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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 5 , PAGES 7 3 7 – 7 4 9

DELAY-DEPENDENT STABILITY OF HIGH-ORDER
NEUTRAL SYSTEMS

Yanbin Zhao and Guang-Da Hu

In this note, we are concerned with delay-dependent stability of high-order delay systems of
neutral type. A bound of unstable eigenvalues of the systems is derived by the spectral radius of
a nonnegative matrix. The nonnegative matrix is related to the coefficient matrices. A stability
criterion is presented which is a necessary and sufficient condition for the delay-dependent
stability of the systems. Based on the criterion, a numerical algorithm is provided which avoids
the computation of the coefficients of the characteristic function. Under some conditions, the
presented results are less conservative than those reported. A numerical example is given to
illustrate the main results.

Keywords: delay-dependent stability, high-order neutral delay systems, bound of unstable
eigenvalues, argument principle, nonnegative matrix

Classification: 15A18, 34K06, 34K20

1. INTRODUCTION

Time-delay is a common phenomenon in real control systems. The time delay can greatly
deteriorate the performance of the systems, and even drive the systems to be unstable.
Thus it is necessary to analyze the effects of time-delays on dynamic systems so as to
solve practical problems and avoid their adverse consequences. In [3, 4, 5, 6, 8, 9, 10,
11, 17], determinate delay systems are investigated. Stochastic delay systems have been
discussed in [1, 14, 15, 16, 18, 19].

In this paper, we are concerned with the high-order delay differential system of neutral
type is given by

x(n)(t) +

n∑
l=1

Alx
(n−l)(t) +

m∑
j=1

Bljx
(n−l)(t− τj)

+

m∑
j=1

Cjx
(n)(t− τj) = 0, (1)

where, matrices Al, Blj , Cj ∈ Rd×d, for l = 1, . . . , n and j = 1, . . . ,m, τj > 0, and the
indices on x denote derivatives with respect to the independent variable t. The neutral
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terms satisfy the condition

ρ(F ) < 1, and F =

m∑
j=1

|Cj |. (2)

Throughout the present note, we assume that condition (2) holds.
The high-order delay differential system appear in the bilateral control of tele-operation

systems [6] and the active control of the dynamics of vibrating structures [17]. For sys-
tem (1), when Al, Blj , Cj are scalars, the stability of the high-order scalar neutral delay
equations is discussed in [9]. For the case of n = 1, i. e., delay-dependent stability of
the first-order neutral delay systems have been reported in the literature (e. g. [3, 5, 9]).
The present note is a generalization, in one way or another, of the high-order scalar
neutral delay equations and of the first-order neutral delay systems.

A scalar delay-independent stability test (e. g. [9]) need information of all the coeffi-
cients of the characteristic function. However, when d or n or m are large, it is difficult
to obtain the coefficients of the characteristic function, even if it is a polynomial. In
[10], the delay-dependent stability is investigated for the second-order scalar neutral de-
lay differential equations. It is difficult to extend the technique in [10] to the case of
system (1). Recently a direct stability test has been reported in [4] for system (1) with
the following condition

m∑
j=1

||Cj || < 1. (3)

The stability test in [4] does not involve the computation of the coefficients of the
characteristic function. This note is a continuation of [4]. We emphasize that all the
computations in this note involve only the matrices of size d× d.

The main contributions of this note are summarised as follows.

1. A stability criterion is presented which is a necessary and sufficient condition for
the delay-dependent stability of system (1) with (2).

2. Based on the criterion, a numerical algorithm is provided.

Throughout this note, the jth eigenvalue of W is denoted by λj(W ), ρ(W ) represents
the spectral radius. Let W ∈ Cn×n with elements wjk and |W | denotes the nonnegative
matrix in Rn×n with elements |wjk|. Let W = {wjk} and V = {vjk} be matrices in
Rn×n. We write W ≥ V if and only if wjk ≥ vjk.

2. PRELIMINARIES

In this section, several definitions and lemmas are provided.

Lemma 2.1. (Lancaster [12]) Let W ∈ Cd×d. If W < 1, then (I −W )−1 exits and

(I −W )−1 = I +W +W 2 + · · · .

Lemma 2.2. (e. g. Lancaster [12]) For W ∈ Cn×n, ρ(W ) ≤ ρ(|W |) holds.
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The characteristic function of the neutral delay system (1) is as follows.

g(s) = detP (s), (4)

where P (s) is defined by the following

P (s) = Isn +

n∑
l=1

Als
n−l +

n∑
l=1

m∑
j=1

Bl,js
n−l exp(−τjs) +

m∑
j=1

Cjs
n exp(−τjs). (5)

The root of the characteristic function g(s) is called an eigenvalue of the neutral delay
system (1). For g(ξ) = 0, if <ξ < 0, then the eigenvalue ξ is called stable, otherwise, if
<ξ ≥ 0, then the eigenvalue ξ is called unstable.

Now we consider the following first-order neutral delay differential system [4].

Ẏ (t) = AY (t) +

m∑
j=1

BjY (t− τj) +

m∑
j=1

Cj Ẏ (t− τj), (6)

where Y (t) ∈ Rdn,

A =


0 I 0 . . . 0

0 0 I
...

...
...

... I
−An −An−1 −An−2 . . . −A1

,

Bj =


0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

−Bn,j −Bn−1,j −Bn−2,j . . . −B1,j


and

Cj =


0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0
0 0 0 . . . −Cj

.
We have

det{sI − [A+

m∑
j=1

Bj exp(−τjs) +

m∑
j=1

Cjs exp(−τjs)]} = detP (s), (7)

see [4].

A definition of stability of the high-order neutral delay system (1) is as follows.

Definition 2.3. (Hu [4]) The neutral delay system (1) is called asymptotically stable
if the first-order neutral delay system (6) is asymptotically stable.
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It is obvious for us to obtain the following result.

Lemma 2.4. The neutral delay system (1) with (2) is asymptotically stable if and only
if all the eigenvalues of it lie in the open left complex half-plane.

P r o o f . According to Definition 2.3, the neutral delay system (1) is asymptotically
stable ⇔ the first-order neutral delay system (6) is asymptotically stable. According to
the definition of Cj , we obtain

ρ(

m∑
j=1

Cj exp(iωj)) = ρ

 m∑
j=1

−Cj exp(iωj)

 ≤ ρ(F ) < 1, (8)

where F =
∑m

j=1 |Cj |, i2 = −1 and ωj ∈ [0, 2π] for j = 1, 2, . . . ,m. This means that the
difference operator in the first-order neutral delay system (6) is strongly stable under
the condition (2)[3]. The first-order neutral delay system (6) with (2) is asymptotically
stable if and only if all the roots of the characteristic function

det

sI − [A+

m∑
j=1

Bj exp(−τjs) +

m∑
j=1

Cjs exp(−τjs)]

 = 0

lie in the open left complex half-plane (e. g. [3]). According to (7), this means that all
the roots of detP (s) = 0 lie in the open left complex half-plane. The proof is completed.

�

Remark 2.5. Introducing new state variables, we can rewrite the n−order neutral delay
system (1) with parameter matrices of size d× d in the first-order neutral delay system
(6) with parameter matrices of size nd×nd. In the theoretical sense, the stability criteria
for the first-order neutral delay system (6) can be directly applied to the n−order neutral
delay system (1). However, since the parameter matrices of the first-order neutral delay
system (6) are of size nd× nd, much computational effort is needed to directly apply to
the large problems. We emphasize that all the computations in this note involve only
the matrices of size d× d.

3. A BOUND FOR UNSTABLE EIGENVALUES

By means of Lemma 2.1, we obtain the bound for unstable eigenvalues of the neutral
delay system (1) with (2) as follows.

Theorem 3.1. Every unstable eigenvalue ξ of the neutral delay system (1) with (2)
satisfies

|ξ| ≤ max{1, h}, (9)

where the scalar h is defined by

h = ρ(H), and H = [I − F ]−1

 n∑
l=1

|Al|+
n∑

l=1

m∑
j=1

|Blj |

 . (10)
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P r o o f . Let ξ be an eigenvalue of system (1), i. e., g(ξ) = 0. Since ξ is an unstable root,
<ξ ≥ 0.

First, we consider the case of |ξ| ≥ 1. According to (4), we have that

g(ξ) = detP (ξ) = 0,

which implies that

det

Iξn +

n∑
l=1

Alξ
n−l +

n∑
l=1

m∑
j=1

Bljξ
n−l exp(−τjξ) +

m∑
j=1

Cjξ
n exp(−τjξ)

 = 0. (11)

Since <ξ ≥ 0,
|exp(−τjξ)| ≤ 1 (12)

holds. From (12), we obtain that∣∣∣∣∣∣
m∑
j=1

−Cj exp(−τjξ)

∣∣∣∣∣∣ ≤
m∑
j=1

|Cj | = F. (13)

According to condition (2), we know that [12]I − m∑
j=1

−Cj exp(−τjξ)

−1

exists.

∣∣∣∣∣∣∣
I +

m∑
j=1

Cj exp(−τjξ)

−1
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣I −
m∑
j=1

−Cj exp(−τjξ) + (

m∑
j=1

−Cj exp(−τjξ))2 + . . .

∣∣∣∣∣∣
≤ I + F + F 2 + . . . = (I − F )−1.

(14)

For <ξ ≥ 0, we introduce the matrix

W (ξ) = −

I +

m∑
j=1

Cj exp(−τjξ)

−1 n∑
l=1

Alξ
1−l +

n∑
l=1

m∑
j=1

Bljξ
1−l exp(−τjξ)

 .

(15)
Since |ξ| ≥ 1, we can rewrite (11) as

detP (ξ) = det

ξn−1

I +

m∑
j=1

Cj exp(−τjξ)

 det[Iξ −W (ξ)] = 0

which means
det [ξI −W (ξ)] = 0. (16)
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This implies that ξ is an eigenvalue of the matrix W (ξ) and there exists an integer
j(1 ≤ j ≤ d) such that

ξ = λj(W (ξ)). (17)

According to |ξ| ≥ 1, for k ≥ 0,
|ξ−k| ≤ 1 (18)

holds. By means of (17) and Lemma 2.1, we have that

|ξ| = |λj(W (ξ))| ≤ ρ(|W (ξ)|). (19)

According to (15), (12), (14) and (18), we have

|W (ξ)| =

∣∣∣∣∣∣−(I +

m∑
j=1

Cj exp(−τjξ))−1

 n∑
l=1

Alξ
1−l +

n∑
l=1

m∑
j=1

Bljξ
1−l exp(−τjξ)

∣∣∣∣∣∣
≤


∣∣∣∣∣∣(I +

m∑
j=1

Cj exp(−τjξ))−1

∣∣∣∣∣∣


∣∣∣∣∣

n∑
l=1

Alξ
1−l

∣∣∣∣∣+

∣∣∣∣∣∣
n∑

l=1

m∑
j=1

Bljξ
1−l exp(−τjξ)

∣∣∣∣∣∣


≤ (I − F )−1


n∑

l=1

|Al|+
n∑

l=1

m∑
j=1

|Blj |


= H.

By means of (19), we have that for |ξ| ≥ 1 and <ξ ≥ 0, |ξ| ≤ h holds. Thus for any
eigenvalue ξ with <ξ ≥ 0,

|ξ| ≤ max{1, h}

holds. Thus the proof is completed. �

4. STABILITY CRITERION

We now investigate the delay-dependent stability of the neutral delay system (1) with (2).

Definition 4.1. For the neutral delay system (1) with (2), the region D is defined by

D = {s : <s ≥ 0 and |s| ≤ β},

and its boundary is denoted by C. Here β is given by Theorem 3.1, i. e.

β = max{1, h}, (20)

where

h = ρ(H), and H = [I − F ]−1

 n∑
l=1

|Al|+
n∑

l=1

m∑
j=1

|Blj |

 . (21)

From the definition of D, it is obvious that D ⊂ C+. Using the argument principle,
the following two theorems can be derived in the same way as those in [4].
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Theorem 4.2. The neutral delay system (1) with (2) is asymptotically stable if and
only if

g(s) 6= 0 for s ∈ C (22)

and

4C arg g(s) = 0 (23)

hold. Here g(s) = detP (s), arg g(s) stands for the argument of g(s) and 4C arg g(s)
change of the argument of g(s) along the curve C.

Theorem 4.3. If

g(s) 6= 0 for s ∈ C (24)

and
1

2π
4C arg g(s) = z (25)

hold, then the number of the unstable eigenvalues of the neutral delay system (1) with
(2) is z. Here, g(s) = detP (s)

Now we describe an algorithm to check the delay-dependent stability of the neutral
delay system (1) with (2) due to Theorem 4.2.

Algorithm 1

Step 0. We calculate β according to (20). Then as the boundary of D, we have the
closed contour C. The closed contour C consists of two parts, i. e., the segment
{s = it; −β ≤ t ≤ β} and the half-circle {s; |s| = β and − π/2 ≤ arg s ≤
π/2}. Notice that the closed contour C is positively oriented when it is in the
counterclockwise direction.

Step 1. Take a sufficiently large integer N ∈ N and distribute N node points {sj} (j =
1, 2, . . . , N) on C as uniformly as possible. For each sj , we evaluate g(sj) by
computing the determinant as

g(sj) = detP (sj).

Also we decompose g(sj) into its real and imaginary parts for the computation of
the argument.

Step 2. We examine whether g(sj) = 0 holds for each sj (j = 1, . . . , N) by checking
its magnitude satisfies |g(sj)| ≤ δ1 with the preassigned tolerance δ1. If it holds,
i. e., sj ∈ C is a root of g(s), then the neutral delay system (1) with (2) is not
asymptotically stable and stop the algorithm. Otherwise, to go to the next step.

Step 3. We examine whether 4C arg g(s) = 0 holds along the sequence {g(sj)} by
checking |4C arg g(s)| ≤ δ2 with the preassigned tolerance δ2. If it holds, this
means that the change of the argument is 0 along C, then the neutral delay system
(1) with (2) is asymptotically stable, otherwise not asymptotically stable.
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Remark 4.4. Algorithm 1 avoids the computation of the coefficients of the character-
istic function g(s) = detP (s). Instead it evaluates the determinant of numerical matrix
P (sj) through the elementary row (or column) operations which are relatively efficient
ways (e. g. [7]). A scalar stability test (e. g. [9]) needs information of all the coefficients
of the characteristic function g(s). It is an ill-posed problem to compute the coefficients
of the characteristic function g(s) for large problems (when d or n or m are large), even
if g(s) is a polynomial (e. g. [13]). Although we may obtain the coefficients of the char-
acteristic function g(s) from P (s) in theoretical sense, it can not work well in practice
for large problems (when d or n or m are large).

Remark 4.5. If there are z0 eigenvalues on the boundary C, we can construct a modified
curve [2] which replaces the boundary C. Theorem 4.3 can be extended and the number
of the unstable eigenvalues are z0 + z. Only modifying Step 3 in Algorithm 1, we may
obtain a numerical algorithm to check Theorem 4.3.

We discuss the difference between Theorems 3.1, 4.2, 4.3 and those in [4]. In the re-
sults in [4] require condition (3) holds. However, condition (2) is demanded in Theorems
3.1, 4.2 and 4.3. In general, the two conditions complement each other. Now we provide
sufficient conditions that (2) is less conservative than (3).

Theorem 4.6. Let F =
∑m

j=1 |Cj |, we have

ρ(F ) ≤
m∑
j=1

||Cj || (26)

if one of the following two conditions holds:

(i) Cj ≥ 0 for j = 1, . . . ,m.

(ii) Cj ≤ 0 for j = 1, . . . ,m.

P r o o f . When Cj ≥ 0, we have |Cj | = Cj for j = 1, . . . ,m. We obtain

m∑
j=1

|Cj | =
m∑
j=1

Cj . (27)

According to (27),

ρ(F ) = ρ

 m∑
j=1

Cj

 ≤
∥∥∥∥∥∥

m∑
j=1

Cj

∥∥∥∥∥∥ ≤
m∑
j=1

‖Cj‖. (28)

Similar to the above. When Cj ≤ 0, |Cj | = −Cj for j = 1, . . . ,m. We have

m∑
j=1

|Cj | = −
m∑
j=1

Cj . (29)
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According to (29),

ρ(F ) = ρ

 m∑
j=1

−Cj

 ≤
∥∥∥∥∥∥

m∑
j=1

−Cj

∥∥∥∥∥∥ ≤
m∑
j=1

‖ − Cj‖ =

m∑
j=1

‖Cj‖. (30)

By means of (28) and (30), the proof is completed. �

Remark 4.7. Theorem 4.6 shows that under some conditions, the presented results,
Theorems 4.2 and 4.3 are less conservative than those reported [4].

5. NUMERICAL EXAMPLE

Consider system (1) with the parameter matrices

A1 =

 5 −3 −5
0 4 −1
0 0 8

, A2 =

 4 −12 −20
0 4 −2
0 0 15

, B11 =

 0.9 0.1 −0.4
1 0.8 −0.9
−1 0 −1.6

,
B12 =

 −1.1 −0.7 0.5
−0.2 −1.6 0.1
−1.1 1.3 −0.8

, B13 =

 −0.1 0.3 1.2
−1 −0.6 1.3
−0.1 1.3 −1.8

,

B21 =

 1 −3 −8
1 −1 −9
−1 3 2

, B22 =

 −1 1 6
−0 −4 −1
−1 5 1

, B23 =

 0 0 3
−1 3 8
0 2 −7

,

C1 =

 −0.1 −0.1 0
0 −0.1 0
0 0 −0.2

, C2 =

 −0.1 0 0
−0.2 −0.1 0
−0.1 0 −0.1

, C3 =

 −0.6 0 −0.1
0 −0.3 0
−0.1 0 −0.1

.
It is not difficult to check that ρ(F ) = 0.8917 < 1, the condition (2) holds. By direct

calculation, we have h = 413.9733 and the radius of the semicircle β = 413.9733. The
boundary of C is shown in Figure 1. In Figs. 2 − 4, the horizontal axis (j) and the
vertical axis (Argument g(s)) denote the node points sj on the closed contour C and the
argument g(sj) with sj ∈ C, respectively.

The case of τ1 = 0.7, τ2 = 0.8, τ3 = 0.9. We can analyze the stability of the system
by Theorem 4.2. By means of Algorithm 1, we know that g(s) 6= 0 for s ∈ C, the
argument of g(s) along the curve C are shown in Figure 2, and 4C arg g(s) = 0 along
the curve C, Theorem 4.2 tells that the system with the given parameter matrices is
asymptotically stable.

The case of τ1 = 0.9, τ2 = 2, τ3 = 3. We can analyze the stability of the system
by Theorem 4.3. By means of Algorithm 1, we know that g(s) 6= 0 for s ∈ C, the
argument of g(s) along the curve C are shown in Figure 3, and 4C arg g(s) = 2 6= 0
along the curve C. Theorem 4.3 shows that the number of the unstable eigenvalues of
the neutral delay system is 2.

The case of τ1 = 5, τ2 = 10, τ3 = 20. We can analyze the stability of the system
by Theorem 4.3. By means of Algorithm 1, we know that g(s) 6= 0 for s ∈ C, the
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argument of g(s) along the curve C are shown in Figure 4, and 4C arg g(s) = 4 6= 0
along the curve C. Theorem 4.3 shows that the number of the unstable eigenvalues of
the system is 4.

Remark 5.1. For the above example, we can check that
∑m

j=1 ||Cj || = 1.0811 > 1,
which means that the condition (3) does not hold, and the stability criterion in [4] can
not work, but the stability of the system can be determined by Theorems 4.2 and 4.3 in
this note. The above example also shows that system (1) is stable for τ1 = 0.7, τ2 = 0.8
, τ3 = 0.9 but unstable for τ1 = 0.9, τ2 = 2, τ3 = 3, and τ1 = 5, τ2 = 10, τ3 = 20,
respectively. This means that the stability criterion, Theorem 4.2 is delay-dependent.
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Fig. 1. The closed contour C.
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Fig. 2. Argument change of g(s) = 0 when

τ1 = 0.7, τ2 = 0.8, τ3 = 0.9.
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Fig. 3. Argument change of g(s) = 2 × 2π when

τ1 = 0.9, τ2 = 2, τ3 = 3.
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Fig. 4. Argument change of g(s) = 4 × 2π when

τ1 = 5, τ2 = 10, τ3 = 20.

6. CONCLUSIONS

By means of the spectral radius of a nonnegative matrix, a bound is derived for the
unstable eigenvalues of the high-order neutral delay systems. Based on the bound, a
computable stability criterion is presented. The criterion is a necessary and sufficient
condition for the delay-dependent stability of the systems. Under some conditions, the
presented results are less conservative than those reported.
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