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KYBERNET IKA — VOLUME 5 7 ( 2 0 2 1 ) , NUMBER 5 , PAGES 7 8 5 – 8 0 0

GLOBAL OUTPUT FEEDBACK STABILIZATION
FOR NONLINEAR FRACTIONAL ORDER TIME DELAY
SYSTEMS

Hanen Benali

This paper investigates the problem of global stabilization by state and output-feedback for
a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems
written in triangular form satisfying linear growth conditions. By constructing a appropri-
ate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is
achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional
order time-delay system are obtained. Finally, simulation results dealing with typical bioreac-
tor example, are given to illustrate that the proposed design procedures are very efficient and
simple.

Keywords: Riemann–Liouville fractional, nonlinear time delay system, observer design,
asymptotical stability, Lyapunov functional

Classification: 93C10, 93D15, 93D20

1. INTRODUCTION

Fractional calculus is a concept of integrals and derivatives of arbitrary non-integer order.
However, the main reason for describing these systems by fractional model is many
physical systems contain by nature non integer derivatives so that these systems are
better described by fractional-order equations. In fact, the interest of the fractional order
calculation and its applications keeps growing in several areas such as, electromagnetic
systems [15], dielectric polarization [28] and economy [19].

The analysis of stabilization of nonlinear systems is one of the most important issues
for control theory. The notion of stability is a central issue of control theory, this has
a wide range of definitions in [17]. Also, the problem of stabilization of nonlinear time
delay systems has been exploited in literature. In practical application, most controlled
systems can be modeled as a nonlinear time delay system. In this context, a large
number of researchers have been interested in the stability of time-delay systems see
e. g. [7, 12, 13, 29] and references therein.

The main reason for describing these systems by fractional model is the much progress
has also been made in a set of definitions, theoretical methods and numerical analysis of
fractional calculus. The nature of many systems makes that they can be more precisely
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modeled using fractional differential equations. In that sense, the stability of these sys-
tems has to be proved using techniques developed for fractional order systems. In these
cases, the stability of the whole controlled system has to be analyzed using the frac-
tional order techniques as well. The problem of stability analysis of linear time invariant
systems arising in system theory is investigated in [26]. Under Laplace transform and
generalized Gronwall inequality, [25] derived a sufficient condition for finite-time Mittag-
Leffler stability for fractional-order quaternion-valued memristive neural networks with
impulsive effect. For 0 < α < 1, by a suitable Lyapunov-functional and some fractional
inequality techniques, the existence of unique equilibrium point and Mittag-Leffler sta-
bility in finite time analysis for considered impulsive fractional-order quaternion-valued
memristive neural networks have been is established.

However, the situation of time delay exists frequently in most real control systems,
has been the subject of numerous papers and monographs, such as [1] and [23] it comes
back from the fact that time delays are often encountered in practical systems, such as
chemical, economic models and networks [3]. A study concerning the global stability and
the global asymptotic stability independent of the delays of linear time-varying of the
real Caputo fractional order having internal point delays is investigated in [9]. Robust
stability of fractional-order linear delayed systems with nonlinear perturbations over a
finite time interval is achieved under the inequality of Holder and Gronwell in [8]. Under
Lyapunov method, [2] derived a sufficient condition for stability the nonlinear Caputo
fractional differential equations with variable bounded delays. A sufficient conditions ex-
pressed in terms of linear matrix inequalities are presented in [11] to prove a separation
principle for a class of nonlinear time-delay fractional differential system and nonlinear
time-delay fractional differential system with the Caputo derivative. Recently, by using
the combination of non-smooth analysis, set-valued maps, Lyapunov–Krasovskii func-
tional having double integral terms and Kirchhoff’s matrix tree theorem, the sufficient
conditions to ensure the exponential input-to-state stability are presented in [16].

Stability of Riemann–Liouville fractional singular systems remains an open problem.
Since if we compare the stability of singular systems with non-singular systems, we
find many main difficulties. It is difficult to satisfy the existence and uniqueness of the
solutions given that the initial conditions may not be coherent. It is hard to compute
the derivatives of Lyapunov functions and there often happen impulses in the solutions.
In this paper, we investigate the problem of asymptotic stability by state and output
feedback controller of the class of nonlinear Riemann–Liouville fractional order time
delay systems with constant delay with a nominal part written in triangular form. We
give a condition on the nonlinearity to cover the time-delay systems considered by [32] for
a class of nonlinear time-delay systems. By building the suitable Lyapunov–Krasovskii
functional to establish global asymptotic stability of the closed-loop systems, we offer
linear state and output feedback controllers. Under, linear state and output feedback
controllers, we impose a state and input delay-independent criterion that ensures the
stability of the closed-loop system with a state feedback controller.

The remainder of the paper organized as follow. In section 2 some preliminary re-
sults are recapitulated and the system model is given. In section 3 presents parameter-
dependent linear state and output feedback controllers output feedback controller and
gives the main results of this paper. Finally, simulation results and a physical example,
are given in section 4 in order to highlight the effectiveness of the obtained results.
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2. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

2.1. Basic results

In this section, we give some definitions, lemmas and theorems related to the fractional
calculation, for more explanations the readers can see [18] and [24]. In throughout the
this paper, we consider the definition of Caputo fractional derivative given by [31].

Definition 2.1. (Podlubny [24]) The Riemann–Liouville fractional integral of order
α > 0 is defined as:

t0I
α
t (x(t)) =

1

Γ(α)

∫ t

t0

(t− s)α−1x(s) ds,

where x(t) is an arbitrary integrable function, t0I
α
t denotes the fractional integral of

order α on [t0, t] and Γ(α) =
∫ +∞
0

e−ttα−1 dt, is the Gamma function.

Definition 2.2. The Riemann–Liouville and Caputo fractional derivatives of order α
on [t0, t] are defined as, respectively [31] and [24]

t0D
α
t x(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

x(s)

(t− s)α+1−n ds, (n− 1 ≤ α < n),

C
t0D

α
t x(t) =

1

Γ(n− α)

∫ t

t0

x(n)(s)

(t− s)α+1−n ds, (n− 1 ≤ α < n),

where x(t) ∈ Rn is an arbitrary differentiable function, n ∈ N.
When 0 < α ≤ 1, then the Riemann–Liouville and Caputo fractional derivatives of

order α of x(t) reduces, respectively to:

t0D
α
t x(t) =

1

Γ(1− α)

d

dt

(∫ t

t0

x(s)

(t− s)α
ds), (0 < α ≤ 1

)
,

and

C
t0D

α
t x(t) =

1

Γ(1− α)

∫ t

t0

x(1)(s)

(t− s)α
ds, (0 < α ≤ 1).

Property 2.3. (Baleanu et al. [5]) When 0 < α < 1, we have

C
t0D

α
t x(t) =t0 D

α
t x(t)− x(t0)

Γ(1− α)
(t− t0)−α. (1)

In particular, if x(t0) = 0, we have

C
t0D

α
t x(t) =t0 D

α
t x(t). (2)

Property 2.4. (Kilbas et al. [18]) If β > α > 0, then the formula :

t0D
α
t (t0D

−β
t x(t)) =t0 D

α−β
t x(t),

holds for all functions x(t) ∈ L1(R+).
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Lemma 2.5. (Liu et al. [21]) Let α ∈ (0, 1) and x(t) ∈ Rn be a vector of differentiable
function. Then, for any time instant t ≥ t0, the following relationship holds

1

2
t0D

α
t x

T (t)Px(t) ≤ xT (t)P t0D
α
t x(t), (3)

where P ∈ Rn×n is a constant square symmetric positive definite matrix.

Lemma 2.6. (Li et al. [20]) Let α ∈ (0, 1) and M(0) ≥ 0, then

C
t0D

α
t M(t) ≤t0 Dα

t M(t);

where D and CD are the Riemann–Liouville and the Caputo fractional operators, re-
spectively.

2.2. Stability of fractional time delay system

In this section, we investigate stability of fractional time delay system.
Consider the fractional time delay system{

t0D
α
t x(t) = f(t, x(t), x(t− τ)); 0 < α < 1,
x(θ) = ϕ(θ); θ ∈ [−τ, 0],

(4)

where, τ > 0 denotes the time delay, x(t) ∈ Rn, f : R+ × Rn × Rn → Rn is smooth
and satisfies f(t, 0, 0) = 0 and ϕ ∈ C denote the Banach space of continuous functions
mapping the interval [−τ, 0] → Rn. The knowledge of x at time t = 0 does not give
information of x at time t. The state of equation (4) at time t can be described as
a function segment xt defined by

xt(θ) = x(t+ θ); θ ∈ [−τ, 0]. (5)

The fractional order nonlinear time-delay system can be defined in a special class of
fractional differential equation form as [4]:

t0D
α
t x(t) = F (t, xt) (0 < α < 1) (6)

where F : R+×C → Rn. For a function ϕ ∈ C([−τ, 0],Rn) we define the the supremum-
norm:

‖ ϕ ‖∞ = max
θ∈[−τ,0]

‖ ϕ(θ) ‖; ∀ϕ ∈ C

where ‖ ‖ is the Euclidean-norm. As system (4) is a special case of (6), we consider now
system (6). For given initial conditions of the form (5), let y(t) = y(t, t0, ϕ(.)) be a solu-
tion of the fractional-order time-delay system (6). The stability of the solution concerns
the system’s behavior when the system trajectory x(t) deviates from y(t) = y(t, t0, ϕ(.)).
In the following, without loss of generality, we will assume that the functional differen-
tial equation (6) admits the solution x(t) = 0, which will be referred to as the trivial
solution. Indeed, if it is desirable to study the stability of a nontrivial solution y(t), then
we may resort to the variable transformation z(t) = x(t)− y(t), so that the new system

t0D
α
t x(t) = F (t, zt + yt)− F (t, yt) (7)
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has the trivial solution z(t) = 0. We will recall the definition of asymptotic stability
of the origin of system (6). Assume that F is Lipschitz on bounded sets and satisfies
F (t, 0) = 0. For ϕ ∈ C, we denote by x(t, ϕ) or shortly x(t) the solution of (6) that
satisfies x0 = ϕ. The segment of this solution is denoted by xt(ϕ) or shortly xt.

Definition 2.7. For the system described by (6) the trivial solution is called :

• Stable, if for any ε > 0 there exists δ > 0 such that

‖ϕ‖∞ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

• Attractive, if there exists σ > 0 such that

‖ϕ‖∞ < σ ⇒ lim
t→+∞

x(t) = 0. (8)

• Asymptotically stable, if it is stable and attractive.

• Globally asymptotically stable, if it is stable and δ can be chosen arbitrarily large
for sufficiently large ε, and (8) is satisfied for all σ > 0.

For a locally Lipschitz functional V : R+ ×C → R+ a generalization of the fractional
derivative of V along the solutions of (6) is presented as follows:

Definition 2.8. (Sadati et al. [27]) Let V (t, ϕ) be differentiable, and let xt(t0, ϕ) be
the solution of (6) at time t with initial condition xt0 = ϕ. Then the fractional derivative
of V (t, xt) with respect to t and evaluate it at t = t0 is defined as :

t0D
α
t V (t0, ϕ) = t0D

α
t0V (t, xt(t0, ϕ))

∣∣∣
t=t0,xt=ϕ

=
1

Γ(1− α)

d

dt

(∫ t

t0

V (s, xs)

(t− s)α
ds

) ∣∣∣
t=t0,xt=ϕ

, 0 < α < 1.

2.3. System description

In this paper, we consider the problem of global stabilization for a particular family
of nonlinear Riemann–Liouville fractional order time delay systems with known control
coefficients as follows:

t0D
α
t x1(t) = g1x2 + f1(t, x(t), x(t− τ), u(t)),

t0D
α
t x2(t) = g2x3 + f2(t, x(t), x(t− τ), u(t)),

...

t0D
α
t xi(t) = gixi+1 + fi(t, x(t), x(t− τ), u(t)),

...

t0D
α
t xn(t) = gnu(t) + fn(t, x(t), x(t− τ), u(t)),
y(t) = x1(t),

(9)

where, α is the non-integer differentiation order (0 < α < 1), gi; i = 1, . . . , n, called
control coefficients are non zero known constant parameters, x = [x1, . . . , xn]T ∈ Rn is
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the state vector, u ∈ R is the input of the system, y ∈ R is the measured output and τ
is a positive known scalar that denotes the time delay affecting the state variables. The
mappings fi : R+ × Rn × Rn × R → R, i = 1, . . . , n are known functions continuous in
the first variable are smooth and satisfy the following assumption.

Assumption 1. There exists two positives parameters θ1 and θ2 such that,

∣∣fi(t, x(t), x(t− τ), u(t))
∣∣ ≤ θ1 i∑

k=1

|xk(t)|+ θ2

i∑
k=1

|xk(t− τ)|.

Assumption 2. Control coefficients gi, i = 1, . . . , n are of known signs.

Remark 2.9. It should be pointed out that the linear growth condition Assumption 1
is weaker than Lipschitz condition. Compared with the system considered in [11], the
system (9) is more general. For gi = 1; i = 1, . . . , n a separation principle is derived
by [11].

Remark 2.10. In the case of α = 1, for same a class of systems (9), the problem
of global stabilization by state feedback and output feedback for a family of nonlinear
time-delay systems satisfying linear growth conditions were studied by [7] and [32].

2.4. Scaling transformation

In this section, before to show the global asymptotic stabilization by state and output
feedback, we follow the scaling transformation transformation suggested in [30]. For the
convenience of notation, denote

gi∼n =

n∏
j=i

gj , g =

n∏
i=1

gi.

To begin with, we introduce the following coordinate transformation:

zi =
1

gi∼n
xi, 1 ≤ i ≤ n, gi 6= 0. (10)

So, the system (9) is equivalent to

t0D
α
t z1(t) = z2 + φ1(t, x(t), x(t− τ), u(t)),

t0D
α
t z2(t) = z3 + φ2(t, x(t), x(t− τ), u(t)),

...

t0D
α
t xn(t) = u+ φn(t, x(t), x(t− τ), u(t)),
y(t) = gz1(t),

(11)

where z = [z1, . . . , zn]T ∈ Rn and φi(t, z, z(t− τ), u) = 1
gi∼n

fi(t, x, x(t− τ), u).

Using (10) and Assumption 1, we have

|φi(t, z(t), z(t− τ), u(t))| ≤ c1
i∑

k=1

|zk|+ c2

i∑
k=1

|zk(t− τ)|, (12)
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where {
c1 = max {θ1|g1∼i−1|, θ1|g2∼i−1|, . . . , θ1|gi−1|, θ1} ,
c2 = max {θ2|g1∼i−1|, θ2|g2∼i−1|, . . . , θ2|gi−1|, θ2} .

Remark 2.11. It is not difficult to see that the stabilization of system (9) is implied
by that of transformed system (11).

3. MAIN RESULTS

In this paper, we investigate the problem of global output feedback control for a partic-
ular family of nonlinear fractional order time delay systems (9) satisfying linear growth
conditions, with known control coefficients and constant delay. In matrix form, the
nonlinear fractional order time delay systems (9) takes the following form:{

t0D
α
t x(t) = Ax(t) +Bu(t) + f(t, x(t), x(t− τ), u(t))
y(t) = Cx(t),

(13)

where the matrices A, B and C are given by,

A =


0 g1 0 . . . 0
0 0 g2 . . . 0
...

...
...

. . .
...

0 0 0 . . . gn−1
0 0 0 . . . 0

 , B =


0
0
...
0
gn

 , C =
[

1 0 . . . 0 0
]
,

and the perturbed term is

f(t, x(t), x(t− τ), u(t)) ,


f1(t, x(t), x(t− τ), u(t))
f2(t, x(t), x(t− τ), u(t))

...
fn(t, x(t), x(t− τ), u(t))

 ∈ Rn.

Notation 3.1. Throughout the paper, the time argument is omitted and the delayed
state vector x(t− τ) is noted by xτ . MT means the transpose of matrix M . λmax(M)
and λmin(M) denote the maximal and minimal eigenvalue of a matrix M respectively.
P > 0 means that the matrix P is symmetric positive definite. I is an appropriately
dimensioned identity matrix.

3.1. Stabilisation by state feedback

In this subsection, motivated by [14], we establish a delay-independent condition for
the global asymptotic state feedback stabilization of the nonlinear fractional order time
delay systems (13). The state feedback controller is given by

u = K(θ)x, (14)
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where K(θ) =
[
k1θ

n, . . . , knθ
]

and K =
[
k1, . . . , kn

]
is selected such that AK =

A + BK is Hurwitz. Since the matrix AK is Hurwitz, there exist symmetric positive
definite P = PT ∈ Rn×n such that P is solution of the Lyapunov equation,

ATKP + PAK = −I. (15)

Theorem 3.2. Under assumptions (A1), (A2) and there exist a positive constant θ ≥ 1
such that

θ

2
− 2nθ1‖P‖ − nθ2‖P‖ > 0 (16)

then the closed-loop time-delay system (13) – (14) is globally asymptotically stable.

P r o o f . Under Equation (14), the closed loop system (13) – (14) becomes

t0D
α
t x(t) = (A+BK(θ))x+ f(t, x(t), xτ , u(t)).

For θ ≥ 1, let ∆θ = diag[1, 1θ , . . . ,
1

θn−1 ]. Using the fact that:

∆θBK(θ) = θBK∆θ, ∆θA∆−1θ = θA.

Now, let χ = ∆θx, then we get

t0D
α
t χ = θ(A+BK)χ+ ∆θf(t, x(t), xτ , u(t)). (17)

We consider the Lyapunov–Krasovskii functional candidate

V (χt) = Dα−1(χTPχ)+
θ

2

∫ t

t−τ
‖χ(s)‖2 d(s) (18)

It follow from property (2.4) and Lemma (2.5) the derivative of (18) along the trajecto-
ries of (17), can be expressed as :

V̇ (χt) = t0D
α
t (χTPχ) +

θ

2
‖χ‖2 − θ

2
‖χτ‖2

≤ 2χTPt0D
α
t χ+

θ

2
‖χ‖2 − θ

2
‖χτ‖2

≤ θχT (ATKP + PAK)χ+ 2PχT∆θf(t, x, xτ , u(t))

+
θ

2
‖χ‖2 − θ

2
‖χτ‖2

≤ −θ‖χ‖2 + 2PχT∆θf(t, x, xτ , u(t)) +
θ

2
‖χ‖2 − θ

2
‖χτ‖2

≤ −θ
2
‖χ‖2 + 2‖P‖‖χ‖‖∆θf(t, x, xτ , u(t))‖ − θ

2
‖χτ‖2.
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Observing assumption A1 and θ ≥ 1, gives, for any i (i = 1, . . . , n)

∣∣∣ 1

θi−1
fi(t, x, x

τ , u(t))
∣∣∣ ≤ θ1

n∑
k=1

|xk|
θk−1

+ θ2

n∑
k=1

|xτk|
θk−1

≤ θ1

n∑
k=1

|χk|+ θ1

n∑
k=1

|χk|

≤ θ1
√
n‖χ‖+ θ2

√
n‖χτ‖,

which implies that

‖∆θf(t, x, xτ , u(t))‖ ≤ nθ1‖χ‖+ nθ2‖χτ‖. (19)

Then, we have that

V̇ (χt) ≤ −θ
2
‖χ‖2 + 2nθ1‖P‖‖χ‖2 −

θ

2
‖χτ‖2 + 2nθ2‖P‖‖χτ‖‖χ‖. (20)

Using the fact that
2‖χτ‖‖χ‖ ≤ ‖χ‖2 + ‖χτ‖2. (21)

By Equation (20) and (21), we obtain,

V̇ (χt) ≤ −
[
θ

2
− 2nθ1‖P‖

]
‖χ‖2 + nθ2‖P‖‖χ‖2 + nθ2‖P‖‖χτ‖2 −

θ

2
‖χτ‖2

≤ −
[
θ

2
− 2nθ1‖P‖ − nθ2‖P‖

]
‖χ‖2 −

[
θ

2
− nθ2‖P‖

]
‖χτ‖2.

Therefore,
V̇ (χt) ≤ −a(θ)‖χ‖2 − b(θ)‖χτ‖2 (22)

where,
a(θ) = θ

2 − 2nθ1‖P‖ − nθ2‖P‖,

b(θ) = θ
2 − nθ2‖P‖.

(23)

V̇ (χt) ≤ −a(θ)‖χ‖2 − b(θ)‖χτ‖2. (24)

One can get
V̇ (χt) ≤ −a(θ)‖χ‖2. (25)

Therefore, V̇ (χt) is negative definite, this implies that the closed-loop time-delay
system (13) – (14) is globally asymptotically stable. �

3.2. Stabilisation by output feedback

In practice, some state variables are not measurable. Thus, it is necessary to study the
problem of global stabilization via output feedback. In this subsection, we show that
under Assumption 1, it is possible to explicitly build an output return controller. We
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establish a condition for the asymptotic state feedback stabilization of the nonlinear
fractional order time delay systems (13). We propose the following system:

t0D
α
t x̂(t) = Ax̂(t) +Bu(t) + L(θ)(Cx̂− y), (26)

where L(θ) = [l1θ, . . . , lnθ
n]T , with θ > 0, and L = [l1, . . . , ln]T is selected such that

AL = A + LC is Hurwitz. Let S be the symmetric positive definite solution of the
Lyapunov equation,

ATLS + SAL = −I. (27)

The output feedback controller is given by

u = K(θ)x̂. (28)

Theorem 3.3. Suppose that assumptions A1 and A2 are satisfied and there exist a
positive constant θ ≥ 1 such that condition (16) holds and

θ

2
− nθ1‖S‖ − nθ2‖S‖ > 0 (29)

then the closed-loop time-delay system (13) – (28) is globally asymptotically stable.

P r o o f . Let e = x− x̂, is the estimate error. Then, a simple calculation gives

t0D
α
t e = (A+ L(θ)C)e+ f(t, x(t), xτ , u(t)). (30)

For θ > 0, let the change of variable η = ∆θe and identities C = C∆−1θ . Therefore, the
system (30) can be rewritten as follows:

t0D
α
t η = θALη + ∆θf(t, x(t), xτ , u(t)). (31)

Similar to (18), we use the Lyapunov–Krasovskii functional candidate as follow :

W (ηt) = Dα−1(ητSη)+
θ

2

∫ t

t−τ
‖η(s)‖2 ds. (32)

It follow from property (2.4) and Lemma (2.5) the derivative of (32) along the trajecto-
ries of (31), can be expressed as :

Ẇ (ηt) = t0D
α
t (ηTSη) +

θ

2
‖η‖2 − θ

2
‖ητ‖2

≤ 2ηTSt0D
α
t η +

θ

2
‖η‖2 − θ

2
‖ητ‖2

≤ θηT (ATLS + SAL)η + 2SηT∆θf(t, x, xτ , u(t)) +
θ

2
‖η‖2 − θ

2
‖ητ‖2

≤ −θ‖η‖2 + 2SηT∆θf(t, x, xτ , u(t)) +
θ

2
‖η‖2 − θ

2
‖ητ‖2

≤ −θ
2
‖η‖2 + 2‖S‖‖η‖‖∆θf(t, x, xτ , u(t))‖ − θ

2
‖ητ‖2.
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Since f(t, 0, 0, u(t)) = 0, (19), implies that

‖∆θf(t, x, xτ , u(t))‖ ≤ nθ1‖χ‖+ nθ2‖χτ‖.

It is clear that

2‖S‖‖η‖‖∆θf(t, x, xτ , u(t))‖ ≤ 2nθ1‖S‖‖η‖‖χ‖+ 2nθ2‖S‖‖η‖‖χτ‖.

Using the fact that

2‖χ‖‖η‖ ≤ ‖χ‖2 + ‖η‖2 and 2‖χτ‖‖η‖ ≤ ‖χτ‖2 + ‖η‖2.

So by a simple calculation we get:

Ẇ (ηt) ≤ −
{
θ

2
− (θ1 + θ2)n‖S‖

}
‖η‖2 − θ

2
‖ητ‖2 + nθ1‖S‖‖χ‖2 + nθ2‖S‖‖χτ‖2.

Let now,
U(ηt, χt) = βW (ηt) + V (χt)

where V is given by (18). It follows from (24) and (23) we get,

U̇(ηt, χt) ≤ −β
{
θ

2
− nθ1‖S‖ − nθ2‖S‖

}
‖η‖2

−{a(θ)− βnθ1‖S‖} ‖χ‖2 − {b(θ)− βnθ2‖S‖} ‖χτ‖2.

Finally, we choose β such that:

β < min

(
a(θ)

nθ1‖S‖
,

b(θ)

nθ2‖S‖

)
.

As a result, the closed-loop time-delay system (13) – (28) is globally asymptotically sta-
ble. �

Remark 3.4. It is noted that a(θ) and b(θ) tend to ∞ as θ tends to ∞. It can be
concluded that there exists θ0 > 1 such that for all θ > θ0 > 1 conditions (16) and (29)
are fulfilled.

Remark 3.5. In this article, we use control laws that depend on the parameters. For
the linear part, it is assumed that there is a parameter dependent linear feedback that
asserts the global asymptotic stability. Then, under the same controller, we take the
θ-parameter to establish the global asymptotic stability of the non-linear system. This
kind of controllers is widely used in the stabilization of nonlinear time-delay system for
α = 1, (see e. g. [6, 7, 12, 10]).

Remark 3.6. In this paper, the problem for a class of nonlinear fractional order is
achieved. The time-delay is a given constant and known. If τ is a time-varying delay,
and satisfies there exist 0 < β < 1 such that τ̇(t) ≤ 1 − β, the Lyapunov–Krasovskii
functional (18), (32) and the controller design (14) and (28) respectively do not need to
change.
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Remark 3.7. From the Lemma 2.6, we suppose the Caputo fractional derivative takes
the place of the Riemann–Liouville derivative in fractional time delay nonlinear system
(13) and the assumption A1 and assumption A2 remain the same, then the conclusions
of Theorem 3.2-3.3 still hold. Indeed, from Lemma 2.6, we have:

C
t0D

α
t V (χt) ≤t0 Dα

t V (χt).

So,

t0D
α
t V (χt) ≤ 0

then
C
t0D

α
t V (χt) ≤ 0.

4. NUMERICAL EXAMPLE: APPLICATION TO BIOREACTOR

In this section, one shall illustrate the effectiveness of the proposed control law, one will
through investigate the problem dealing with a typical bioreactor. We consider a micro-
bial culture of the mass balance for reactors. The reactor is supposed to be continuous
with concentration distribution across the reactor. The mathematical dynamical model
is constituted by the following system, for α = 0.5:

0D
α
t x1(t) = g1x2 + x2 cosx3 + 2

3x1(t− τ),

0D
α
t x2(t) = g2x3 + 1

1+t2x1 + 2
3x3(t− τ),

0D
α
t x3(t) = u(t) + x2 sinx1,

(33)

where x1, x2 and x3 respectively denote rate of biomass accumulation, the concentration
of the substrate and volume of the stream/substrate, g1 is rate of reaction and g2 is a yield
coefficient. The reactor is assumed to be continuous with a dilution rate u(t). τ denote
the measurements of the biomass concentration. The main objective of the example is
to estimate the actual biomass accumulation together with the time variations from the
available delayed measurements. It is easy to see that Assumption 1 is satisfied with
θ1 = 1, θ2 = 2

3 , control coefficients g1 = 2, g2 = 3. Select K = [−8 − 12 − 8] and
L = [−9 − 20 − 13]T , such that AK and AL are Hurwitz. For solving the Lyapunov
equation (15) and (27), we use Matlab the matrix P and S are given respectively by

P =

 0.6181 −0.2500 −0.2847
−0.2500 0.4271 −0.1667
−0.2847 −0.1667 0.5972

 , S =

 0.0854 0.1342 0.0385
0.1342 1.400 0.7280
0.0385 0.7280 0.8380

 .
So, ‖P‖ = 0.9051 and ‖S‖ = 1.9090. A straightforward computation shows that the
condition (16) is satisfied for all θ > 25.0836 and condition (29) is satisfied for all θ >
52.9038. We take the value parameter θ = 53. Simulation results in Figure 1, Figure 2

and Figure 3 show that response of the closed loop with unchanged parameters, for the
initial condition for the system are x(0) = [0,−20,−10]T and x̂(0) = [10,−10,−10]T .
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Fig. 1. Trajectories of x1 and its estimate x̂1.
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Fig. 2. Trajectories of x2 and its estimate x̂2.
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Fig. 3. Trajectories of x3 and its estimate x̂3.

5. CONCLUSION

The main motivation of this paper, was to present state and output feedback controllers
for a particular family of nonlinear Riemann–Liouville fractional order time delay sys-
tems with non-integer differentiation order between 0 and 1 where known control coeffi-
cients satisfying linear growth condition considered by [32]. Under, Lyapunov–Krasovskii
functional donated by (18) and (32), we have proved that the global asymptotic stability
by using a linear controller. Extension of the method used in this paper, may be feasible
for the more general fractional-order order and nonlinear Caputo fractional order time
delay systems, for non-integer differentiation order α > 0. The effectiveness of the ap-
proach has been provided by numerical result bioreactor example. As a perspective, it is
interesting to consider other Lyapunov–Krasovskii functionals we may sharpen Theorem
3.3 and generalize it to get exponential stabilization of system (9).
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