+1

))

6

I
∑

i=1

M
( c

2n+1

)

2n+1 +

∞
∑

i=I+1

M
(un(i)

2n+1

)

2n+1 +

∞
∑

i=I+1

N
(

p
( u(i)

2n+1

))

=

I
∑

i=1

M
( c

2n+1

)

2n+1 +

∞
∑

i=I+1

|un(i)|

2n+1
p
(un(i)

2n+1

)

2n+1

6

I
∑

i=1

M
( c

2n+1

)

2n+1 +
∞
∑

i=I+1

|un(i)|p
(un(i)

2n+1

)

6

I
∑

i=1

M
( c

2n+1

)

2n+1 +

∞
∑

i=I+1

|un(i)| sup
n

p
(un(i)

2n+1

)

6

I
∑

i=1

M
( c

2n+1

)

2n+1 +
∞
∑

i=I+1

|un(i)||v(t)| 6
ε0
4

+
ε0
4

=
ε0
2
.

This ends the proof. �

Due to the same reason, from Corollary 2.2, stating that a sequentially weakly

σ(l(M), lN )-compact set is σ(l(M), lN )-closed, we have:

Corollary 2.4 ([2], [25]). Given lim
u→0

M(u)/u = 0, a set A in an Orlicz sequence

space l(M) is sequentially weakly σ(l(M), lN)-compact if and only if

(1) A is σ(l(M), lN )-closed,

(2) lim
ξ→0

sup
u∈A

̺M (ξu)/ξ = 0.
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Finally, we give a criterion of a modular type which gets rid of the computation

of limit.

Definition 2.5 ([2]). For Orlicz functions Φ and M over the real field R we

call Φ strictly rapider than M for small u (write Φ ≻ M) provided that for any

positive number κ, there are positive numbers D and d such that for all u > 0 with

M(u) 6 d, we have Φ(Du) > DκM(u).

Theorem 2.6 ([2], [25])). Given lim
u→0

M(u)/u = 0, a set A in an Orlicz se-

quence space l(M) is relatively sequentially weakly σ(l(M), lN )-compact if and only

if there exists an Orlicz function Φ strictly rapider than M (write Φ ≻ M) such

that

sup
u∈A

̺Φ(u) 6 1.

P r o o f. Sufficiency: By Φ ≻ M , for any positive number κ, there are positive

numbers D and d such that for all u > 0 withM(u) 6 d, we have Φ(Du) > DκM(u).

Put Id = Cardinal {i : M(u(i)) > d,
∞
∑

i=1

Φ(u(i)) = ̺Φ(u) 6 1}, then Id is a finite

number.

For any positive number ε < 1 and positive number ξ 6 min{(1/c)cd, 1/D}, where

cd = inf{t > 0: M((t)) > d}, we have

̺M (ξu)

ξ
=

1

ξ

[

∑

M(ξ|u(i)|)6d

M(ξu(i)) +
∑

M(ξ|u(i)|)>d

M(ξu(i))

]

=
1

ξ

∑

M(ξ|u(i)|)6d

M(ξu(i)) +
1

ξ

∑

M(ξ|u(i)|)>d

M(ξu(i))

=
∑

M(ξ|u(i)|)6d

M(ξu(i))

ξ
+

∑

M(ξ|u(i)|)>d

M(ξu(i))

ξ

6
∑

M(ξ|u(i)|)6d

Φ(Dξu(i))
ε

2Dξ
+

∑

M(ξ|u(i)|)>d

M(ξu(i))

ξ

6
∑

M(ξ|u(i)|)6d

Φ(u(i))
Dξε

2Dξ
+ Id

M(ξc)

ξ
6

ε

2
̺

Φ
(u) +

ε

2
6

ε

2
+

ε

2
= ε,

where c = inf{t > 0: M(t) > 1}. That says, lim
ξ→0

sup
u∈A

̺
M
(ξu)/ξ = 0. By Theorem 2.3,

it follows that A is relatively sequentially weakly σ(l(M), lN )-compact.

Necessity: By Theorem 2.3, A being relatively weakly σ(l(M), lN )-compact implies

lim
ξ→0

sup
u∈A

̺
M
(ξu)

ξ
= 0.
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We take ξk, 1 > ξ1 > . . . > ξk > . . . → 0, such that

sup
u∈A

̺
M
(ξku)

ξk
<

1

22k
.

We recall an Orlicz function given by Andô, see [2]. For any u ∈ R, we set

Φ(u) =

∞
∑

k=1

2k
M(ξku)

ξk
.

Then Φ is an Orlicz function. Further, Φ ≻ M and for any positive κ we take

a natural number k′ with 22k
′

> κ. We set D = 1/ξk′ . Thus for all u ∈ R,

Φ(Dv)v=ξ
k′u = Φ

(ξk′u

ξk′

)

= Φ(u) =
∞
∑

k=1

22k
M(ξku)

ξk
> 22k

′ M(ξk′u)

ξk′

= 22k
′ M(v)

ξk′

> κDM(v).

It holds for all v > 0 due to the arbitrary choice of u. Furthermore, for all u ∈ A,

̺
Φ
(u) =

∞
∑

i=1

Φ(u(i)) =

∞
∑

i=1

∞
∑

k=1

2k
M(ξku(i))

ξk
=

∞
∑

k=1

2k
∞
∑

i=1

M(ξku(i))

ξk

6

∞
∑

k=1

2k
1

22k
=

∞
∑

k=1

1

2k
= 1.

It ends the proof. �

Analogously, we have:

Corollary 2.7 ([2], [25]). Given lim
u→0

M(u)/u = 0, a set A in an Orlicz sequence

space l(M) is sequentially weakly σ(l(M), lN)-compact if and only if

(1) A is σ(l(M), lN )-closed,

(2) there exists an Orlicz function Φ strictly rapider than M (write Φ ≻ M) such

that

sup
u∈A

̺
Φ
(u) 6 1.

From Theorems 2.1, 2.3, 2.6, we see:

Remark 2.8. In an Orlicz sequence space l(M), a set A is relatively sequen-

tially weakly σ(l(M), lN)-compact if and only if |A| is relatively sequentially weakly

σ(l(M), lN )-compact, where |A| = {|u| : u ∈ A}.
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Since ‖u‖(M) 6 ‖u‖M 6 2‖u‖(M), l(M) is isomorphic to lM . Since sequentially

weak compactness is invariant under an isomorphism in an Orlicz sequence space lM
with Orlicz norm, we have:

Remark 2.9. All the main results obtained in Section 2 for the Luxemburg norm

of l(M) hold for the Orlicz norm of lM . That means that replacing l(M) by lM , in

Theorems 2.1, 2.3, 2.6, Corollaries 2.2, 2.4, 2.7, and Remark 2.8, all the statements

stay to hold.
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