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Abstract. We show that for every p ∈ (1,∞) there exists a weight w such that the Lorentz
Gamma space Γp,w is reflexive, its lower Boyd and Zippin indices are equal to zero and its
upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood
maximal operator is unbounded on the constructed reflexive space Γp,w and on its associate
space Γ′p,w.
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1. Introduction

Let m denote the standard Lebesgue measure on R
n. The Hardy-Littlewood

maximal operator M is one of the most important operators in harmonic analysis.

For a function f ∈ L1
loc(R

n,m) it is defined by

(Mf)(x) := sup
Q∋x

1

m(Q)

∫

Q

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the axes.

We are interested in the following question: Given a class S of Banach function

spaces (see [1], [9]), is it true that the Hardy-Littlewood maximal operator M is

bounded on each reflexive space X(Rn,m) ∈ S or on its associate space X ′(Rn,m)?

It is well known that the answer is “yes“ for the class of all Lebesgue spaces. We show
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that the answer is “no” for the class of Lorentz Gamma spaces Γp,w(R
n,m) (being a

proper subclass of the class of all rearrangement-invariant Banach function spaces).

A measurable function w : (0,∞) → [0,∞) is called a weight function. Follow-

ing [6], page 289, we say that a weight function belongs to the class Dp, 1 6 p < ∞,

whenever for all x ∈ (0,∞),

0 < W (x) :=

∫ x

0

w(t) dt < ∞, Wp(x) := xp

∫ ∞

x

t−pw(t) dt < ∞.

Let (R, µ) be a totally σ-finite nonatomic measure space such that µ(R) = ∞. The

Lorentz Gamma space Γp,w(R, µ) is the set of all µ-measurable functions f : R → C

such that

‖f‖Γp,w
:=

(
∫ ∞

0

(f∗∗(t))pw(t) dt

)1/p

< ∞,

where

f∗∗(t) :=
1

t

∫ t

0

f∗(x) dx

and f∗ is the decreasing rearrangement of f (see e.g. [1], Chapter 2, Section 1

or [7], Chapter II, §2 for its definition and properties). The Lorentz Gamma spaces

were introduced by Sawyer (see [10]), but they can be traced to earlier works of

Calderón, Hunt, O’Neil and others. These spaces have been studied by many au-

thors (see e.g. [3], [4], [5], [6] and [9], Chapter 10 and also the references in the above

monograph). The Lorentz Gamma spaces are examples of rearrangement-invariant

(or symmetric) Banach function spaces (see [1], Chapter 2 and [7], Chapter II for

the theory of rearrangement-invariant Banach function spaces). We should also note

that one can study quasi-Banach Lorentz Gamma spaces Γp,w if one admits that

0 < p < ∞, see e.g. [6].

It is well known that Boyd and Zippin indices play important role in many

questions related to interpolation properties of rearrangement-invariant spaces and

boundedness behavior of classical operators of harmonic analysis (like the Hardy-

Littlewood maximal operator or the Hilbert transform) on rearrangement-invariant

spaces. The Boyd indices

0 6 α(X) 6 β(X) 6 1

and Zippin indices

0 6 p(X) 6 q(X) 6 1

of a rearrangment-invariant space X(R, µ) were introduced in [2] and [11], respec-

tively. We refer to [1], Chapter 3, [7], Chapter 2, and [8] for their definitions, prop-

erties, and applications in interpolation theory and harmonic analysis. Boyd indices

of Lorentz Gamma spaces Γp,w were studied in [4], [6].
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In this paper we construct an example of a reflexive Lorentz Gamma space

Γp,w(R, µ), whose Boyd and Zippin indices behave “badly”, (one says that the

indices are trivial in this case) by rather elementary techniques:

α(Γp,w) = p(Γp,w) = 0, β(Γp,w) = q(Γp,w) = 1.

It may well be that examples of reflexive rearrangement-invariant spaces X(R, µ)

with both Boyd indices being trivial are known to experts or can be obtained from

known results, but we were unable to find a published example of such space. More-

over, we believe that an example of a reflexive Lorentz Gamma space Γp,w(R, µ) with

trivial Boyd and Zippin indices is of interest because it leads to the negative answer

to the question posed above not only for the whole class of rearrangement-invariant

Banach function spaces, but to its narrower subclass of Lorentz Gamma spaces.

For a precise definition of what we mean by a “rearrangement-invariant Banach

function space“ and by its “associate space”, see [1], Chapter 1, Definitions 1.1

and 2.1; Chapter 2, Definition 4.1 and Section 2 below. Definitions of Boyd and

Zippin indices are also given in Section 2.

Theorem 1.1 (Main result). Let (R, µ) be a totally σ-finite nonatomic measure

space such that µ(R) = ∞. If p ∈ (1,∞) and

(1.1) w(x) :=











1

x(1 − log x)2
, 0 < x < 1,

xp−1

(1 + log x)2
, x > 1,

then the Lorentz Gamma space Γp,w(R, µ) is a reflexive rearrangement-invariant

Banach function space and its Boyd and Zippin indices are trivial, that is,

α(Γp,w) = p(Γp,w) = 0, β(Γp,w) = q(Γp,w) = 1.

Combining Theorem 1.1 with the Lorentz-Shimogaki theorem (see e.g. [1], Chap-

ter 3, Theorem 5.17), we arrive at the following corollary.

Corollary 1.2. Let p ∈ (1,∞) and a weight w be given by (1.1). Then the

Lorentz Gamma space Γp,w(R
n,m) is a reflexive rearrangement-invariant Banach

function space and the Hardy-Littlewood maximal operator M is unbounded on the

space Γp,w(R
n,m) and on its associate space Γ′

p,w(R
n,m).
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The paper is organized as follows. In Section 2, we recall the notions of

a rearrangement-invariant Banach function space X(R, µ) and its associate space

X ′(R, µ), and give the definitions of its Boyd indices α(X), β(X) and Zippin indices

p(X), q(X). In Section 3, we show that the Lorentz Gamma spaces Γp,q(R, µ) fall

into the class of rearrangement-invariant Banach function spaces if 1 6 p < ∞ and

w ∈ Dp. Further, we formulate necessary and sufficient conditions for the reflexivity

of Γp,w(R, µ). In Section 4, we prove Theorem 1.1 and Corollary 1.2.

2. Rearrangement-invariant Banach function spaces and their indices

2.1. Banach function spaces. Let (R, µ) be a totally σ-finite nonatomic mea-

sure space such that µ(R) = ∞. The set of all µ-measurable complex-valued

functions on R is denoted by M(R, µ). Let M+(R, µ) be the subset of functions

inM(R, µ) whose values lie in [0,∞]. The characteristic function of a µ-measurable

set E ⊂ R is denoted by χE . Following [1], Chapter 1, Definition 1.1, a mapping

̺ : M
+(R, µ) → [0,∞]

is called a Banach function norm if, for all functions f , g, fn (n ∈ N) in M
+(R, µ),

for all constants a > 0, and for all µ-measurable subsets E ofR, the following axioms

hold:

(A1) ̺(f) = 0 ⇔ f = 0 a.e., ̺(af) = a̺(f), ̺(f + g) 6 ̺(f) + ̺(g),

(A2) 0 6 g 6 f a.e. ⇒ ̺(g) 6 ̺(f) (the lattice property),

(A3) 0 6 fn ↑ f a.e. ⇒ ̺(fn) ↑ ̺(f) (the Fatou property),

(A4) µ(E) < ∞ ⇒ ̺(χE) < ∞,

(A5) µ(E) < ∞ ⇒
∫

E
f(x) dµ(x) 6 CE̺(f)

with CE ∈ (0,∞), which may depend on E and ̺ but is independent of f . When

functions differing only on a set of µ-measure zero are identified, the set X(R, µ) of

all functions f ∈ M(R, µ) for which ̺(|f |) < ∞ is called a Banach function space.

For each f ∈ X(R, µ), the norm of f is defined by

‖f‖X := ̺(|f |).

Under the natural linear space operations and under this norm, the set X(R, µ)

becomes a Banach space (see [1], Chapter 1, Theorems 1.4 and 1.6). If ̺ is a Banach

function norm, its associate norm ̺′ is defined on M
+(R, µ) by

̺′(g) := sup

{
∫

R

f(x)g(x) dµ(x) : f ∈ M
+(R, µ), ̺(f) 6 1

}

, g ∈ M
+(R, µ).
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It is a Banach function norm itself, see [1], Chapter 1, Theorem 2.2. The Banach

function space X ′(R, µ) determined by the Banach function norm ̺′ is called the

associate space (Köthe dual) of X(R, µ). The associate space X ′(R, µ) is naturally

identified with a subspace of the (Banach) dual space [X(R, µ)]∗.

2.2. Rearrangement-invariant Banach function spaces. Let M0(R, µ) and

M
+
0 (R, µ) be the classes of a.e. finite functions in M(R, µ) and M

+(R, µ), respec-

tively. The distribution function µf of f ∈ M0(R, µ) is given by

µf (λ) := µ{x ∈ R : |f(x)| > λ}, λ > 0.

Two functions f, g ∈ M0(R, µ) are said to be equimeasurable if µf (λ) = µg(λ) for

all λ > 0. The decreasing rearrangement of f ∈ M0(R, µ) is the function defined by

f∗(t) := inf{λ : µf (λ) 6 t}, t > 0.

We use here the standard convention that inf ∅ = ∞.

A Banach function norm ̺ : M
+(R, µ) → [0,∞] is called rearrangement-invariant

if for every pair of equimeasurable functions f, g ∈ M
+
0 (R, µ), the equality ̺(f)= ̺(g)

holds. In that case, the Banach function space X(R, µ) generated by ̺ is said to

be a rearrangement-invariant Banach function space (or simply a rearrangement-

invariant space). Lebesgue spaces Lp(R, µ), 1 6 p 6 ∞, Orlicz spaces LΦ(R, µ),

and Lorentz spaces Lp,q(R, µ) are classical examples of rearrangement-invariant

Banach function spaces (see e.g. [1] and the references therein). By [1], Chapter 2,

Proposition 4.2, if a Banach function space X(R, µ) is rearrangement-invariant, then

its associate space X ′(R, µ) is also rearrangement-invariant.

2.3. Boyd and Zippin indices. A measurable function ̺ : (0,∞) → (0,∞) is

said to be submultiplicative if

̺(x1x2) 6 ̺(x1)̺(x2) ∀x1, x2 ∈ (0,∞).

The behavior of a measurable submultiplicative function ̺ in neighborhoods of zero

and infinity is described by the quantities

(2.1) α(̺) := sup
x∈(0,1)

log ̺(x)

log x
= lim

x→0

log ̺(x)

log x
,

β(̺) := inf
x∈(1,∞)

log ̺(x)

log x
= lim

x→∞

log ̺(x)

log x
,

where

(2.2) −∞ < α(̺) 6 β(̺) < ∞,
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see [7], Chapter 2, Theorem 1.3. The numbers α(̺) and β(̺) are called the lower

and upper indices of the measurable submultiplicative function ̺.

Let (R, µ) be a totally σ-finite nonatomic measure space such that µ(R) = ∞.

Suppose X(R, µ) is a rearrangement-invariant Banach function space generated

by a rearrangement-invariant Banach function norm ̺. In this case, the Luxem-

burg representation theorem (see [1], Chapter 2, Theorem 4.10) provides a unique

rearrangement-invariant Banach function norm ¯̺ over the half-line R+ = (0,∞)

equipped with the Lebesgue measure m, defined by

¯̺(h) := sup

{
∫ ∞

0

g∗(t)h∗(t) dt : ̺′(g) 6 1

}

,

and such that ̺(f) = ¯̺(f∗) for all f ∈ M
+
0 (R, µ). The rearrangement-invariant

Banach function space generated by ¯̺ is denoted by X(R+,m).

For each t > 0 let Et denote the dilation operator defined on M(R+,m) by

(Etf)(s) = f(st), 0 < s < ∞.

With X(R, µ) and X(R+,m) as above, let h(t,X) denote the norm of E1/t as

an operator on X(R+,m). By [1], Chapter 3, Proposition 5.11, for each t > 0,

the operator Et is bounded on X(R+,m) and the function h(·, X) is increasing (and

hence, measurable) and submultiplicative on (0,∞). The indices of h(·, X) are called

the Boyd indices of the rearrangement-invariant Banach function space X(R, µ) and

are denoted by

α(X) := α(h(·, X)), β(X) := β(h(·, X)).

Following [1], Chapter 2, Definition 5.1, for each finite value t let E ⊂ R be such

that µ(E) = t and let

ϕX(t) := ‖χE‖X .

The function ϕX so defined is called the fundamental function of the rearrangement-

invariant Banach function space X(R, µ). Following [11], page 271 (see also [8],

page 28), for a given rearrangement-invariant Banach function space X(R, µ) with

the fundamental function ϕX , let us consider the function

M(t,X) := sup
0<x<∞

ϕX(tx)

ϕX(x)
, t ∈ (0,∞).

It is easy to check that this function is increasing (and hence, measurable) and

submultiplicative on (0,∞). The indices of M(·, X) are called the Zippin (or funda-

mental) indices of the rearrangement-invariant Banach function space X(R, µ) and

are denoted by

p(X) := α(M(·, X)), q(X) := β(M(·, X)).
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It is easy to see that M(t,X) 6 h(t,X) for t ∈ (0,∞). Combining this inequality

with [1], Chapter 3, Proposition 5.13, we conclude that

(2.3) M(t,X) 6 h(t,X) 6 max{1, t}, t ∈ (0,∞).

It follows from (2.1)–(2.3) that

0 6 α(X) 6 p(X) 6 q(X) 6 β(X) 6 1.

The lower Boyd (or Zippin) index is said to be trivial if α(X) = 0 (or p(X) = 0).

Analogously, the upper Boyd (or Zippin) index is said to be trivial if β(X) = 1

(or q(X) = 1).

Note that for the Lebesgue spaces Lp(R, µ), 1 6 p 6 ∞, all these indices are equal

to 1/p. Hence the Lebesgue space Lp(R, µ) is reflexive if and only if its Boyd and

Zippin indices are nontrivial. In contrast, Theorem 1.1 asserts that an analogous

result fails for more general Lorentz Gamma spaces Γp,w(R, µ).

3. Lorentz Gamma spaces

3.1. Lorentz Gamma spaces are rearrangement-invariant Banach func-

tion spaces. The following lemma contains well known information on Lorentz

Gamma spaces (see e.g. [4], Section 2 and [6], Section 0). We give its proof here for

completeness.

Lemma 3.1. Let (R, µ) be a totally σ-finite nonatomic measure space such that

µ(R) = ∞. If 1 6 p < ∞ and w ∈ Dp, then the Lorentz Gamma space Γp,w(R, µ)

is a rearrangement-invariant Banach function space. The fundamental function of

Γp,w(R, µ) is given by

(3.1) ϕΓp,w
(t) = (W (t) +Wp(t))

1/p, t ∈ (0,∞).

P r o o f. Axioms (A1)–(A3) in the definition of a Banach function space are

satisfied in view of [1], Chapter 2, Proposition 3.2 and Theorem 3.4.

If µ(E) = 0, then χ∗∗
E (x) = 0 for x ∈ (0,∞) and ‖χE‖Γp,w

= 0. Let E ⊂ R be

a set of measure t > 0. Then χ∗
E = χ[0,t] and χ∗∗

E (x) = max{1, t/x}. Hence

ϕΓp,w
(t) = ‖χE‖Γp,w

=

(
∫ t

0

w(x) dx+

∫ ∞

t

(t/x)pw(x) dx

)1/p

= (W (t) +Wp(t))
1/p.

If w ∈ Dp, then the right-hand side of the above inequality is finite. Therefore

µ(E) < ∞ ⇒ ‖χE‖Γp,w
< ∞. Thus, Axiom (A4) is satisfied and the fundamental

function of the space Γp,w is given by (3.1).
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Since w ∈ Dp, we have 0 < W (t) < ∞ for all t > 0. Let E ⊂ R be a set of

positive measure t and f ∈ Γp,w(R, µ). By the Hardy-Littlewood inequality (see [1],

Chapter 2, inequality (3.1) and Theorem 2.2),

(3.2)

∫

E

|f(y)| dµ(y) 6

∫ t

0

f∗(x) dx = tf∗∗(t).

Taking into account that f∗∗ is decreasing (see [1], Chapter 2, Proposition 3.2), we

have

(3.3) tf∗∗(t) =
t

(W (t))1/p
f∗∗(t)

(
∫ t

0

w(x) dx

)1/p

6
t

(W (t))1/p

(
∫ t

0

(f∗∗(x))pw(x) dx

)1/p

6
t

(W (t))1/p
‖f‖Γp,w

.

It follows from (3.2)–(3.3) that

µ(E) < ∞ ⇒

∫

E

|f(y)| dµ(y) 6 CE‖f‖Γp,w
,

where CE = µ(E)/(W (µ(E)))1/p. Thus, Axiom (A5) is satisfied. �

3.2. Reflexivity of Lorentz Gamma spaces. Now we recall necessary and

sufficient conditions for the reflexivity of Lorentz Gamma spaces.

Lemma 3.2. Let (R, µ) be a totally σ-finite nonatomic measure space such that

µ(R) = ∞. Suppose that w ∈ Dp is a weight such that

(3.4)

∫ x

0

w(t)t−p dt = ∞ ∀x ∈ (0,∞).

Then the Lorentz Gamma space Γp,w(R, µ) is reflexive if and only if

W (∞) =

∫ ∞

0

w(t) dt = ∞ and V (∞) =

∫ ∞

0

v(t) dt = ∞,

where 1/p+ 1/p′ = 1 and

v(t) =
tp

′
−1W (t)Wp(t)

(W (t) +Wp(t))p
′+1

, t ∈ (0,∞).

1206



The above lemma is proved in [3], Lemma 6.4 in the case of (R, µ) = (R+,m). Its

proof is a combination of three ingredients. Two of these ingredients, namely, see [1],

Chapter 1.1, Corollary 4.4 and [4], Theorem A, are proved for the measure spaces

(R, µ) under consideration. It remains to observe that, although the last ingredient

(see [6], Proposition 1.1 (1)) is proved for (R+,m), an inspection of its proof shows

that it is also valid for (R, µ).

4. Proof of the main results

4.1. Proof of Theorem 1.1. Taking into account (1.1), a straightforward cal-

culation gives that

W (x) =
1

1− log x
for x ∈ (0, 1],(4.1)

Wp(x) =
xp

1 + log x
for x ∈ [1,∞).(4.2)

Thus w ∈ Dp. By Lemma 3.1, the Lorentz Gamma space Γp,w(R, µ) is a rearrange-

ment-invariant Banach function space.

Let us show that the space Γp,w(R, µ) is reflexive. Using L’Hôpital’s rule, one can

easily derive from (1.1) that

lim
x→∞

W (x)

xp(1 + log x)−2
=

1

p
,(4.3)

lim
x→0

Wp(x)

(1− log x)−2
= lim

x→0

∫∞

x t−pw(t) dt

x−p(1− log x)−2
=

1

p
.(4.4)

It follows from (4.2) and (4.3) that

(4.5) W (∞) = lim
x→∞

W (x) = ∞

and

(4.6) v(x) =
xp′

−1W (x)Wp(x)

(W (x) +Wp(x))p
′+1

= xp′
−1+2p−p(p′+1) 1 + o(1)

p(1 + log x)3

( 1 + o(1)

p(1 + log x)2
+

1

(1 + log x)

)−(p′+1)

=
1

px
(1 + log x)p

′
−2(1 + o(1))

( 1 + o(1)

p(1 + log x)
+ 1

)−(p′+1)

=
1

px
(1 + log x)p

′
−2(1 + o(1)) as x → ∞.
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Since p′ > 1, i.e., 2− p′ < 1, it follows from (4.6) that

(4.7) V (∞) =

∫ ∞

0

v(x) dx > const

∫ ∞

1

1

x(1 + log x)2−p′
dx = ∞.

It is easy to see that (3.4) holds for w defined by (1.1). Then it follows from (4.5)

and (4.7) that the conditions of Lemma 3.2 are satisfied and hence the space

Γp,w(R, µ) is reflexive.

Let us calculate the Boyd and Zippin indices of the space Γp,w(R, µ). By

Lemma 3.1, the fundamental function of Γp,w(R, µ) is given by the formula

(4.8) ϕΓp,w
(x) = (W (x) +Wp(x))

1/p, x ∈ (0,∞).

If t ∈ [1,∞), then it follows from (4.2) and (4.3) that

(4.9) sup
0<x<∞

W (tx) +Wp(tx)

W (x) +Wp(x)
> lim

x→∞

W (tx) +Wp(tx)

W (x) +Wp(x)

= tp lim
x→∞

( 1 + log x

1 + log(tx)

)2

lim
x→∞

1 + o(1) + p(1 + log(tx))

1 + o(1) + p(1 + log x)
= tp.

If t ∈ (0, 1), then it follows from (4.1) and (4.4) that

(4.10) sup
0<x<∞

W (tx) +Wp(tx)

W (x) +Wp(x)
> lim

x→0

W (tx) +Wp(tx)

W (x) +Wp(x)

= lim
x→0

( 1− log x

1− log(tx)

)2

lim
x→0

p(1− log(tx)) + 1 + o(1)

p(1− log x) + 1 + o(1)
= 1.

Combining (4.8)–(4.10), we conclude that for t ∈ (0,∞),

(4.11) M(t,Γp,w) = sup
0<x<∞

ϕΓp,w
(tx)

ϕΓp,w
(x)

= sup
0<x<∞

(W (tx) +Wp(tx)

W (x) +Wp(x)

)1/p

> max{1, t}.

Then it follows from (2.3) and (4.11) that

M(t,Γp,w) = h(t,Γp,w) = max{1, t}, t ∈ (0,∞).

Applying (2.1) to the submultiplicative functions M(·,Γp,w) and h(·,Γp,w), we get

α(Γp,w) = p(Γp,w) = lim
t→0

logmax{1, t}

log t
= 0,

β(Γp,w) = q(Γp,w) = lim
t→∞

logmax{1, t}

log t
= 1,

which completes the proof. �
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4.2. Proof of Corollary 1.2. In view of Theorem 1.1, the Lorentz Gamma space

Γp,w(R
n,m) is a reflexive rearrangement-invariant Banach function space such that

its Boyd indices are trivial, that is, α(Γp,w) = 0 and β(Γp,w) = 1. Since β(Γp,w) = 1,

the Hardy-Littlewood maximal operator M is unbounded on the space Γp,w(R
n,m)

in view of the Lorentz-Shimogaki theorem (see e.g. [1], Chapter 3, Theorem 5.17).

By [1], Chapter 3, Proposition 5.13, β(Γ′
p,w) = 1 − α(Γp,w) = 1. Now, applying [1],

Chapter 3, Theorem 5.17 to the associate space Γ′
p,w(R

n,m), we conclude that the

operator M is unbounded on the space Γ′
p,w(R

n,m). �
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