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Abstract. We prove that the Niemytzki plane is κ-metrizable and we try to explain the
differences between the concepts of a stratifiable space and a κ-metrizable space. Also, we
give a characterisation of κ-metrizable spaces which is modelled on the version described
by Chigogidze.
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1. Introduction

The aim of this paper is to present elementary or alternative proofs of some facts

about the class of κ-metrizable spaces. Our approach is focused on completely

regular spaces, as it was intended by Shchepin, compare [8], page 164. The class of

κ-metrizable spaces was first considered by Shchepin, see [8]. This class contains all

metric spaces and it is wide enough to include many important classes of spaces that

are not metrizable, compare [8] and [9]. To emphasise our motivations, let us quote

Sierpiński’s book [10].

The theorems of any geometry (e.g. Euclidean) follow, as is well known, from

a number of axioms, i.e. hypotheses about the space considered, and from accepted

definitions. A given theorem may be a consequence of some of the axioms and may

not require all of them.

As a by-product, we obtain a class of spaces which we call ro-stratifiable. We were

not able to find a publication in which ro-stratifiable spaces are examined. As it is to

be shown, the case of the Niemytzki plane, see the definition in [5], page 22, indicates

that certain properties of the Euclidean metric are crucial in a non-metrizable setting.

Our notations are standard, following [5] or [11]. Let us recall that a subset U

of a topological space X is regular open whenever it is the interior of a closed set;
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in other words, U is a regular open set whenever U = intX clX(U). We denote the

family of all regular open subsets of X by RO(X). The complement of a regular

open set is called a regular closed set. So, F ⊆ X is a regular closed set whenever

F = cl intF. A subset G of a topological space X is a co-zero set whenever there

exists a continuous function f : X → [0, 1] such that G = f−1((0, 1]).

A T1-space X is stratifiable if, for the family B of all open subsets of X there exists
a family of functions {fU : U ∈ B} satisfying conditions (1)–(3):
(1) If U ∈ B, then U = f−1

U ((0, 1]).

(2) If U, V ∈ B and U ⊆ V , then fU (x) 6 fV (x) for any x ∈ X .

(3) For any U ∈ B, the function fU : X → [0, 1] is continuous.

(4) For any decreasing sequence (Uα) of regular open sets, if

W = int
⋂

α

Uα,

then fW (x) = inf
α

fUα(x) for any x ∈ X.

A family {fU : U ∈ RO(X)} of functions satisfying (1)–(4) is called a κ-metric.

Following Shchepin, see [8], page 164 and compare [9], page 407, a completely regular

space is called κ-metrizable whenever it has a κ-metric.

The class ofM3-spaces, see [3], is thus the class of stratifiable spaces, compare [2].

Shchepin has introduced the concept of a κ-metrizable space with the help of regular

closed sets; conditions (K1)–(K4) for the notion of a κ-metric, see [9], page 164, are

direct translations, via de Morgan’s laws, of conditions (1)–(4).

In the next part, we show why the Sorgenfrey line, see the definition in [5], page 21,

is not stratifiable, even though it is κ-metrizable. Also, we show that the double

arrow space is ro-stratifiable, but not κ-metrizable, see the ends of parts 2 and 3. This

indicates that condition (4) is independent of conditions (1)–(3). A characterisation

of a κ-metrizable space is stated at Propositions 5 and 6. In the last part, we discuss

the properties of the Niemytzki plane.

2. B-approximations and ro-stratifiable spaces

If X is a T0-space, B is a family of open subsets of X , then a family of functions
{fU : U ∈ B}, where fU : X → [0, 1] for all U in B, is called a B-stratification if it
fulfils conditions (1)–(3). If a space X has a B-stratification, then the space X is
said to be B-stratifiable. If A ⊆ B and the space X is B-stratifiable, then it is also
A-stratifiable. If B = RO(X), then we will say that X is ro-stratifiable instead of

RO(X)-stratifiable. If a space X is ro-stratifiable, then any regular open set of X is a

co-zero set by conditions (1) and (3). Moreover, if the family B = RO(X) fulfils condi-

tions (1) and (3), then the spaceX is κ-normal; recall that a completely regular space
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is κ-normal whenever any pair of nonempty disjoint and regular closed sets can be

separated by disjoint open sets, see [9], compare [1]. To see this, fix disjoint and regu-

lar closed subsets F,G ⊆ X . Conditions (1) and (3) imply that there exist continuous

functions f, g : X → [0, 1] such that F = f−1(0) and G = g−1(0). Then preimages of

[0, 12 ) and (
1
2 , 1] via the continuous function f/(f + g) separate F and G. Under the

additional assumption that each regular closed subset ofX is a Gδ-set, one can verify,

using a modified proof of Urysohn’s lemma, that if the space X is κ-normal, then it

is also ro-stratifiable. This additional assumption is necessary as shown below.

There are compact Hausdorff spaces, and hence κ-normal spaces, which are

not ro-stratifiable. For example, a compact Hausdorff space, containing a regular

open subset which is not a co-zero set, cannot be ro-stratifiable. Any such space

is κ-normal, being a normal space. To see an example, set

Y = {α : α 6 ω1} ∪
{ 1

n
: n > 0

}

and consider the linear order (Y,<) which is the restriction of the well order of the

ordinals on {α : α 6 ω1} and inherits the order from the real line on {1/n : n > 0}
and if α 6 ω1 and n > 0, then α < 1/n. The linear topology on Y generated by < is

compact and Hausdorff. In this topology, there are regular open sets which are not

co-zero sets, for example {α : α < ω1}.
In the above reasoning, we do not use condition (2). For more results concerning

κ-normal spaces, compare [6]. Also, there are many examples of completely regular

spaces which are not κ-normal, e.g. the ones which can be built using a technique

called the Jones’ machine, compare [7] or [1].

It was noted in [3], pages 106–107 that the Sorgenfrey line S, i.e. the real line with

a topology generated by the collection of all intervals of the form [a, b), where a, b ∈ R

and a < b, is not stratifiable, being a paracompact and perfectly normal space; in

other words, if B is the family of all open subsets of S, then no family {fU : U ∈ B}
of functions fulfils conditions (1)–(3) with respect to S and B, see Proposition 1.
Nonetheless, the family consisting of characteristic functions of closed-open sets of S

fulfils conditions (1)–(3).

Proposition 1. If A = {[x, y) : x < y} ∪ {(x, y) : x, y ∈ Q}, then the Sorgenfrey
line is not A-stratifiable.

P r o o f. Suppose that a family {fU : U ∈ A} is anA-stratification, i.e. it satisfies
conditions (1)–(3) with respect to S and A. For an interval (a, a+2) ∈ A and n > 0,

put

Rn = (a, a+ 2) ∩
{

x : f[x,x+1)(x) >
1

n

}

.
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Since (a, a + 1) ⊆ ⋃{Rn : n > 0}, using the Baire category theorem, choose n such
that

(a, a+ 1) ∩ int clRn 6= ∅,
where the interior and the closure are taken with respect to the Euclidean topology.

Next, choose a rational number x ∈ (a, a + 1) ∩ Rn and a decreasing sequence (xk)

converging to x such that xk ∈ (a, a + 1) ∩ Rn. Thus, for all k we have xk + 1 ∈
(x, a+ 2), so by condition (2), we obtain

f(x,a+2)(xk) > f[xk,xk+1)(xk) >
1

n
.

Since x /∈ (x, a + 2), by condition (1), we obtain f(x,a+2)(x) = 0, which contradicts

the continuity of f(x,a+2). �

It is known that the Sorgenfrey line S is a κ-metrizable space, compare [12],

page 507. Therefore the space S is ro-stratifiable. We present an alternative proof,

using the sequential criterion for the continuity of a function. If U is a regular open

subset of S, then put

fU (x) =

{

sup{(q − x) : [x, q) ⊆ U ∩ [x, x+ 1)} when x ∈ U ;

0 when x /∈ U.

By the definition, the family {fU : U ∈ RO(S)} fulfils conditions (1) and (2). To

verify condition (3), we shall check that each function fU : S → [0, 1] is continuous.

Indeed, suppose that a sequence (xn) is convergent to x. Since we consider conver-

gence in S, we can assume that for all n, x 6 xn. If x ∈ U , then, by the definition

of fU , the sequence (fU (xn)) converges to fU (x). But if x /∈ U , then the fact that

U ∈ RO(S) implies that there is a decreasing sequence (yn) converging to x such

that yn /∈ U and xn < yn. Then, again using the definition of fU , we check that

fU (xn) 6 yn − x, which implies that the sequence (fU (xn)) converges to 0 = fU (x).

Now, we will slightly modify this definition of a stratifiable space which was pro-

posed in [2], page 1. Let I = (0, 1) ∩ Q be the set of all rational numbers from the

open unit interval. Fix a topological space X and its base B. Let us assume that
every U ∈ B is assigned a family {Uq : q ∈ I}, consisting of open sets. We will call the
collection {{Uq : q ∈ I} : U ∈ B} a B-approximation if it satisfies conditions (a)–(c).
(a) If U ∈ B, then U =

⋃{Uq : q ∈ I}.
(b) If U, V ∈ B, q ∈ I and U ⊆ V , then Uq ⊆ Vq.

(c) If U ∈ B, p, q ∈ I and p < q, then cl(Uq) ⊆ Up.

Observe that if {{Uq : q ∈ I} : U ∈ RO(X)} is an RO(X)-approximation, then the

family

{{int cl(Uq) : q ∈ I} : U ∈ B}
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is also an RO(X)-approximation. The following propositions explain a connection

between B-approximations and B-stratifications.

Proposition 2. If a family {fU : U ∈ B} is a B-stratification, then the family

{{f−1
U ((q, 1]) : q ∈ I} : U ∈ B}

is a B-approximation.

P r o o f. The sets Uq = f−1
U ((q, 1]) are open since each fU is a continuous func-

tion. By the definition of fU , conditions (1) and (a) are equivalent. For the same

reasons, conditions (2) and (b) are equivalent. If p < q, then we have

cl(Uq) ⊆ f−1
U ([q, 1]) ⊆ Up

since fU is a continuous function. �

Proposition 3. If a collection {{Uq : q ∈ I} : U ∈ B} is a B-approximation, then
the family {fU : U ∈ B}, where

fU (x) =

{

sup{q ∈ I : x ∈ Uq} when x ∈ U,

0 when x /∈ U,

is a B-stratification.

P r o o f. Clearly, condition (b) implies (2). For every U ∈ B, the function fU is

upper semi-continuous since

f−1
U ([0, q)) =

⋃

{X \ cl(Up) : p < q}.

Indeed, if fU (x) < q, then take p1, p2 ∈ I such that fU (x) < p1 < p2 < q. Condi-

tion (c) implies that x /∈ Up1
⊇ cl(Up2

). But when p < q and x /∈ cl(Up), we have

x /∈ Up. Again, by condition (c) and the definition of fU , we check that fU (x) 6 p.

Each function fU is lower semi-continuous since

f−1
U ((q, 1]) =

⋃

{Up : p > q}.

Indeed, if fU (x) > q, then, by the definition of fU , there exists p > q such that

x ∈ Up. But when x ∈ Up and p > q, then fU (x) > p > q. We have shown that each

function fU is continuous. Obviously, U =
⋃{Uq : q ∈ I} implies U = f−1

U ((0, 1]).

�
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Borges in Theorem 5.2 of [2] characterised a stratifiable space as a space with a

B-stratification, where B consists of all nonempty open sets. So, Propositions 2 and 3
bring us to another characterisation of stratifiable spaces.

Theorem 4. Let B be the family of all open subsets of a topological space X .
Then the space X is stratifiable if and only if it has a B-approximation.

Consider the lexicographic order on D = [0, 1]×{0, 1}. Note that D with the order
topology is well known as the double arrow space or the two arrows space. Observe

that regular open subsets of D are unions of pairwise disjoint closed-open intervals.

Indeed, if U ⊆ D is an open set, then for every x in U let Ux be the union of all open

intervals I ⊆ U such that x ∈ I. If U is regular open, then the family {Ux : x ∈ U}
consists of closed and open (i.e. clopen) subsets of D and is a partition of U . Since

for each x ∈ U there exist a, b ∈ R such that Ux = ((a, 0), (b, 1)) = [(a, 1), (b, 0)], we

put

fU (x) =











0 when x /∈ U ;

b− a when x ∈ Ux = [(a, 1), (b, 0)];

1 when x ∈ U ∩ {(0, 0), (1, 1)}.
Then, check that the family {fU : U ∈ RO(D)} is an RO(D)-stratification.

3. On κ-metrizable spaces

The notion of a κ-metrizable space (a κ-metric space) has been introduced

by Shchepin, see [8], compare [9]. In [4], Chigogidze gave a characterisation of

κ-metrizable spaces. However, in Mathematical Reviews H.H.Wicke, the reviewer

of [4], noted: This article is an announcement of results; proofs are not included.

So, we propose a slight modification of the characterisation from [4]. Assume that

a space X is completely regular and ro-stratifiable. Fix an RO(X)-stratification

{fU : U ∈ RO(X)} and let {{Uq : q ∈ I} : U ∈ RO(X)} be its corresponding
RO(X)-approximation, obtained by the formula Uq = f−1

U ((q, 1]). Then consider

the following condition, where the sequence (Uα) may be transfinite.

(d) If (Uα) is a decreasing sequence of regular open sets, p, q ∈ I and p < q, then

⋂

α

cl(Uα
q ) ⊆

(

int
⋂

α

Uα
)

p
.

Because of [9], Theorem 18 the double arrow space D, being compact, first-countable

and of weight continuum, is not κ-metrizable. Thus, the class of all ro-stratifiable

spaces is wider than the class of all κ-metrizable spaces.
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Proposition 5. If an RO(X)-approximation fulfils condition (d), then its corre-

sponding RO(X)-stratification fulfils condition (4).

P r o o f. Fix an RO(X)-approximation {{Uq : q ∈ I} : U ∈ RO(X)} and its
corresponding RO(X)-stratification {fU : U ∈ RO(X)}. Let (Uα) be a decreasing

sequence of regular open sets and let

W = int
⋂

α

Uα.

Suppose that there exists x in X such that fW (x) 6= inf
α

fUα(x). By condition (2),

we have fW (x) < inf
α

fUα(x). Choose rationals p, q such that

fW (x) < p < q < inf
α

fUα(x).

Since fW (x) < p implies x ∈ X \ cl(Wp), by condition (d), we get

x ∈ X \Wp ⊆
⋃

α

X \ cl(Uα
q ).

So, there exists β such that x ∈ X \ cl(Uβ
q ), which implies that fUβ (x) 6 q; a con-

tradiction. �

Proposition 6. If an RO(X)-stratification fulfils condition (4), then its corre-

sponding RO(X)-approximation fulfils condition (d).

P r o o f. Fix an RO(X)-stratification {fU : U ∈ RO(X)} and its corresponding
RO(X)-approximation {{Uq : q ∈ I} : U ∈ RO(X)}. Let (Uα) be a decreasing

sequence of regular open sets and let

W = int
⋂

α

Uα.

Fix rationals p < q. Suppose that there exists x ∈ ⋂

α
cl(Uα

q ) \ Wp. Thus fW (x) 6

p < q. By condition (4) there exists β such that fUβ (x) < q. But the function fUβ is

continuous, hence there exists an open V ∋ x such that V ⊆ f−1
Uβ ([0, q)). Therefore

V ∩ Uβ
q 6= ∅. If b ∈ V ∩ Uβ

q , then q 6 fUβ (b) < q; a contradiction. �

Assume that a family {fU : U ∈ RO(X)} witnesses that a spaceX is ro-stratifiable.
This family fulfils condition (4) if and only if it yields the RO(X)-approximation

which fulfils condition (d). Thus, we obtain the following theorem, which is a char-

acterisation of κ-metrizable spaces, resembling those given in [4].

Theorem 7. A T0-space is κ-metrizable if and only if it is ro-stratifiable.
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Now, we will show why the double arrow space D does not satisfy condition (4).

This gives an alternative proof that this space is not κ-metrizable, compare [9],

Theorem 18. Suppose that the space D is κ-metrizable. Then there exists an

RO(D)-approximation {{Uq : q ∈ I} : U ∈ RO(D)}. For every U = [(a, 1), (b, 0)] ⊆ D

let

t(U) = sup{p ∈ (0, 1) ∩Q : U = Up}.

Since each U is a compact subset, by condition (a), numbers t(U) are well defined.

Put

Rp =
{

x ∈
[

0,
1

10

]

: t
((

(x, 0),
(1

5
, 1
)))

> p
}

,

where p ∈ (0, 1)∩Q. Note that [0, 1
10 ] ⊆

⋃{Rp : p ∈ (0, 1)∩Q}. By the Baire category
theorem there is p ∈ (0, 1) ∩ Q such that int clRp 6= ∅. Thus, there exists x and an
increasing sequence (xk) converging to x such that for all k, xk ∈ Rp. Then

cl
((

(xk, 0),
(1

5
, 1
))

p

)

= cl
((

(xk, 0),
(1

5
, 1
)))

=
[

(xk, 1),
(1

5
, 0
)]

and
⋂

k

[

(xk, 1),
(1

5
, 0
)]

=
[

(x, 0),
(1

5
, 0
)]

*
(

(x, 0),
(1

5
, 1
))

,

which contradicts condition (d).

4. A κ-metric for the Niemytzki plane

In [9], page 827, it has been noted that Zaitsev showed that the Niemytzki plane

is κ-normal. A proof of this fact can be found in [1]. The Niemytzki plane L is the

closed upper half-plane L = R× [0,∞) endowed with the topology generated by the

family of all open discs disjoint with the real axis L1 = {(x, 0): x ∈ R} and all sets
of the form {a}∪D, where D ⊆ L is an open disc tangent to L1 at the point a ∈ L1.

For our purposes here, we use the following notations. Let B((x, y), r) denote the

open disc with centre (x, y) and radius r, and let B∗(x, r) = B((x, r), r) ∪ {(x, 0)}.
Put

B = {B((x, y), r) : (x, y) ∈ L \ L1 and r 6 y, 0 < r 6 1}

and B∗ = {B∗(x, r) : 0 < r 6 1 and x ∈ R}. Thus, the family B = B∗ ∪ B is a base
for L.

Fact 8. The family B is closed with respect to increasing unions.
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P r o o f. Let Un = B((xn, yn), rn) ∈ B and let (Un) be an increasing se-

quence. Thus the sequence of reals (rn), being bounded and increasing, is con-

vergent, i.e. there exists r such that rn → r. Also, if (xkn
, ykn

), (xmn
, ymn

) are

convergent subsequences to (x, y), (x′, y′), respectively, then (x, y) = (x′, y′). In-

deed, if (x, y) 6= (x′, y′), then the union
⋃{Un : n > 0} is a disc with radius r and

with two different centres, which is impossible in the Euclidean metric. Thus, the

sequence (xn, yn) is convergent and let (x, y) be its limit. We have
⋃{Un : n > 0} =

B((x, y), r). If Un = B∗(xn, rn) ∈ B∗ for infinitely many n, then (xn, yn) → (x, r)

and
⋃{Un : n > 0} = B∗(x, r). �

The above proposition is surely folklore. We include it to make elementary meth-

ods, that we use below, more understandable. So, we think the reader will have no

trouble verifying that if a sequence (B∗(xn, rn)) is decreasing, then the sequence (xn)

is constant, hence the set intL
⋂{Un : n > 0} is empty or belongs to B∗. We are in

a position to define an RO(L)-stratification. If U = B((a, b), r) ∈ B, then put

fU (x, y) =

{

r −
√

(x− a)2 + (y − b)2 when (x, y) ∈ U ;

0 for other cases.

Thus, fU (x, y) is the distance between the point (x, y) and the complement of the

open disc B((a, b), r) = U .

If U = B((a, r), r) ∪ {(a, 0)} ∈ B∗, then put

fU (x, y) =



























r −
√

(x− a)2 + (y − r)2 when (x, y) ∈ U and r 6 y;

r when (x, y) = (a, 0);

r − r|x − a|
√

2yr − y2
when (x, y) ∈ U and y < r;

0 for other cases.

For every U ∈ B∗ the function fU is continuous in L\L1 with respect to the Euclidean

topology, and hence it is continuous in L \ L1 with respect to the Niemytzki plane.

Suppose that lim
n→∞

(xn, yn) = (a, 0) with respect to the Niemytzki plane. Without

loss of generality, we can assume that (xn, yn) ∈ B((a, 1/n), 1/n) and 2/n < r. Since

for every natural number n the inequality |xn−a| <
√

2yn/n− y2n holds and yn → 0,

we obtain

r > fU (xn, yn) = r − r|xn − a|
√

2ynr − y2n
> r − r

√

2/n− yn√
2r − yn

−→
n→∞

r.

Thus, we have checked that for every U ∈ B the function fU : L → [0, 1] is

continuous.
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For every V ∈ RO(L) put

fV (x, y) = sup{fU (x, y) : U ∈ B and U ⊆ V }.

If V ∈ B, then both definitions of fV coincide. Also, if (x, y) ∈ L \ V , then

fV (x, y) = 0.

Lemma 9. If (x, y) ∈ V ∈ RO(L), then there exists U ∈ B such that U ⊆ V and

fV (x, y) = fU (x, y) > 0.

P r o o f. Suppose 0 < fV (x, y) = lim
n→∞

fUn
(x, y), where Un ∈ B and Un ⊆ V . If

Un ∈ B for infinitely many n, then we can assume that there are sequences ((xn, yn)),

(rn) and a, b, r such that Un = B((xn, yn), rn), xn → a, yn → b and rn → r > 0. We

will show that B((a, b), r) ⊆ V . Indeed, fix (c, e) ∈ B((a, b), r). Let ε > 0 be such

that d((c, e), (a, b)) = r − ε, where d is the Euclidean distance. Choose n such that

rn > r − ε

2
and d((a, b), (xn, yn)) <

ε

2
.

We have

d((c, e), (xn, yn)) 6 d((c, e), (a, b)) + d((a, b), (xn, yn)) < r − ε

2
< rn.

Therefore (c, e) ∈ Un ⊆ V . Moreover,

fV (x, y) = lim
n→∞

fUn
(x, y) = lim

n→∞
max

{

0, rn −
√

(x− xn)2 + (y − yn)2
}

= max
{

0, r −
√

(x− a)2 + (y − b)2
}

= fB((a,b),r)(x, y).

If Un ∈ B∗ for almost all n, then we can assume that there exist sequences (an),

(rn) and a, r such that Un = B∗(an, rn), an → a, rn → r and 0 < y < rn, since

the case when y > rn for infinitely many n one can reduce to the previous reason-

ing. Similarly to the above argument, we check that B((a, r), r) ⊆ V . Moreover,

B∗(a, r) ⊆ V since V ∈ RO(L). Therefore

fV (x, y) = lim
n→∞

fUn
(x, y) = lim

n→∞
max

{

0, rn − rn|x− an|
√

2yrn − y2

}

= max
{

0, r − r|x − a|
√

2yr − y2

}

= fB∗(a,r)(x, y).

The family {U ∈ B : (x, 0) ∈ U} = {U ∈ B : (x, 0) ∈ U ∈ B∗} is linearly ordered
by inclusion, hence if y = 0, then, by Fact 8, the union

⋃

n
Un belongs to B∗ and is

contained in V . Thus, this union is the desired set. �

Proposition 10. If V ∈ RO(L), then the function fV : L → [0, 1] is continuous.
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P r o o f. Assume that lim
n→∞

(xn, yn) = (x, y) with respect to the topology of the

Niemytzki plane. Suppose that lim
n→∞

fV (xn, yn) > p > fV (x, y). For every n there

exists Un ∈ B such that (xn, yn) ∈ Un ⊆ V and fUn
(xn, yn) > p. Then there exist

an, bn, rn such that either Un = B((an, bn), rn) or Un = B∗(an, rn). We can assume

that there are a, b, r such that an → a and bn → b and rn → r > 0. If for infinitely

many n, Un = B((an, bn), rn), then

p 6 lim
n→∞

fUn
(xn, yn) = lim

n→∞
max

{

0, rn −
√

(xn − an)2 + (yn − bn)2
}

= max
{

0, r −
√

(x − a)2 + (y − b)2
}

= fU (x, y) 6 fV (x, y) < p;

a contradiction. We can use the same argument if for infinitely many n, rn 6 yn.

Thus, we can assume that for all n, Un = B∗(an, rn) and rn > yn. If y > 0, then

p 6 lim
n→∞

fUn
(x, y) = lim

n→∞
max

{

0, rn − rn|x− an|
√

2yrn − y2

}

= max
{

0, r − r|x − a|
√

2yr − y2

}

= fB∗(a,r)(x, y) 6 fV (x, y) < p;

again we have a contradiction.

If y = 0, then an → x and B∗(x, r) ⊆ V . So,

p > fV (x, 0) > fB∗(x,r)(x, 0) = r = lim
n→∞

rn > lim
n→∞

fUn
(x, y) > p;

a contradiction, which finishes the proof. �

Proposition 10 gives an alternative proof that the Niemytzki plane is κ-normal

since the family {fV : V ∈ RO(L)} fulfils conditions (1) and (3).

Corollary 11. The Niemytzki plane is ro-stratifiable.

P r o o f. If U1, U2 ∈ B and U1 ⊆ U2, then fU1
(x, y) 6 fU2

(x, y) since fU1
(x, y)

equals to the distance between (x, y) and the complement of U1, which is smaller

than the distance fU2
(x, y) between (x, y) and the complement of U2.

If U = B((a, r), r) and U∗ = B∗(a, r), then y > r implies fU (x, y) = fU∗(x, y).

But if 0 < y < r, under the assumption |x− a| 6
√

2yr − y2, we get

√

(x− a)2 + (y − r)2 >
r|x − a|

√

2yr − y2
.

Therefore fU (x, y) 6 fU∗(x, y) for every (x, y) ∈ L.

If r1 < r2 and U1 = B∗(a, r1) and U2 = B∗(a, r2), then we verify that fU1
(x, y) <

fU2
(x, y) for every (x, y) ∈ U2. We have obtained that the family {fU : U ∈ B ∪B∗}

fulfils conditions (1)–(3). Accordingly, the family {fU : U ∈ RO(L)} fulfils condi-
tions (1)–(3). �
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Now, it seems natural to verify that the Niemytzki plane is κ-metrizable.

Theorem 12. The Niemytzki plane is κ-metrizable.

P r o o f. We have shown that the family {fV : V ∈ RO(L)} is an RO(L)-

stratification of the Niemytzki plane L. So, it remains to show that it satisfies

condition (4). Fix a decreasing chain {Un : n > 0} consisting of regular open sets
of the Niemytzki plane and put W = int

⋂{Un : n > 0}. Since for all n, W ⊆ Un,

we have fW (x) 6 inf{fUn
(x) : n > 0} for any x ∈ L. Fix x ∈ L. For every n, by

Lemma 9, there exists Vn ∈ B such that fUn
(x) = fVn

(x). If for infinitely many n,

Vn ∈ B, then we can assume that there exist sequences ((xn, yn)), (rn) and a, b, r

such that B((xn, yn), rn) = Vn, xn → a, yn → b and rn → r. Then B((a, b), r) ⊆ W

and fB((a,b),r)(x) = lim
n→∞

fVn
(x). But if for all n, Vn = B∗(xn, rn) and xn → a and

rn → r > 0, then we get B∗(a, r) ⊆ W and fB∗(a,r)(x) = lim
n→∞

fVn
(x). Therefore

fW (x) = lim
n→∞

fUn
(x). �

Proposition 13. The Niemytzki plane is not stratifiable.

P r o o f. Suppose that there exists a family of functions

{fU : U is an open subset of L}

which fulfils conditions (1), (2) and (3). Put

Pm,n =
{

x ∈ R : fB∗(x,1)(x, y) >
1

n
whenever 0 6 y <

1

m

}

.

Since R =
⋃{Pn,m : m > 0 and n > 0}, by the Baire category theorem, there exist

a set Pn,m and an interval (a, b) such that the intersection Pn,m ∩ (a, b) is dense

in (a, b). Choose (xk, ck) ∈ B∗(a, 1/k) such that xk ∈ Pn,m ∩ (a, b) and ck < 1/m.

Thus, the sequence ((xk, ck)) is convergent to the point (a, 0) with respect to the

Niemytzki plane. By condition (2) we get fL\{(a,0)}(xk, ck) > fB∗(xk,1)(xk, ck) > 1/n;

a contradiction with fL\{(a,0)}(a, 0) = 0. �

Put

gB∗(a,r)(x, y) =































r −
√

(a− x)2 + (r − y)2 if (x, y) ∈ B∗(a, r), r 6 y;
(

r − r|x − a|
√

2yr − y2

) (r − 1)y + r

r2
if (x, y) ∈ B∗(a, r), 0 < y < r;

1 if (x, y) = (a, 0);

0 for other cases.
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Mimicking the proof of Corollary 11, we check that the family

G = {gB∗(a,r) : B∗(a, r) ∈ B∗}

is a B∗-stratification. But this family cannot be extended to an RO(L)-stratification.

Indeed, the set V = {(x, y) ∈ L : x > 0} is a regular open subset of the
Niemytzki plane and (0, 0) /∈ V . Suppose that the family G ∪ {gV } fulfils con-
ditions (1)–(3). Observe that (1/(3n), 1/(6n)) ∈ B∗(0, 1/n) ∩ B∗(1/(3n), 1/(3n)).

Since B∗(1/(3n), 1/(3n)) ⊆ V , we get

gV

( 1

3n
,
1

6n

)

> gB∗(1/(3n),1/(3n))

( 1

3n
,
1

6n

)

>
1

2
;

this is a contradiction with continuity of gV and the equality gV (0, 0) = 0.
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