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Abstract. Let µ be a finite positive measure on the unit disk and let j > 1 be an

integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator T
(j)
µ to

be bounded or compact. We first give a necessary and sufficient condition for T
(j)
µ to be in

the Schatten p-class for 1 6 p < ∞ on the Bergman space A2, and then give a sufficient

condition for T
(j)
µ to be in the Schatten p-class (0 < p < 1) on A2. We also discuss

the generalized Toeplitz operators with general bounded symbols. If ϕ ∈ L∞(D,dA) and

1 < p < ∞, we define the generalized Toeplitz operator T
(j)
ϕ on the Bergman space Ap and

characterize the compactness of the finite sum of operators of the form T
(j)
ϕ1

. . . T
(j)
ϕn
.

Keywords: generalized Toeplitz operator; Schatten class; compactness; Bergman space;
Berezin transform

MSC 2020 : 47B35, 47B10

1. Introduction and notations

Let dA denote the normalized Lebesgue area measure on the unit disk D. For

0 < p < ∞, the space Lp(D, dA) consists of complex valued measurable functions

on D such that

‖f‖p :=

[∫

D

|f(z)|p dA(z)
]1/p

< ∞.

Let L∞(D, dA) be the space of measurable functions f on D such that

‖f‖∞ := ess sup{|f(z)| : z ∈ D} < ∞.
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For 1 6 p < ∞, the Bergman space Ap consists of all analytic functions on D

that are also in Lp(D, dA). Let L(Ap) be the space of all linear bounded operators

on Ap. For z ∈ D, let ϕz be the analytic automorphism of D defined by ϕz(w) =

(z − w)/(1 − zw). For z ∈ D, define the operator Uz on A2 by Uzf = (f ◦ ϕz)ϕ
′

z ,

then Uz is unitary and self-adjoint on A2. Let Kz(w) = 1/(1− zw)2 be the repro-

ducing kernel of A2 and let kz = Kz/‖Kz‖. For any f, g ∈ A2, let f ⊗ g be the

rank-one operator on A2 which is defined by

(f ⊗ g)h = 〈h, g〉f ∀h ∈ A2.

Let ek =
√
k + 1wk (k > 0), then {ek}k>0 is an orthonormal basis of A

2. The oper-

ator Ek := ek ⊗ ek is in fact the orthogonal projection onto the subspace generated

by ek. For z ∈ D, it is easy to check that

(1.1) 〈UzE0Uzf, g〉 = (1 − |z|2)2f(z)g(z) ∀ f, g ∈ A2.

Let dÃ(z) = (1 − |z|2)−2 dA(z), then by (1.1), the traditional Toeplitz operator Ta

on A2 with the symbol a ∈ L∞(D, dA) can be written as

Ta =

∫

D

UzE0Uza(z) dÃ(z),

where the integral converges in the weak operator topology. If R is a bounded

linear operator on A2 and a ∈ L∞(D, dA), Engliš in [2] considered the more general

operators defined as

(1.2) Ra :=

∫

D

UzRUza(z) dÃ(z)

and showed that if R is in the trace class then ‖Ra‖ 6 ‖R‖tr‖a‖∞. If the matrix of R
in the orthonormal basis {ek}k>0 is diagonal, then the operator R is an l

1 linear com-

bination of the projections Ej , with the trace norm of R given by the corresponding

l1-norm of its eigenvalues, and then the above result is equivalent to ‖T (j)
a ‖ 6 ‖a‖∞

for all integers j > 0, where the operator T
(j)
a is defined by

(1.3) T (j)
a :=

∫

D

UzEjUza(z) dÃ(z).

More generally, let µ be a finite Borel measure on D and let j > 0, then Suárez

defined the following generalized Toeplitz operator with symbol µ on the Bergman

space, see [8]:

(1.4) T (j)
µ :=

∫

D

UzEjUz(1 − |z|2)−2 dµ(z).
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In [8], using Carleson measure conditions, Suárez characterized the boundedness and

compactness of the operator T
(j)
µ on the Bergman space.

It is a natural problem to discuss when an operator T
(j)
µ is in the Schatten class

operator on the Bergman space.

For any 0 < p < ∞, the Schatten class Sp on a separable Hilbert space H consists

of all the compact operators on H for which their singular numbers form a sequence

belonging to lp. The singular numbers of a compact operator T are defined by

sn = sn(T ) = inf{‖T −K‖ : rankK 6 n− 1}.

For any T ∈ Sp, the Sp norm of T is defined as

‖T ‖Sp
=

( ∞∑

n=1

spn

)1/p

.

For more information one refers, for example, to [6] and [12].

Luecking was the first to study Toeplitz operators with measures as symbols on

the Bergman space, see [3]. He gave a characterization of Schatten class Toeplitz

operators based on lp condition at a hyperbolic lattice of the unit disk. While

the characterization in terms of the Lp(dÃ) integrability of the averaging functions

and the Berezin transform is proved in [9] in the situation of a bounded symmetric

domain, Arazy, Fisher and Peetre in [1] studied Schatten class Hankel operators on

the weighted Bergman spaces.

The organization of the paper is as follows. In Section 2, we consider the case of

1 6 p < ∞. Let ϕ ∈ Lp(dÃ) be a nonnegative function, using the formula of Faá

di Bruno, we then prove that T
(j)
ϕ ∈ Sp on the Bergman space A

2 for any integer

j > 0. Furthermore, we give a necessary and sufficient condition for T
(j)
µ ∈ Sp

on A2. In Section 3, we consider the situation of 0 < p < 1. We give a sufficient

condition for T
(j)
µ ∈ Sp on A2. In Section 4, if ϕ ∈ L∞(D, dA) and 1 < p < ∞,

we introduce the generalized Toeplitz operator T
(j)
ϕ on the Bergman space Ap and

characterize the compactness of the finite sum of operators of the form T
(j)
ϕ1

. . . T
(j)
ϕn

on Ap. Throughout this paper, let j denote a fixed natural number.

2. The situation of 1 6 p < ∞

In this section, we use the Berezin transform and average function of the symbol

to characterize the Schatten class property of generalized Toeplitz operators. For an

operator S on A2, with a dense domain containing H∞, the Berezin transform of S

is the function S̃ defined on D by

S̃(z) = 〈Skz , kz〉.
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Let β(z, w) be the Bergman metric on D. For any z ∈ D and r > 0, let

D(z, r) = {w ∈ D : β(z, w) < r}

be the hyperbolic disk with center z and radius r, and let |D(z, r)| be the area
of D(z, r). By Proposition 4.5 of [11], there exists a constant Cr (depending only

on r) such that

(2.1) C−1
r 6 |D(z, r)|K(w,w) 6 Cr, w ∈ D(z, r).

Let µ be a finite positive Borel measure on D, r > 0, and j ∈ N, then put

µ̂r,j(z) =

∫

D(z,r)

|ϕz(w)|2jK(w,w) dµ(w).

When j = 0, by (2.1), µ̂r,j is then equivalent to µ̂r defined in [11].

The following lemma is Corollary 6.5 of [11].

Lemma 2.1. If T is a trace class operator on A2, then T̃ is in L1(D, dÃ) and

the formula

tr(T ) =

∫

D

〈TKz,Kz〉dA(z)

holds.

Theorem 2.2. Suppose that µ is a finite positive Borel measure on D, 1 6

p < ∞, and j ∈ N, then the following conditions are equivalent:

(1) T
(j)
µ ∈ Sp on A2;

(2) T̃
(j)
µ (z) ∈ Lp(D, dÃ(z));

(3) there exists some r > 0 such that µ̂r,j(z) ∈ Lp(D, dÃ(z)).

P r o o f. (1) ⇒ (2) Suppose T (j)
µ ∈ Sp on A2. Since T

(j)
µ > 0, using Lemma 2.1,

we get

‖T (j)
µ ‖pSp

= tr((T (j)
µ )p) =

∫

D

〈(T (j)
µ )pKz,Kz〉dA(z)

=

∫

D

K(z, z)〈(T (j)
µ )pkz , kz〉dA(z).

Since 1 6 p < ∞ and kz is the unit vector in A2, by Proposition 6.4 of [1], we have

‖T (j)
µ ‖pSp

>

∫

D

K(z, z)〈T (j)
µ kz , kz〉p dA(z)

and then T̃
(j)
µ (z) ∈ Lp(D, dÃ(z)).
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(2) ⇒ (3). By Proposition 4.5 of [11], for r > 0, there exists a constant Cr

(depending only on r) such that

1− |w|2 > Cr|1− zw|

for w ∈ D(z, r) such that

T̃
(j)
µ (z) = 〈T (j)

µ kz, kz〉 =
∫

D

|〈Uwej, kz〉|2K(w,w) dµ(w)

= (j + 1)

∫

D

(1 − |z|2)2|〈Uwξ
j ,Kz〉|2K(w,w) dµ(w)

= (j + 1)

∫

D

(1 − |z|2)2|ϕw(z)|2j |ϕ′

w(z)|2K(w,w) dµ(w)

= (j + 1)

∫

D

|ϕz(w)|2j
(1− |z|2)2(1− |w|2)2

|1− zw|4 K(w,w) dµ(w)

> Cr(j + 1)

∫

D(z,r)

|ϕz(w)|2jK(w,w) dµ(w)

and then we get

µ̂r,j(z) ∈ Lp(D, dÃ(z)).

In order to prove that (3) ⇒ (1), we need some preliminaries.
Let 1 6 p < ∞, ϕ ∈ Lp(D, dÃ), and j ∈ N. The generalized Toeplitz operator T

(j)
ϕ

on A2 is defined as

(2.2) T (j)
ϕ =

∫

D

UzEjUzϕ(z) dÃ(z),

where the integral converges in the weak operator topology.

Lemma 2.3. Let ϕ ∈ Lp(D, dÃ) for 1 6 p < ∞ and let ϕ has a compact support
in D, then T

(j)
ϕ is a compact operator on A2.

P r o o f. The proof is similar to that of Lemma 4.6 of [8] and we omit it. �

Next lemma follows from Theorem 4.28 of [11].

Lemma 2.4. Suppose that p > 0, n > 1, and f is a holomorphic function in D,

then f ∈ Lp(D, dA) if and only if the function

g(z) = (1− |z|2)nf (n)(z)

is in Lp(D, dA). Furthermore, the norm of f ∈ Lp(D, dA) is equivalent to the norm

|f(0)|+ |f ′(0)|+ . . .+ |f (n−1)(0)|+ ‖(1− |z|2)nf (n)(z)‖Lp .
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The following lemma is a formula of Faá di Bruno, see [5].

Lemma 2.5. Let l > 1. If f(t) and g(t) are functions defined in some intervals

for which all the necessary derivatives are defined, then

(2.3) [f ◦ g](l)(x) =
∑ l!

k1! . . . kl!
f (k)(g(x))

[g′(x)
1!

]k1
[g′′(x)

2!

]k2

. . .
[g(l)(x)

l!

]kl

,

where k = k1 + k2 + . . . + kl and the sum is over all k1, . . . , kl for which l = k1 +

2k2 + . . .+ lkl. In particular, if f is a holomorphic function in D and g = ϕz, then

(2.4) [f ◦ ϕz]
(l)(0) =

∑ l!

k1! . . . kl!
f (k)(z)(−1)kzl−k(1− |z|2)k,

where k = k1 + k2 + . . . + kl and the sum is over all k1, . . . , kl for which l = k1 +

2k2 + . . .+ lkl.

Theorem 2.6. If 1 6 p < ∞, and if ϕ ∈ Lp(D, dÃ), ϕ > 0 and j ∈ N, then

T
(j)
ϕ ∈ Sp on A2.

Note that this result is a particular case of Theorem 1 (d) in [2]. Using Marcin-

kiewicz interpolation, Engliš proved this result in a far more general form. For

completeness, we present an elementary proof in some details here.

P r o o f. If ϕ ∈ Lp(D, dÃ) has a compact support in D, then, by Lemma 2.3, T
(j)
ϕ

is a compact operator on A2. Let

T (j)
ϕ f =

∞∑

n=1

λn〈f, fn〉gn

be the canonical decomposition of T
(j)
ϕ , where {λn} is the sequence of singular values

of T
(j)
ϕ repeated according to their multiplicity, and {fn} and {gn} are two orthonor-

mal sets in A2. Hence,

(2.5) λn = 〈T (j)
ϕ fn, gn〉 =

∫

D

〈UzEjUzfn, gn〉ϕ(z) dÃ(z)

6

∫

D

|〈Uzfn, ej〉||〈Uzgn, ej〉||ϕ(z)| dÃ(z).

When p = 1, then

(2.6)
∞∑

n=1

λn 6

∫

D

∞∑

n=1

|〈fn, Uzej〉||〈gn, Uzej〉||ϕ(z)| dÃ(z)

6

∫

D

‖Uzej‖2|ϕ(z)| dÃ(z) =
∫

D

|ϕ(z)| dÃ(z) < ∞.
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If 1 < p < ∞, it follows from Hölder’s inequality that

(2.7) λp
n 6

∫

D

|〈Uzfn, ej〉||〈Uzgn, ej〉||ϕ(z)|p dÃ(z)

×
(∫

D

|〈Uzfn, ej〉||〈Uzgn, ej〉| dÃ(z)
)p/q

.

Let F (z) =
∫ z

0 f(u) du for a function f ∈ A2. We can calculate that

(2.8)

∫

D

|〈Uzf, ej〉|2 dÃ(z) = (j + 1)

∫

D

|〈(f ◦ ϕz)ϕ
′

z, w
j〉|2 dÃ(z)

= (j + 1)

∫

D

|〈(F ◦ ϕz)
′, wj〉|2 dÃ(z)

= (j + 1)

∫

D

∣∣∣(F ◦ ϕz)
(j+1)(0)

(j + 1)!

∣∣∣
2

dÃ(z)

= (j + 1)

∫

D

∣∣∣∣
∑ 1

k1! . . . kj+1!
F (k)(z)(−1)kzj+1−k(1− |z|2)k

∣∣∣∣
2

dÃ(z)

6 (j + 1)2
∫

D

j+1∑

k=1

|F (k)(z)(1− |z|2)k|2 dÃ(z)

= (j + 1)2
∫

D

j+1∑

k=1

|f (k−1)(z)(1− |z|2)k|2 dÃ(z)

= (j + 1)2
j∑

k=0

∫

D

|f (k)(z)(1− |z|2)k|2 dA(z) 6 Cj‖f‖,

where the fourth equality follows from Lemma 2.5, and the last inequality follows

from Lemma 2.4, and Cj is a constant depending only on j. Let C = C
p/q
j , by (2.7)

and (2.8), we then have

(2.9) λp
n 6 C

∫

D

|〈Uzfn, ej〉||〈Uzgn, ej〉||ϕ(z)|p dÃ(z), n > 1.

Therefore, like in the proof of (2.6),

‖T (j)
ϕ ‖pSp

=

∞∑

n=1

λp
n 6 C‖ϕ‖p

Lp(dÃ)
.

In the general case, for 0 < r < 0, let ϕr = χrDϕ, where χrD is the characteristic

function of rD := {z : |z| 6 r}. The argument in the preceding paragraph shows
that {T (j)

ϕr } is a Cauchy net in Sp-norm, so it converges to some T ∈ Sp in Sp-norm

as r → 1−.
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Next, we prove that T
(j)
ϕ ∈ L(A2) and T

(j)
ϕr → T

(j)
ϕ in the operator norm as r → 1−.

In fact, for any f, g ∈ A2, similarly to the proof of (2.6) and (2.9), it is easy to check

that

(2.10) |〈(T (j)
ϕr

− T (j)
ϕ )f, g〉| 6

∫

D

|〈Uzf, ej〉〈ej , Uzg〉||ϕr(z)− ϕ(z)| dÃ(z)

6 C‖ϕr − ϕ‖Lp(dÃ)‖f‖‖g‖.

Then T
(j)
ϕ ∈ L(A2) and T

(j)
ϕr → T

(j)
ϕ in the operator norm as r → 1−. �

Now we prove that (3) ⇒ (1) in Theorem 2.2. Let r > 0 be such that

µ̂r,j(z) ∈ Lp(D, dÃ(z)),

then by Theorem 2.6, T
(j)
µ̂r,j

∈ Sp. By Lemma 14 of [9], it is sufficient to show that

there exists a positive constant C such that T
(j)
µ 6 CT

(j)
µ̂r,j
. In fact, for any f ∈ A2,

by Fubini’s theorem,

〈T (j)
µ̂r,j

f, f〉 =
∫

D

〈UzEjUzf, f〉µ̂r,j(z) dÃ(z)

=

∫

D

〈UzEjUzf, f〉
∫

D

|ϕz(w)|2jχD(z,r)(w)K(w,w) dµ(w) dÃ(z)

=

∫

D

〈UzEjUzf, f〉
∫

D

|ϕw(z)|2jχD(w,r)(z)K(w,w) dµ(w) dÃ(z)

=

∫

D

(∫

D(w,r)

|ϕw(z)|2j〈UzEjUzf, f〉dÃ(z)
)
K(w,w) dµ(w)

>

∫

D

(∫

D(w,r)/D(w,r/2)

|ϕw(z)|2j〈UzEjUzf, f〉dÃ(z)
)
K(w,w) dµ(w)

>

(
tanh

r

2

)2j
∫

D

(∫

D(w,r)/D(w,r/2)

〈UzEjUzf, f〉dÃ(z)

)
K(w,w) dµ(w).

Next we need to prove that the inequality

(2.11)

∫

D(w,r)/D(w,r/2)

〈UzEjUzf, f〉dÃ(z) > Cr,j |〈Uwf, ej〉|2

holds for some constant Cr,j > 0. For any F (ξ) =
∑

amem(ξ) ∈ A2 and 0 6 t 6 2π,

0 6 s < 1, it is easy to check that

|〈F,Useitej〉|2 = |〈F (ξ), (Usej)(e
−itξ)〉|2 = |〈F (eitξ), (Usej)(ξ)〉|2

=
∑

m,l

amal〈em(eitξ), (Usej)(ξ)〉〈el(eitξ), (Usej)(ξ)〉

=
∑

m,l

amale
i(m−l)t〈em, Usej〉〈el, Usej〉.
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Then

(2.12)

∫ 2π

0

|〈F,Useitej〉|2
dt

2π

=
∑

m

|am|2|〈em, Usej〉|2

> |aj |2|〈ej , Usej〉|2 = |〈F, ej〉|2|〈ej , Usej〉|2

= |〈F, ej〉|2
∫ 2π

0

|〈ej , Useitej〉|2
dt

2π

.

Hence,

(2.13)

∫

D(0,r)/D(0,r/2)

|〈F,Uzej〉|2K(z, z) dA(z)

=

∫ tanh r

tanh r/2

2s

(1− s2)2

(∫ 2π

0

|〈F,Useitej〉|2
dt

2π

)
ds

> |〈F, ej〉|2
∫ tanh r

tanh r/2

2s

(1− s2)2

(∫ 2π

0

|〈ej , Useitej〉|2
dt

2π

)
ds

= |〈F, ej〉|2
∫

D(0,r)/D(0,r/2)

|〈ej , Uzej〉|2K(z, z) dA(z).

In particular, let F (ξ) = (Uwf)(ξ), by (2.13), we then have

(2.14)

∫

D(0,r)/D(0,r/2)

|〈Uwf, Uzej〉|2K(z, z) dA(z)

> |〈Uwf, ej〉|2
∫

D(0,r)/D(0,r/2)

|〈ej , Uzej〉|2K(z, z) dA(z).

Let f(z) = |〈ej , Uzej〉|2K(z, z), z ∈ D. By Lemma 4.3 of [7], the function z 7→
〈ej , Uzej〉 is uniformly continuous on compact sets of D, then f(z) is continuous

on D. Note that f(0) = 1, we assume that f(z) 6= 0 on D(0, r). Then by (2.8),
∫

D(0,r)/D(0,r/2)

|〈ej , Uzej〉|2K(z, z) dA(z) < ∞

is a finite positive constant depending on r and j. On the other hand, note that

UwUz = Uϕw(z)Vλ, where λ = (zw − 1)/(1− wz), (Vλh)(w) = λh(λw) for any

h ∈ A2. Consequently, |〈Uwf, Uzej〉| = |〈f, Uϕw(z)ej〉| and the change of variable
ν = ϕw(z) on the left hand side of (2.14) yields

(2.15)

∫

D(w,r)/D(w,r/2)

|〈f, Uνej〉|2K(ν, ν) dA(ν)

> |〈Uwf, ej〉|2
∫

D(0,r)/D(0,r/2)

|〈ej , Uzej〉|2K(z, z) dA(z).

Hence, (2.11) holds and the proof is complete. �
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Corollary 2.7. If 1 6 p < ∞ and if ϕ ∈ L∞(D, dA), is a nonnegative function

on D, then the following conditions are equivalent:

(i) T
(j)
ϕ ∈ Sp on A2;

(ii) T̃
(j)
ϕ (z) ∈ Lp(D, dÃ(z));

(iii) there exists some r > 0 such that
∫

D(z,r)

|ϕz(w)|2jK(w,w)ϕ(w) dA(w) ∈ Lp(D, dÃ(z)).

A sequence {ak}∞k=1 in D is called an r-lattice in the Bergman metric if

D =
∞⋃

k=1

D(ak, r)

and β(ai, aj) >
1
2r for i 6= j. For more information about lattices, see [11].

Theorem 2.8. Suppose that µ is a finite positive Borel measure on D and j ∈ N,

then the following conditions are equivalent:

(i) T
(j)
µ ∈ S1 on A2;

(ii) µ̃ ∈ L1(D, dÃ);

(iii) µ̂r ∈ L1(D, dÃ) for all (or some) r > 0;

(iv)
∞∑
n=1

µ̂r(an) < ∞, where {an}∞n=1 is an r-lattice in the Bergman metric.

P r o o f. For any j > 1, T
(j)
µ ∈ S1 if and only if Tµ ∈ S1, since

tr(T (j)
µ ) =

∫

D

〈T (j)
µ Kz,Kz〉dA(z) =

∫

D

∫

D

〈UwEjUwKz,Kz〉K(w,w) dµ(w) dA(z)

=

∫

D

∫

D

|〈UwKz, ej〉|2 dA(z)K(w,w) dµ(w) =

∫

D

K(w,w) dµ(w) = tr(Tµ).

By Theorem C of [9], the proof is complete. �

3. The situation of 0 < p < 1

For 0 < p < ∞, the sequence space lp is defined by

lp =

{
{ai}∞i=1 :

( ∞∑

i=1

|ai|p
)1/p

< ∞
}
.

The atomic decomposition for Bergman spaces turns out to be a powerful theorem

in the theory of Bergman spaces. The following lemma is related to [11]. For more

information about atomic decomposition, see [10].
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Lemma 3.1. Suppose that p > 0 and

(3.1) b > max
(
1,

1

p

)
+

1

p
.

Then there exists a constant σ > 0 such that for any r-lattice {ak} in the Bergman
metric, where 0 < r < σ, the space Ap consists exactly of functions of the form

(3.2) f(z) =

∞∑

k=1

ck
(1− |ak|2)(pb−2)/p

(1− zāk)b
,

where {ck} ∈ lp, the series in (3.2) converges in Ap, and the norm of f in Ap is

comparable to

inf

{[ ∞∑

k=1

|ck|p
]1/p

: {ck} satisfies (3.2)
}
.

The following lemma is Proposition 4.13 of [11] which reflects the subharmonic

property of a holomorphic function in the Bergman metric.

Lemma 3.2. Suppose that p > 0, r > 0, then there exists a positive constant C

such that

|f(z)|p 6
C

(1− |z|2)2
∫

D(z,r)

|f(w)|p dA(w),

where f is a holomorphic function in D and z ∈ D.

Theorem 3.3. Suppose that µ is a finite positive Borel measure on D, 0 < p < 1,

j ∈ N. There exist a positive radius σ > 0 and a σ-lattice {an} in D such that if the
sequence {µ̂σ(an)}∞n=1 belongs to l

p, then T
(j)
µ ∈ Sp on A2.

P r o o f. Since for a σ-lattice {an}∞n=1, the sequence {µ̂σ(an)}∞n=1 belongs to lp

and must be bounded, then the Toeplitz operator Tµ is bounded on A2 and µ is

a Carleson measure, see [9]. Theorem 4.2 of [8] implies that T
(j)
µ is bounded onA2. By

Lemma 3.1, for any b > 1
2 (3+p−1) there exist a positive radius σ′ and a σ′-lattice {zn}

in the Bergman metric such that the spaceA2 consists exactly of functions of the form

f(z) =

∞∑

n=1

cn
(1− |zn|2)b−1

(1− znz)b
,

where {cn} ∈ l2, the above series converges in A2, and

(3.3)

∫

D

|f(z)|2 dA(z) 6 C

∞∑

n=1

|cn|2

for some constant C independent of {cn}.
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Let {en} be an orthonormal basis on A2 and define the operator T on A2 by

T

( ∞∑

n=1

cnen

)
=

∞∑

n=1

cn
(1 − |zn|2)b−1

(1− znz)b
,

then T is a bounded surjective linear operator on A2. According to Proposition 1.30

of [11], T
(j)
µ ∈ Sp is equivalent to T

∗T
(j)
µ T ∈ Sp. Since T

∗T
(j)
µ T is positive, in order

to complete the proof, we need to check that M =
∞∑

n=1

〈T ∗T
(j)
µ Ten, en〉p < ∞. In

fact,

M =
∞∑

n=1

〈
T (j)
µ

(1 − |zn|2)b−1

(1 − znz)b
,
(1− |zn|2)b−1

(1 − znz)b

〉p

=
∞∑

n=1

Ipn,

where

(3.4) In =
〈
T (j)
µ

(1 − |zn|2)b−1

(1 − znz)b
,
(1− |zn|2)b−1

(1− znz)b

〉

=

∫

D

∣∣∣
〈
Uz

(1− |zn|2)b−1

(1 − znw)b
, ej

〉∣∣∣
2

K(z, z) dµ(z).

Since {an} is a σ-lattice in the Bergman metric, by Lemma 4.30 of [11] and the proof
of (2.8), we get

In 6 (j + 1)2
j∑

k=0

∫

D

|h(k)
n (z)|2(1 − |z|2)2k dµ(z)(3.5)

6 (j + 1)2
j∑

k=0

∫

D

∣∣∣(1 − |zn|2)b−1

(1− znz)b+k

∣∣∣
2

× [b(b+ 1) . . . (b + k)]2(1 − |z|2)2k dµ(z)

6 (j + 1)2
j∑

k=0

∞∑

l=1

∫

D(al,σ)

∣∣∣(1 − |zn|2)b−1

(1− znz)b+k

∣∣∣
2

× [b(b+ 1) . . . (b + k)]2(1 − |z|2)2k dµ(z)

6 C(j + 1)2
j∑

k=0

∞∑

l=1

∫

D(al,σ)

|hn(al)|2

× [b(b+ 1) . . . (b + k)]2
(1− |al|2)2k
|1− znal|2k

dµ(z)

6 C(j + 1)2
j∑

k=0

[b(b+ 1) . . . (b + k)2k]2

×
∞∑

l=1

1

(1− |al|2)2
|hn(al)|2µ̂σ(al),
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where hn(z) = (1− |zn|2)b−1/(1− znz)
b, and C depends on σ, b and j. Since 0 <

p < 1, there is a constant C1 > 0 such that

(3.6) Ipn 6 C1

∞∑

l=1

1

(1 − |al|2)2p
|hn(al)|2pµ̂p

σ(al).

Therefore,

M =
∞∑

n=1

Ipn 6 C1

∞∑

l=1

1

(1− |al|2)2p
µ̂p
σ(al)

∞∑

n=1

|hn(al)|2p.

For any positive integer l, we consider the series

Sl =
∞∑

n=1

|hn(al)|2p =
∞∑

n=1

(1− |zn|2)p(2b−2)

|1− alzn|2pb
.

Since {zn} is a σ′-lattice in the Bergman metric, then the Bergman disks D(zn,
1
8σ

′)

are mutually disjoint. Let

f(z) =
(1− znz)

2b−2

(1 − alz)2b
,

by Lemma 3.2, then there exists a positive constant C (depending only on σ′) such

that

|f(zn)|p =
(1 − |zn|2)p(2b−2)

|1− alzn|2pb
6

C

(1− |zn|2)2
∫

D(zn,σ′/8)

|1− znz|p(2b−2)

|1− alz|2pb
dA(z)

6 C

∫

D(zn,σ′/8)

(1− |z|2)p(2b−2)−2

|1− alz|2pb
dA(z).

Hence

Sl 6 C

∞∑

n=1

∫

D(zn,σ′/8)

(1− |z|2)p(2b−2)−2

|1− alz|2pb
dA(z) 6 C

∫

D

(1− |z|2)p(2b−2)−2

|1− alz|2pb
dA(z).

Since p(2b − 2) − 2 > −1, by Lemma 3.10 of [11], there is a constant C2 > 0 such

that

Sl 6
C2

(1− |al|2)2p
.

Therefore,

M 6 C1C2

∞∑

l=1

µ̂p
σ(al) < ∞.

�
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4. The generalized Toeplitz operators on the Bergman

spaces Ap (1 < p < ∞)

In this section, we assume 1 < p < ∞. For any fixed z ∈ D, define the operator

Uz : Ap → Ap such that

Uzf = (f ◦ ϕz)ϕ
′

z ∀ f ∈ Ap.

Then Uz is bounded. It’s easy to check that

U∗

z g = (g ◦ ϕz)ϕ
′

z ∀ g ∈ Aq, where 1/p+ 1/q = 1.

Let S be a bounded operator on Ap and let Sz = UzSUz. The Berezin transform

of S is the function S̃ defined on D such that

S̃(z) = 〈Skz, kz〉, where 〈f, g〉 =
∫

D

fg dA.

Let Ej := ej ⊗ ej be the rank one operator defined on Ap such that

Ejf = 〈f, ej〉ej , f ∈ Ap.

Let ϕ ∈ L∞(D, dA) and j ∈ N. The generalized Toeplitz operator T
(j)
ϕ on Ap is

defined as

(4.1) T (j)
ϕ :=

∫

D

UzEjUzϕ(z) dÃ(z),

where the integral converges in the weak operator topology.

Lemma 4.1. Suppose that ϕ ∈ L∞(D, dA) and j ∈ N, then T
(j)
ϕ is bounded

on Ap.

P r o o f. For any f ∈ Ap, g ∈ Aq,

|〈T (j)
ϕ f, g〉| 6

∫

D

|〈Uzf, ej〉‖〈ej , U∗

z g〉‖ϕ(z)| dÃ(z)

6 ‖ϕ‖∞
(∫

D

|〈Uzf, ej〉|p
1

(1− |z|2)p dA(z)

)1/p

×
(∫

D

|〈U∗

z g, ej〉|q
1

(1 − |z|2)q dA(z)

)1/q

.

Let 1 < b < ∞, h ∈ Ab. Note that for any g ∈ Ab and gn being the nth Taylor

polynomial of g we have ‖gn − g‖Lb → 0 as n → ∞. Repeating the course of the
proof of (2.8), we get

(4.2)

∫

D

|〈Uzh, ej〉|b
1

(1 − |z|2)b dA(z) 6 Cj(j + 1)b/2‖h‖bb,
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where Cj is a constant depending on j. Hence

(4.3) |〈T (j)
ϕ f, g〉| 6 Cj(j + 1)‖ϕ‖∞‖f‖p‖g‖q.

�

The following lemma is Lemma 4.2 of [7].

Lemma 4.2. For any fixed z, w ∈ D, if t = (wz − 1)/(1− wz), then UzUw =

Uϕz(w)Vt, where (Vtf)(u) = tf(tu) for f ∈ Ap.

Lemma 4.3. Suppose that ϕ ∈ L∞(D, dA) and w ∈ D, then UwT
(j)
ϕ Uw = T

(j)
ϕ◦ϕw

.

P r o o f. For any f ∈ Ap, g ∈ Aq, we get

(4.4) 〈UwT
(j)
ϕ Uwf, g〉 =

∫

D

〈UzUwf, ej〉〈ej , U∗

zU
∗

wg〉ϕ(z) dÃ(z)

=

∫

D

〈f, U∗

wU
∗

z ej〉〈UwUzej, g〉ϕ(z) dÃ(z).

By Lemma 4.2, we have UwUz = Uϕw(z)Vλ, where λ = (zw − 1)/(1− wz). Hence,

〈UwT
(j)
ϕ Uwf, g〉 =

∫

D

〈f, U∗

uej〉〈Uuej , g〉ϕ ◦ ϕw(u)dÃ(u) = 〈T (j)
ϕ◦ϕw

f, g〉.

�

Lemma 4.4. If S is a finite sum of operators of the form T
(j)
ϕ1

. . . T
(j)
ϕn , where

ϕi ∈ L∞(D, dA) and j ∈ N, then

(4.5) sup
z∈D

‖Sz1‖p < ∞, sup
z∈D

‖S∗

z1‖p < ∞

for every p ∈ (1,∞).

P r o o f. Without loss of generality, we may assume that S = T
(j)
ϕ1

. . . T
(j)
ϕn . For

p ∈ (1,∞), by Lemmas 4.1 and 4.3, we have

(4.6) ‖Sz1‖p = ‖T (j)
ϕ1◦ϕz

. . . T
(j)
ϕn◦ϕz

1‖p 6 Cn
j (j + 1)n‖ϕ1‖∞ . . . ‖ϕn‖∞.

It is easy to check that (T
(j)
ϕi )

∗ = T
(j)
ϕi
and then

(4.7) ‖S∗

z1‖p = ‖T (j)
ϕn◦ϕz

. . . T
(j)
ϕ1◦ϕz

1‖p 6 Cn
j (j + 1)n‖ϕn‖∞ . . . ‖ϕ1‖∞.

�
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The following theorem can be found in [4].

Theorem 4.5. Suppose that S is a bounded operator on Ap such that

(4.8) sup
z∈D

‖Sz1‖m < ∞ and sup
z∈D

‖S∗

z1‖m < ∞

for some m > 3/(p1 − 1), where p1 = min{p, q}, then S is compact if and only if

S̃ → 0 as z → ∂D.

Theorem 4.6. Suppose that S is a finite sum of operators of the form T
(j)
ϕ1

. . . T
(j)
ϕn

on Ap, where each ϕi ∈ L∞(D, dA), j ∈ N, then S is compact on Ap if and only if

S̃(z) → 0 as z → ∂D.

P r o o f. By Lemma 4.4 and Theorem 4.5, it is easy to get the result desired. �
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