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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 5 , P A G E S 8 5 6 – 8 7 7

MULTI-ISLAND FINITE AUTOMATA
AND THEIR EVEN COMPUTATION

Dušan Kolář, Alexander Meduna and Martin Tomko

This paper discusses n-island finite automata whose transition graphs can be expressed as n-
member sequences of islands i1, i2, . . . , in, where there is a bridge leaving ij and entering ij+1 for
each 1 ≤ j ≤ n− 1. It concentrates its attention on even computation defined as any sequence
of moves during which these automata make the same number of moves in each of the islands.
Under the assumption that these automata work only in an evenly computational way, the paper
proves its main result stating that n-island finite automata and Rosebrugh-Wood n-parallel
right-linear grammars are equivalent. Then, making use of this main result, it demonstrates
that under this assumption, the language family defined by n-island finite automata is properly
contained in that defined by (n + 1)-island finite automata for all n ≥ 1. The paper also
points out that this infinite hierarchy occurs between the family of regular languages and that
of context-sensitive languages. Open questions are formulated in the conclusion.

Keywords: finite automata, graph-based decomposition, regulated computation, infinite
hierarchies of language families

Classification: 68Q45, 68Q42, 68Q10

1. INTRODUCTION

Over its history, the theory of computation has always systematically and intensively
investigated finite automata in terms of their structures in relation to the way they work
(see [1, 2, 6, 10, 11, 12, 13]). In this paper, we continue with this vivid investigation
trend by using finite automata to formalize and study what this paper refers to as even
computation, which is informally sketched next.

To give an intuitive insight into what has inspired and motivated the present study,
consider any algorithm A, which works as a strictly finitary unit without using any
potentially infinite auxiliary memory, such as a stack. Assume that for a natural number
n, A can be decomposed into n components, i1 through in, in such a way that it
performs these components one by one, starting from i1 and proceeding toward the
last component in. If this performance consists in carrying out the same number of
computational steps within each of the n components, A works evenly within them,
and this is the computational phenomenon formalized and investigated in this paper.
As already stated, this formalization is based upon the well-known notion of a finite
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automaton, which can represent A and its even computation strictly mathematically in
terms of the transition graph of the automaton. To put it somewhat more specifically, in
the graph, the n components are represented by subgraphs called islands, which underlie
the formalization of even computation studied in the present paper as mathematically
described next.

Let us rephrase the intuitive insight into even computation sketched above in terms of
graph theory. For brevity, by graphs, we automatically mean unordered labeled oriented
connected graphs throughout. Let G be a graph and H be a connected subgraph of G
such that H contains k bridges of G, for some k ≥ 0 (recall that a bridge is an edge
of a graph whose deletion increases the number of connected components in the graph;
a connected component is a maximal subgraph in which every two nodes are connected
by a series of edges, regardless of their orientation). H is a k-bridge island if it is not
properly contained in any other subgraph of G containing exactly k bridges. In other
words, all edges of G adjacent to vertices of H are either in H, or bridges. These notions
are illustrated in Figure 1. When applying the notion of islands to directed graphs, it
makes sense to talk about a bridge entering or leaving an island, depending on whether
the island contains its source node or its destination node. If G contains no bridge
entering H, then H is a starting island. If G contains no bridge leaving H, then H is a
final island.

Fig. 1. The thick line in the middle of this diagram represents the

only bridge of the graph—any other edge can be removed without

making the graph disconnected. The two 0-bridge islands separated

by this bridge are enclosed in dashed areas. The entire graph also

forms a 1-bridge island.

In what follows, we automatically assume that finite automata have a single start state
s and a single final state f ; in addition, all their states are useful, and during a single
move, they can read a string, possibly consisting of several symbols. (Of course, non-
deterministic finite automata that satisfy these properties are as powerful as any finite
automata that define the family of regular languages.) Let M be a finite automaton with
transition graph GM . Then, considering the properties and assumptions given above, we
see that GM can be expressed as a sequence of islands i1, i2, . . . , in for some n ≥ 1 such
that i1 is the only starting island, which contains s, in is the only final island, which
contains f , and there is a bridge bj leaving ij and entering ij+1 for all 1 ≤ j ≤ n − 1
(the case when n = 1 means that GM = i1 = in). M with GM of this form is called
an n-island finite automaton, and an even computation in this automaton is a sequence
of moves during which M makes the same number of moves in each of its islands i1
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through in. As an example, consider the automaton M0 in Figure 2. Understood as an
ordinary finite automaton, it accepts the language {a}∗{bb}∗{c}∗. However, understood
as a 3-island finite automaton (with the islands denoted by dashed areas in the diagram)
and limited to even computations, it accepts the language {aibici | i = 2k, k ≥ 0}.

s q

p

f

a

ε

b b

ε

c

Fig. 2. The diagram of M0.

We restrict our attention to n-island finite automata that only perform even compu-
tations. As the main result of the present paper, we demonstrate that they represent a
new automata-theoretic counterpart for right-linear grammars of Rosebrugh and Wood
(see [8]) because both of these language models are equivalent. Let us point out, from an
utterly general viewpoint, that this new counterpart is based upon a purely graph-related
restriction placed upon the way of computation, so it fundamentally differs from already
existing counterparts of this kind, which are based upon a prescribed rule-regulation
of pure pushdown and finite automata (see [5, 9], and a summary of these regulated
automata in Chapter 15 in [7]).

Making use of the main result mentioned above, we also establish an infinite hierarchy
of language families. More specifically, we prove that if the automata under consideration
work only in an evenly computational way, then the language family defined by n-island
finite automata is properly contained in that defined by (n + 1)-island finite automata
for all n ≥ 1. To rephrase this result less formally, any increase in the number of
islands in finite automata satisfying the above properties gives rise to an increase in
their power. This hierarchy occurs between the family of regular languages and that
of context-sensitive languages; it is worth pointing out that the former is defined by
1-island finite automata.

2. PRELIMINARIES

In this section, we formally define the basic notions that this paper builds on, starting
with finite automata and following up with a few concepts related to directed graphs,
so that we can combine these areas in the following section. For a more thorough
introduction to the theory of formal languages, consult [3] or [4].

Finite automata

A general finite automaton (GFA for short) is a pentuple M = (Q,Σ, R, s, f), where:
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• Q is a finite nonempty set of states;

• Σ is a finite nonempty input alphabet, Q ∩ Σ = ∅;

• R ⊆ Q× Σ∗ ×Q is a finite set of rules; each (p, w, q) ∈ R is written as pw → q in
what follows;

• s ∈ Q is the start state;

• f ∈ Q is the final state.

M represents a finite automaton (FA for short) if pw → q ∈ R implies len(w) ≤ 1.
Let M = (Q,Σ, R, s, f) be a GFA. A configuration of M is any string in QΣ∗. As

special cases, sw is an initial configuration for any w ∈ Σ∗, and f is the unique final
configuration.

Let px, qy be two configurations of M , where p, q ∈ Q, x, y ∈ Σ∗. For any rule r ∈ R,
M makes a move from px to qy according to r, denoted as px `M qy [r], if and only
if r is of the form pw → q for some w ∈ Σ∗ and x = wy. The subscript M is omitted
whenever no confusion may arise. We denote the transitive and reflexive closure of `
by `∗.

The language accepted by M is denoted by L(M) and defined as

L(M) = {w ∈ Σ∗ | sw `∗ f}.

Languages accepted by (general) finite automata are called regular languages, and we
denote the class of these languages by REG.

Let M = (Q,Σ, R, s, f) be a GFA and let χ1, . . . , χn be n configurations of M for
some positive integer n. The sequence c = χ1, . . . , χn is called a successful computation
of M if and only if:

(1) χ1 = sw for some w ∈ Σ∗;

(2) χi ` χi+1 for all 1 ≤ i < n;

(3) χn = f .

Directed graphs

A directed graph (or simply a graph) is a pair G = (V,E) where V is a finite set of
vertices and E ⊆ V × V is a finite set of edges.

An edge-labeled directed graph is a directed graph G = (V,E) along with an edge
labeling W : E → L, which assigns to each edge of G a label from a predefined set L of
labels.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. G′ is a subgraph of G if and
only if V ′ ⊆ V and E′ ⊆ E. Note that because G′ is a graph, it must also hold that
E′ ⊆ V ′ × V ′. Furthermore, G′ is a proper subgraph of G if G′ 6= G. If G′ is a subgraph
of G and E′ = E ∩ (V ′ × V ′), we say that G′ is an induced subgraph of G (induced by
the set V ′ of vertices). A subgraph G′ = (V ′, E′) of an edge-labeled directed graph is
automatically understood to have its edge labeling’s domain restricted to E′.
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We now proceed towards the concept of a bridge.
Let G = (V,E) be a directed graph and let u0, . . . , un ∈ V be n+ 1 of its vertices for

some non-negative integer n. Then the sequence p = u0, . . . , un is:

a) A path from u0 to un in G (or simply a path), if (ui, ui+1) ∈ E or (ui+1, ui) ∈ E
for 0 ≤ i < n;

b) A directed path from u0 to un in G, if (ui, ui+1) ∈ E for 0 ≤ i < n.

If p is a path, then for any 0 ≤ i < j ≤ n we say that ui and uj are connected by a
path. A graph is connected if any two of its vertices are connected by a path.

Let G = (V,E) be a connected directed graph. An edge e ∈ E is a bridge, if
(V,E \ {e}) is not connected. We denote by B(G) the set of all bridges in G. A
subgraph G′ = (V ′, E′) of G is a bridgeless subgraph of G if it contains no bridges of G
(that is, B(G)∩E′ = ∅). In other words, a bridge is an edge in a connected graph whose
removal would cause the graph to cease being connected. If the graph is not connected
to begin with, the concept of a bridge is irrelevant, so we do not consider any of its edges
to be bridges.

Note that a bridgeless subgraph G′ of G must not contain edges that are bridges in
G, but there is no requirement that the edges of G′ must not be bridges in G′ itself.

3. DEFINITIONS

In what follows, by the notion of a graph, we automatically understand an edge-labeled
directed graph. We now have all the necessary auxiliary definitions to formally define
the notion of an island.

Definition 3.1. Let G be a graph. A bridgeless island in G is a connected bridgeless
subgraph I ofG that is not a proper subgraph of any other connected bridgeless subgraph
of G.

Next, we prove that any vertex and any edge that is not a bridge is contained in
exactly one bridgeless island of its graph.

Lemma 3.2. Let G = (V,E) be a connected graph. For any u ∈ V , there is exactly
one bridgeless island I = (VI , EI) of G such that u ∈ VI .

P r o o f . Let u ∈ V be any vertex of G. The single-vertex graph ({u}, ∅) is clearly a
connected bridgeless subgraph of G, meaning it is either an island or contained in a
properly larger connected bridgeless subgraph of G. Of all these subgraphs, at least one
must necessarily be maximal with regards to the “is a subgraph of” relation, meaning
it is an island. In conclusion, u is necessarily contained in at least one island of G.

Now let I1 = (V1, E1) and I2 = (V2, E2) be two islands of G such that u ∈ V1 and
u ∈ V2. Let V3 = V1 ∪ V2 and E3 = E1 ∪ E2. As (V1 × V1) ∪ (V2 × V2) ⊆ (V3 × V3), it
necessarily holds that E3 ⊆ V3 × V3, meaning that I3 = (V3, E3) is also a graph.

As I1 and I2 are both bridgeless, I3 is also bridgeless. Finally, I1 and I2 are both
connected. Consider any two vertices v, w ∈ V3. Clearly, as u ∈ V1 ∩ V2, both v and w
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are connected with u by a path, either in I1 or in I2. By combining these two paths, we
get a path between v and w, meaning that I3 is also connected.

Thus, I1, I2 and I3 are all connected bridgeless subgraphs of G. I1 and I2 are also
subgraphs of I3, but they are also islands in G, meaning that they cannot be proper
subgraphs of I3, implying I1 = I2 = I3. �

Lemma 3.3. Let G = (V,E) be a connected graph. For any e ∈ E \ B(G)1, there is
exactly one bridgeless island I = (VI , EI) of G such that e ∈ EI .

P r o o f . Let e = (u, v) ∈ E \ B(G) be any edge of G that is not a bridge. The graph
({u, v}, {(u, v)}) is clearly a connected bridgeless subgraph of G, meaning that it is an
island of G or is contained in an island of G, which we can prove analogously to the
proof of Lemma 3.2 and which leads to the conclusion that e is contained in at least one
island of G.

Now let I1 = (V1, E1) and I2 = (V2, E2) be two islands of G such that e ∈ E1 and
e ∈ E2. Note that it is necessarily the case that u, v ∈ V1∩V2. Also let V3 = V1∪V2 and
E3 = E1∪E2. Analogously with the proof of Lemma 3.2, we can prove that I3 = (V3, E3)
is a connected bridgeless subgraph of G, and as I1 and I2 are both subgraphs of I3 and
islands of G, it must hold that I1 = I2 = I3. �

Islands in finite automata

To establish the connection between finite automata and graphs, let us first recall the
notion of a transition graph:

Definition 3.4. Let M = (Q,Σ, R, s, f) be a GFA and let W : Q × Q → 2Σ∗
be a

function defined for any (p, q) ∈ Q × Q as W (p, q) = {w ∈ Σ∗ | (pw → q) ∈ R}. The
transition graph of M , denoted by GM , is the edge-labeled directed graph GM = (Q,E)
with edge-labeling W|E , where E = {(p, q) ∈ Q×Q |W (p, q) 6= ∅} and the function W|E
is W with its domain restricted to E.

If G = (V,E) is the transition graph GM for some GFA M , we can denote the island
that contains the vertex u ∈ V by Iu. Thus, we denote the island that contains the start
state by Is and the island that contains the final state by If .

For a GFA M = (Q,Σ, R, s, f) and its corresponding transition graph GM , we say
that a state q ∈ Q is useful if there exists a directed path p from s to f in the transition
graph such that q occurs in p; otherwise, q is useless. Note that s and f are always useful
unless L(M) = ∅ (if L(M) = ∅, M has no useful states). Also note that useful states
are exactly those states that are used in some successful computation, meaning that we
can remove the useless states and all associated edges without changing the accepted
language.

To simplify a few statements about the islands of a GFA, let us introduce the notion
of an island graph:

1Any e ∈ B(G) is a bridge, meaning it is not contained in any bridgeless island by definition.
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Definition 3.5. Let G = (V,E) be a directed graph, S be the set of its islands,
and B(G) be the set of its bridges. For any node u ∈ V , Iu ∈ S denotes the is-
land of G containing u. The island graph of G is the graph I(G) = (S,Γ), where
Γ = {(Iu, Iv) | (u, v) ∈ B(G)}.

Furthermore, let p = u0, . . . , un be a path in G. then its corresponding path in I(G)
is the unique path I(p) = I0, . . . , Im, 1 ≤ m ≤ n which can be constructed as follows:

1. Let I0 be the island containing u0;

2. For each subsequent node ui, if the island I containing ui is different from the
island containing ui−1, append I to the end of the sequence constructed so far;

3. After un has been processed, the sequence is finished, clearly ending with the island
Im containing un.

Note that the definition of Γ encounters no duplicates as by definition there can be
no more than a single bridge connecting any two islands. There is therefore a bijection
ψ : B(G)↔ Γ defined as ψ(u, v) = (Iu, Iv).

It is easy to see that I(G) contains no cycles, because we would then be able to
remove any edge on any cycle without making the resulting graph disconnected, which
contradicts the fact that all edges of I(G) are bridges in G. For a connected graph
G, I(G) is also connected, meaning it can be thought of as a tree, leading to an easy
conclusion that if G has n bridges for some integer n ≥ 0, it has n+ 1 islands.

Theorem 3.6. Let M = (Q,Σ, R, s, f) be a GFA with n bridges such that every state in
Q is useful. Let GM be the transition graph of M , and let I(GM ) be the corresponding
island graph. Finally, let w1, w2 ∈ L(M) be any two words accepted by M , and let the
paths p1 and p2 represent in GM the successful computations sw1 `∗ f and sw2 `∗ f ,
respectively. Then the paths I(p1) and I(p2) in I(GM ) corresponding to p1 and p2,
respectively, are equal, that is,

I(p1) = I(p2).

In other words, all islands of M can be ordered as I0, . . . , In, such that every successful
computation of M visits them exactly in this order and never returns to any island after
once leaving it.

P r o o f . Let M be a GFA with no useless states. Recall that I(GM ) for a GFA M
with no useless states can be thought of as a tree. In such a graph, there is a unique
path between any two nodes. Any path corresponding to a successful computation of M
necessarily starts in Is and ends in If , and in between corresponds to the unique path
between them. Furthermore, as M contains no useless states, every island of M occurs
on some path from Is to If , and as we have just established, there is exactly one such
path, and all islands of M occur on it.

In conclusion, any two paths in GM corresponding to a successful computation of M
are represented in I(GM ) by the unique path I0, . . . , In connecting Is = I0 and If = In.
This unique path defines the order I0, . . . , In of the islands of M . �
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Informally speaking, this theorem says that the island graph of the transition graph
of any GFA with no useless states is of the following form:

I0 −→ I1 −→ · · · −→ In−1 −→ In.

This also means that we can always denote its islands as I0, . . . , In, where n is the
number of bridges.

Definition 3.7. Let G = (V,E) be a connected graph and let k be a non-negative
integer. A k-bridge island of G is a connected subgraph I of G that contains exactly k
edges that are bridges in G and is not properly contained in any other such subgraph.

In other words, any connected subgraph H of G which contains I as a proper subgraph
contains at least k + 1 bridges of G. When the number k of bridges can be omitted, we
often refer to k-bridge islands simply as islands.

Note that for k = 0, this definition corresponds to Definition 3.1, so the term bridge-
less island is synonymous with the term 0-bridge island. The following theorem demon-
strates how k-bridge islands are formed from bridgeless islands.

Theorem 3.8. LetG be a connected graph with n bridgeless islands denoted by I1, . . . , In,
k be an integer satisfying 0 ≤ k < n, I be a k-bridge island of G, and Ij = (Vj , Ej)
denote each bridgeless island. Then, statements I. and II., given next, hold true.

I. There is a set S = {j0, . . . , jk} of k + 1 indices, 1 ≤ ji ≤ n for each ji, such that
I = (V,E), where V =

⋃
j∈S Vj and E = (

⋃
j∈S Ej) ∪ (B(G) ∩ V × V );

II. For any such set S of k + 1 indices, the graph I constructed in this way is either
disconnected or a k-bridge island in G.

Less formally, a k-bridge island I in a graph G consists precisely of the union of k+ 1
bridgeless islands of G and the k bridges connecting them. Conversely, any such union
is either disconnected or a k-bridge island.

P r o o f . We prove I. in detail. Concerning II., we only give a sketch of its proof.

Proof of I. (a rigorous version). We establish I. by complete induction on k ≥ 0.

Basis. For k = 0, the theorem says that any bridgeless island of G consists of exactly
one bridgeless island of G, which is obviously true: if the particular island is Ij for some
j, simply set S = {j}. Conversely, an island constructed from a singleton set of indices
{j} just corresponds to the bridgeless island Ij .

Induction Hypothesis. Let I. hold for all 0, . . . , k − 1, where k is a natural number.

Induction Step. Consider statement I. for k. Let I be a k-bridge island of G and let
b ∈ B(G) be one of its k bridges. By removing b from the set of edges in I, we decompose
it into two disjoint connected subgraphs J and K such that I is the union of J , K, and b.

As they are formed from a k-bridge island by removing one bridge, J and K contain
m and l bridges of G, respectively, where m, l are integers satisfying m + l + 1 = k. It
can be shown that J and K are an m-bridge island and an l-bridge island, respectively
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– they are both connected and contain exactly the right number of bridges. It remains
to show that neither is properly contained in another such subgraph of G.

Let us assume that there is an m-bridge island J ′ in G properly containing J . It
follows that J ′ is necessarily connected and contains no bridges out of J , which also
means that b is not in J ′. Furthermore, J ′ and K are necessarily disjoint, because
as they are both connected, J ′ and K having a non-empty intersection would imply
the existence of a path connecting J and K without going through b, which would
contradict the fact that b is a bridge in G. Therefore, the union of J ′, K and b is a
connected subgraph of G containing exactly k bridges and properly containing I as a
subgraph, which contradicts the presupposition that I is a k-bridge island. Therefore,
there can be no such J ′, J is an m-bridge island, and the same argument can be used
to prove that K is an l-bridge island.

By the induction hypothesis, J and K are composed of m + 1 and l + 1 bridgeless
islands, respectively, along with the m and l bridges connecting them. As I is exactly the
union of K, J and b, we can express I as the union of m+ l+2 = k+1 bridgeless islands
and m+ l + 1 = k bridges between them. These k bridges are also all the bridges of G
between the nodes of K and J (so precisely B(G)∩V ×V , as the theorem requires), as no
more than k bridges may connect k+ 1 bridgeless islands – the presence of more bridges
would introduce loops, contradicting the assumption that they are bridges. Thus, the
induction step for I. is completed.

Proof of II. (a sketch). Statement II. can also be proven using complete induction on
k ≥ 0 along with the already proven fact that statement I. holds. Let k be a positive
integer, assume that statement II. holds for all 0, . . . , k − 1, and let S = {j0, . . . , jk} be
a set of k + 1 distinct indices satisfying 1 ≤ ji ≤ n for each 0 ≤ i ≤ k. Let us construct
I = (V,E) with S as a basis as described in the theorem. If I is disconnected, we are
done. Otherwise, I is connected, and we know that the number of bridges in I is k, as
more bridges would lead to loops and fewer bridges would not suffice to connect all of
the k + 1 disjoint bridgeless islands. It remains to show the maximality of I, because if
it is not properly contained in a k-bridge island, it is itself a k-bridge island.

Let I ′ be a k-bridge island containing I. Then, as follows from statement I., I ′

must be constructed as a union of k + 1 bridgeless islands specified by some set S′ of
indices. However, as I ′ also contains I, it must contain all of the bridgeless islands
specified by S, leading to the conclusion that S ⊆ S′, which along with the fact that
card(S′) = card(S) = k + 1 implies S′ = S. Finally, because I and I ′ are fully specified
by S and S′, respectively, it must also be the case that I ′ = I. �

We have already seen that any graph can be described as a union of bridgeless islands
and the bridges connecting them (in Lemmas 3.2 and 3.3), and we have seen the structure
of such a decomposition (in Theorem 3.6). Similar decompositions of a graph G can be
made into the more general k-bridge islands (for varying k), usually in more than one
way. What this comes down to is deciding which bridgeless islands to merge into larger
islands. This corresponds to dividing the bridges in B(G) into two groups: bridges which
merge their adjacent bridgeless islands into larger islands, and bridges which remain as
bridges between the larger islands in the final decomposition. Therefore, for a graph G
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with n bridges, given k such that 0 ≤ k ≤ n, we can decompose G into k + 1 islands in(
n
k

)
different ways.

Using such a decomposition might appear like an attempt to diverge from structures
offered by bridgeless islands alone, but in fact, it is just a convenient shorthand – for
any k-bridge island I found in the transition graph of a particular finite automaton M ,
we can slightly modify M to get an equivalent automaton containing a bridgeless island
corresponding to I. As an example, consider any bridge (u, v) along with a rule uw → v
in M . If we simply add a new state q and rules u→ q, qw → v, the language accepted
by the automaton remains the same, but (u, v) is no longer a bridge and the former
two bridgeless islands connected by (u, v) are merged into a new bridgeless island in the
new automaton. Similar actions can be repeated as necessary to merge larger groups of
islands.

n-island finite automata

Let us now finally apply all the notions we have introduced to the formal definition of
an n-island GFA:

Definition 3.9. Let [n] = {1, 2, . . . , n} be the set of all positive integers up to and
including n and let M = (Q,Σ, R, s, f) be a GFA. We say that M is an n-island general
finite automaton (or n-IGFA for short) if and only if Q =

⋃n
i=1Qi for some family of

pairwise disjoint sets Q1, . . . , Qn called islands of M such that:

1. For each i ∈ [n], the island Qi contains:

• An entry state si ∈ Qi,

• An exit state fi ∈ Qi;

2. For each pw → q ∈ R, exactly one of the following holds:

• Either p, q ∈ Qi for some i ∈ [n], in which case the rule is an internal rule of
island i,

• Or p = fi ∈ Qi, q = si+1 ∈ Qi+1 for some i ∈ [n], i 6= n, in which case the
rule is a bridge rule;

3. s = s1 ∈ Q1;

4. f = fn ∈ Qn.

For each i ∈ [n] set Ri = R ∩ (Qi × Σ∗ × Qi), which is the set of internal rules of

island i, and set Rb = R ∩
⋃n−1

i=1 ({si}×Σ∗ ×{fi+1}), which is the set of bridge rules of
M . Clearly R = (

⋃n
i=1Ri) ∪ Rb. Also set Γ = {(fi, si+1) | 1 ≤ i < n}, which is the set

of bridges of M .

Furthermore, ifM is a finite automaton, we say thatM is an n-island finite automaton
(or n-IFA for short).
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In the transition graph GM of the automaton, it is the case that Γ ⊆ B(GM ), meaning
that each pair of states in Γ is a bridge in GM , Therefore, Q1, . . . , Qn are islands in GM ,
as they are necessarily composed of the remaining bridgeless islands and the bridges
connecting them. The edges (fi, si+1) connecting neighboring islands are called bridges,
as they are bridges in the transition graph of the GFA. However, this graph may also
contain bridges within the individual islands.

Note that while M is required to contain the island structure as described by the
sets Q1, . . . , Qn, the structure of M itself does not specify its islands or bridges in any
way. These must therefore be defined by some additional structure, such as the set
Γ ⊆ B(GM ) of selected bridges. The sets Q1, . . . , Qn along with their entry and exit
states are fully defined by specifying the automaton M along with the set of bridges Γ.

Furthermore, note that for each i ∈ [n], Mi = (Qi,Σ, Ri, si, fi) is a GFA, which we
can also refer to as the ith island of M .

An n-IGFA is just a special case of a GFA, so the previously defined notions of a
configuration, move, and accepted language still apply. However, we can introduce some
extensions of these notions:

Definition 3.10. Let n be a positive integer, M = (Q,Σ, R, s, f) an n-IGFA, Γ ⊆
B(GM ) be its set of bridges, and let p, q ∈ Q be any two states of M , x, y ∈ Σ∗ any two
strings over Σ, and r ∈ R be a rule of M such that px ` qy [r].

If r ∈ Ri for some i ∈ [n], we can say that M makes a move in island i with regard to
Γ, denoted as px Γ

i`qy [r], and if r ∈ Rb, we can say that M makes a bridge move with
regard to Γ, denoted as px Γ

b`qy [r]. We can omit the left superscript Γ when the set of
bridges used is clear from the context.

For both of these relations, the upper index k for some non-negative integer k denotes
their kth power, and the upper index ∗ denotes their transitive and reflexive closure.

Using these notions, we now introduce a new kind of computation based on a restric-
tion not possible in an ordinary GFA.

Definition 3.11. Let n be a positive integer, M = (Q,Σ, R, s, f) an n-IGFA with its
islands specified by the set Γ of selected bridges, and letw ∈ Σ∗ be any string over Σ.
A computation sw `∗ f of M is even with regard to Γ, denoted as sw Γ

e`∗f , if and only
if there is a non-negative integer k and for each i ∈ [n] configurations ςi, ϕi ∈ QiΣ

∗ such
that:

(i) ςi
Γ
i`kϕi for each i ∈ [n],

(ii) ϕi
Γ
b`ςi+1 for each i ∈ [n], i 6= n,

(iii) ς1 = sw,

(iv) ϕn = f .

The language accepted by M by even computations with regard to Γ is denoted by
Le(M,Γ) and defined as

Le(M,Γ) = {w ∈ Σ∗ | sw Γ
e`∗f}.
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In other words, a computation is even if the same number of moves is performed by
M in each island.

For any positive integer n, we denote the class of all n-IGFA and the class of all n-IFA
by GFAn and FAn, respectively. We also denote the classes of languages accepted by
these automata as L(GFAn) = {L(M) |M ∈ GFAn} and L(FAn) = {L(M) |M ∈
FAn}. Finally, we denote the classes of languages accepted by these automata by even
computations by Le(GFAn) = {Le(M,Γ) |M ∈ GFAn,Γ ⊆ B(GM )} and Le(FAn) =
{Le(M,Γ) |M ∈ FAn,Γ ⊆ B(GM )}.

Example 3.12. ConsiderM1 = ({s, q, f}, {a, b, c}, R, s, f), whereR consists of the rules

sa → s,
s → q,
qb → q,
q → f,
fc → f,

and set Γ = {(s, q), (q, f)}, which as a set of selected bridges corresponds to the islands
Q1 = {s}, Q2 = {q}, Q3 = {f}. See Figure 3 for a diagram of this automaton, with the
individual bridges enclosed in dashed rectangles.

s q f

a

ε

b

ε

c

Fig. 3. The diagram of M1.

Clearly, L(M1) = {a}∗{b}∗{c}∗ ∈ REG. Considering the set Γ of selected bridges,
M1 is a 3-IFA, with each of the states s = s1 = f1, q = s2 = f2, f = s3 = f3 being
both the entry and exit state of their respective islands. Consider the following even
computation with input aabbcc, with the current state underlined in each configuration
for clarity:

saabbcc 1` sabbcc

1` sbbcc

b` qbbcc

2` qbcc

2` qcc

b` fcc

3` fc

3` f

As the computation performs exactly 2 steps in each island, we can say that

saabbcc Γ
e`f,
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meaning aabbcc ∈ Le(M1,Γ). Observe that

Le(M1,Γ) = {anbncn | n ≥ 0},

which is a context-sensitive language, but not a context-free language.

4. RESULTS

In this section, we establish the main results of this paper. First, we prove REG =
L(GFAn) = L(FAn) for all n ≥ 1. Then, we demonstrate Le(GFAn) ⊂ Le(GFAn+1)
for all n ≥ 1.

Theorem 4.1. REG = L(GFAn) for any n ∈ N, n ≥ 1.

P r o o f . As an n-IGFA is just a special case of a GFA, clearly L(GFAn) ⊆ REG for
any n ∈ N, n ≥ 1.

Let L ∈ REG be a regular language over an alphabet Σ. If L = ∅, it is trivial
to construct an n-IGFA accepting L. Let L 6= ∅ and let M = (Q,Σ, R, s, f) be a
GFA with no useless states such that L(M) = L. As M is definitely a 1-IGFA, clearly
REG ⊆ L(GFA1). Let n ≥ 2 and Q′ = {q2, . . . , qn} be a set of n − 1 new states
such that Q′ ∩ Q = Q′ ∩ Σ = ∅. We can introduce new rules R′ = {f → q2} ∪ {qi →
qi+1 | 2 ≤ i < n}. Clearly, M ′ = (Q ∪ Q′,Σ, R ∪ R′, s, qn) is an n-IGFA with regard to
{(f, q2)} ∪ {(qi, qi+1) | 2 ≤ i < n} as the set of selected bridges and L(M ′) = L(M) = L.
Therefore, REG ⊆ L(GFAn), so REG = L(GFAn) for any n ∈ N, n ≥ 1. �

Rather than proving the analogous result for ordinary finite automata separately, we
now show their relation to general finite automata, from which this analogous result
follows.

Theorem 4.2. L(FAn) = L(GFAn) and Le(FAn) = Le(GFAn) for any n ∈ N, n ≥ 1.

P r o o f . As an n-FA is just a special case of an n-GFA, clearly it holds that L(FAn) ⊆
L(GFAn) and Le(FAn) ⊆ Le(GFAn).

To prove the converse inclusion, let n be any positive integer, let M = (Q,Σ, R, s, f)
be any n-IGFA, and let Γ ⊆ B(GM ) be the set of bridges defining the n islands of M .
We construct an n-IFA N = (O,Σ, P, s, f ′) along with a set ∆ ⊆ B(GN ) of its defining
bridges such that L(N) = L(M) and Le(N,∆) = Le(M,Γ).

As an intermediate step to simplify the construction, let us define the n-GFA M ′

with bridges Γ′ equivalent to M in every way except that nothing is read during bridge
moves. This reading is done just before exiting the island instead. Let s1, . . . , sn denote
the entry states and f1, . . . , fn the exit states of each island of M . Clearly, s = s1,
Γ = {(fi, si+1) | 1 ≤ i < n}, and f = fn. We introduce new states f ′1, . . . , f

′
n /∈ Q which

serve as the new exit states of each island. We define M ′ as the pentuple (Q′,Σ, R′, s, f ′),
where:

• Q′ = Q ∪ {f ′1, . . . , f ′n};
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• R′ = Rn ∪Rf ∪Rb, where:

– Rn = R \ {px → q ∈ R | (p, q) ∈ Γ} is the set of original non-bridge rules in
M ,

– Rf = {fix → f ′i | (fix → si+1) ∈ R for some 1 ≤ i < n} ∪ {fn → f ′n} is the
set of new rules for the reading done in bridges in M ,

– Rb = {f ′i → si+1 | 1 ≤ i < n} is the set of new bridge rules;

• f ′ = f ′n is the new exit state of the final island;

• Σ and s are the same as in M .

We also set Γ′ = {(f ′i , si+1) | 1 ≤ i < n}. Clearly, L(M ′) = L(M) and Le(M,Γ) =
Le(M

′,Γ′), as exactly one additional step must occur in each island, so for each even
computation in M there is a corresponding even computation in M ′, and vice versa.

Next, let m = max{len(x) | px → q ∈ R′, where p, q ∈ Q′, x ∈ Σ∗} be the smallest
integer greater than or equal to the length of any string that can be read by a single
rule in M ′ (or, equivalently, in M). We simulate each internal island rule of M ′ in N
by m new rules and m− 1 new intermediate states as follows.

Let r : px → q ∈ (Rn ∪ Rf ) be a non-bridge rule of M ′, let x = a1 · · · ak with
k = len(x) ≤ m, and let ai denote ε for i > k. We introduce a new state 〈r, i〉 for each
1 ≤ i < m. To simulate r, we add the rules pa1 → 〈r, 1〉, 〈r,m− 1〉am → q and for each
1 ≤ i ≤ m−2 a rule of the form 〈r, i〉ai+1 → 〈r, i+1〉. The other states and bridge rules
can be taken over unchanged.

Leaving a strictly rigorous version of the definition of N to the reader, we see that
for each computation of M ′, a corresponding computation in N can be made such that
for each move in an island of M ′, exactly m moves are performed in the corresponding
island in N while reading exactly the same string from the input. This also means that
an even computation of M ′ is always simulated by an even computation in N , because
where M ′ performs exactly k moves in each island for some k ≥ 0, N performs exactly
mk moves in each island. Furthermore, no additional computations can be performed
in N , as the new states can only be used in the simulation of rules from M ′. Therefore,
L(N) = L(M ′) = L(M ′) and Le(N,∆) = Le(M

′,Γ′) = Le(M,Γ). This construction
can be performed for any n-IGFA, meaning that the inclusions L(GFAn) ⊆ L(FAn)
and Le(GFAn) ⊆ Le(FAn) hold for any positive integer n, finalizing the proof of the
theorem. �

Theorem 4.3. REG = L(FAn) for any n ∈ N, n ≥ 1.

P r o o f . Follows immediately from Theorems 4.1 and 4.2. �

Accepting power

In this subsection we show that n-IGFA are equivalent to another computational model,
n-parallel right-linear grammars, defined as follows:

Definition 4.4. Let n be a positive integer. An n-parallel right-linear grammar (or
n-PRLG for short) is a quadruple G = (N,Σ, P, S), where:
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• N is a finite, non-empty set of nonterminals;

• Σ is a finite set of terminals, N ∩ Σ = ∅;

• S ∈ N is the start symbol ;

• P is a finite set of production rules, each rule being of one of the following four
forms:

(i) S → x, where x ∈ Σ∗,

(ii) S → A1 · · ·An, where Ai ∈ N \ {S} for 1 ≤ i ≤ n,

(iii) A→ xB, where A,B ∈ N \ {S} and x ∈ Σ∗,

(iv) A→ x, where A ∈ N \ {S} and x ∈ Σ∗.

A derivation step in a given n-PRLG G = (N,Σ, P, S) is defined as follows. For
α, β ∈ (N ∪ Σ)∗, α⇒G β holds if and only if one of the following three options holds:

a) α = S and (S → β) ∈ P ;

b) α = x1A1x2 · · ·xnAn and β = x1y1x2 · · ·xnyn, where xi ∈ Σ∗, Ai ∈ N \ {S},
yi ∈ Σ∗(N \ {S}), and (Ai → yi) ∈ P for all 1 ≤ i ≤ n;

c) α = x1A1x2 · · ·xnAn and β = x1y1x2 · · ·xnyn, where xi ∈ Σ∗, Ai ∈ N \ {S},
yi ∈ Σ∗, and (Ai → yi) ∈ P for all 1 ≤ i ≤ n.

We can also simply write x ⇒ y where G is clear from the context. We define ⇒∗,
⇒+ and ⇒k for non-negative integers k as usual.

The language generated by an n-PRLG G is denoted by L(G) and defined as

L(G) = {w ∈ Σ∗ | S ⇒∗G w}.

Note that unlike other definitions of this model, we allow erasing rules. However,
this has no effect on the generative power of this model in comparison with the variant
without erasing rules (see [8] for a proof). In what follows, we denote the class of
languages generated by n-PRLGs by PRLn.

Theorem 4.5. Let n be a positive integer, M = (Q,Σ, R, s, f) be an n-IGFA and
Γ ⊆ B(GM ) be a set of bridges of M . Then there is an n-PRLG G = (N,Σ, P, S) such
that L(G) = Le(M,Γ).

P r o o f . Given the n-IGFA M = (Q,Σ, R, s, f) and the set of bridges Γ, we can infer
the individual islands Q1, . . . , Qn and their entry and exit states si, fi for each 1 ≤ i ≤ n.
We can simply take the states of the automaton as the nonterminals for the grammar,
add a start symbol S and an initial rule of the form S → s1 · · · sn, and add a rewriting
rule of the form p → xq for each internal rule px → q within an island of M . Finally,
we add rules to allow the rewriting of exit states to whatever strings can be read on the
following bridge, or to the empty string in the case of the final state.

Formally, let G = (Q ∪ {S},Σ, P, S), where S /∈ Q ∪ Σ and P = Ps ∪ Pi ∪ Pf , with
the individual components of the rule set defined as follows:
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• Ps = {S → s1 · · · sn} is the set containing the single initial rule;

• Pi = {p → xq | (px → q) ∈ R ∧ p, q ∈ Qj for some island j} is the set containing
rules corresponding to the internal rules of each island;

• Pf = {fi → x | 1 ≤ i < n ∧ (fix→ si+1) ∈ R} ∪ {f → ε} is the set containing the
terminating rules for each island.

After applying the initial rule, the ith nonterminal represents the ith island of M .
In any derivation, exactly the same number of steps is taken in each simulated island,
fulfilling the requirement that only even computations get simulated. This is because
an n-PRLG requires that in a single step, either all n nonterminals in its sentential
form get rewritten to terminal strings (which corresponds to applying the terminat-
ing rules), or they all get rewritten to strings each containing exactly one nonterminal
(which corresponds to applying the internal rules). Furthermore, because of the way the
rewriting rules of the grammar are based on M , G generates exactly those strings which
M accepts. Therefore, L(G) = Le(M,Γ), concluding the proof. �

It follows from this theorem that Le(GFAi) ⊆ PRLi. The converse relation is not
as straightforward to prove. It is easy to imagine that we can simply construct an n-
IGFA based on the rules of a given n-PRLG and let each island simulate the derivations
starting from a particular nonterminal, but an n-PRLG may have multiple rules of the
form S → A1 · · ·An, which requires each island to simulate derivations from different
nonterminals depending on which initial rule was used, with only the number of steps
taken in each island as a means of communication between the islands.

Consider the relatively simple language L2 = {anbn, bnan | n ≥ 0}, which is clearly a
PRL2 language, as it is generated by the grammar G2 = ({S,A,B}, {a, b}, P, S), where
P contains the following production rules:

S → AB,
S → BA,
A → aA,
A → ε,
B → bB,
B → ε.

Let us now think about how to construct a 2-IFGA which would accept L2 by even
computations. While it is easy to imagine how the concept of even computations can
be employed to ensure the same number of a’s and b’s in a string, it is not immediately
obvious how the second island can be forced to only accept b’s if the first island only
accepted a’s, and vice versa. Regardless of what computation path is performed in the
first island, the computation must go through the single available bridge, so the only
information about the computation in the first island that is available to the automaton
in the second island is how many steps were performed. However, this is enough to
communicate which kind of string is being accepted – by adding appropriate ε-rules, we
can ensure that for strings of the form anbn, an odd number of steps is performed in
each island, whereas for strings of the form bnan this number would be even. This idea
is demonstrated in the following example.
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Example 4.6. Consider the automaton M2 = (Q, {a, b}, R, s1, f2) where

• Q = {s1, s2, p1, p2, p3, p4, q1, q2, q3, q4, f1, f2},

• R = {s1 → p1, s1 → q1, p1a → p2, p2 → p1, p2 → f1, q1 → q2, q1 → f1, q2b →
q1, f1 → s2, s2 → p3, s2 → q3, p3b→ p4, p4 → p3, p4 → f2, q3 → q4, q3 → f2, q4a→
q3},

along with the set of bridges Γ = {(f1, s2)}. A diagram of this automaton can be seen
in Figure 4.6 with dashed rectangles delimiting the individual islands.

s1

p1 p2

f1

q1

q2

s2

p3 p4

f2

q3

q4

ε

ε

a

ε
ε

ε

ε

b

ε

ε

ε

b

ε
ε

ε

ε

a

Fig. 4. The diagram of M2.

Examine R to see that any computation within the first island ending in its exit state
is necessarily of one of the following two forms, where w ∈ Σ∗:

(1) s1a
kw ` p1a

kw `2k−1 p2w ` f1w, where k ≥ 1,

(2) s1b
kw ` q1b

kw `2k q1w ` f1w, where k ≥ 0.

Analogously, any computation within the second island that processes the entire
remainder of the input string and ends up in the final state is necessarily of one of the
following two forms:

(1’) s2b
k ` p3b

k `2k−1 p4 ` f2, where k ≥ 1,

(2’) s2a
k ` q3a

k `2k q3 ` f2, where k ≥ 0.

Notice that computations of forms (1), (1’) consist of 2k + 1 steps for a given k ≥ 1,
so the number of steps is always odd, whereas computations of forms (2), (2’) consist
of 2k + 2 steps for a given k ≥ 0, so the number of steps is always even. Recall that in
an even computation, exactly the same number of steps must be taken in each island.
From this and from what we have established about the possible computations in each
island, there are only two possible forms of even computations in automaton M2:
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(a) s1a
kbk 1`2k+1f1b

k
b`s2b

k
2`2k+1f2, where k ≥ 1,

(b) s1b
kak 1`2k+2f1a

k
b`s2a

k
2`2k+2f2, where k ≥ 0.

Notice that even computations of form (a) go through states pi and do not go through
states qi for i ∈ {1, 2, 3, 4}, whereas it is the other way around for computations of form
(b)2.

In summary,

Le(M2,Γ) = {anbn, bnan | n ≥ 0} = L2.

In an n-PRLG, we can achieve the generation of the two different string forms just
by having two different starting rules (S → AB and S → BA). In an n-IGFA, no such
simple approach is possible in the general case, but as seen in the previous example, we
can associate each string form with a different remainder when dividing by a preselected
number (in this case 2) and require the number of steps taken in each island when
accepting a string of a given form to give the associated remainder; 0 for strings of the
form bnan, 1 for strings of the form anbn.

To allow us to simulate any n-PRLG, we can generalize this approach. To simulate
a grammar with k starting rules, we proceed as follows. First, we associate a unique
remainder from {0, . . . , k−1} with each starting rule. Then, we construct the automaton
in such a way, that to simulate a derivation starting with a given starting rule, the
number of steps taken in each island must give the corresponding remainder when divided
by k.

Because we do not need to differentiate between different terminal-generating starting
rules in this way (that is, rules of the form S → x where x ∈ Σ∗), we instead use the
remainder when dividing by m + 1, where m is the number of different nonterminal-
generating starting rules (that is, rules of the form S → α where α ∈ Nn). We reserve
remainder 0 for terminal-generating starting rules and associate a remainder value from
{1, . . . ,m} with each of the m nonterminal-generating starting rules. This approach is
formalized in the proof of the following theorem.

Theorem 4.7. Let n be a positive integer, and let G = (N,Σ, P, S) be an n-PRLG.
Then there is an n-IGFA M = (Q,Σ, R, s, f) and a set of bridges Γ ⊆ B(GM ) such that
Le(M,Γ) = L(G).

P r o o f . Let G = (N,Σ, P, S) be an n-PRLG. First, for convenience, let us divide the
set of production rules P of G into four pairwise disjoint subsets:

• Ps = {p ∈ P | p is of the form S → A1 · · ·An, where A1, . . . , An ∈ N \ {S}},

• Pc = {p ∈ P | p is of the form S → x, where x ∈ Σ∗},

• Pn = {p ∈ P | p is of the form A→ xB, where A,B ∈ N \ {S}, x ∈ Σ∗},

• Pt = {p ∈ P | p is of the form A→ x, where A ∈ N \ {S}, x ∈ Σ∗}.
2Although of course q2 and q4 are not visited when accepting the empty string.
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Note that Ps ∪ Pc ∪ Pn ∪ Pt = P .
Let m = card(Ps) be the number of different initial rules generating nonterminals,

and let these rules be indexed, meaning we can write Ps = {p1, . . . , pm} where for any
given integer j satisfying 1 ≤ j ≤ m, pj denotes a specific rule, and pi = pj implies i = j.
Also, let Aij denote the ith nonterminal on the right-hand side of the jth rule of Ps,
meaning that pj is of the form S → A1j · · ·Anj . We construct M in such a way that for a
derivation starting with rule pj , the corresponding computation performs in each island
a number of steps giving the remainder j when divided by m+1. This ensures that even
computations can only be created by combining paths within individual islands intended
for simulating the same initial rule of G. The remainder 0 is used for derivations starting
(and thus necessarily also ending) with rules from Pc.

We can now start constructing M . The set Q consists of the following states:

• si and fi for each 1 ≤ i ≤ n, which are the entry and exit states for each island;

• States of the form 〈i, j〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, which are used for the
initial generation of the remainder in each island;

• States of the form 〈A, i, j〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, A ∈ N \ {S}, which
represent the nonterminal A simulated in the ith island in a computation with
predetermined remainder j (meaning that this state is intended to be used for
simulations of derivations starting with the rule pj ∈ Ps);

• States of the form 〈i, j, k,B〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m,
B ∈ (N \ {S}) ∪ {ε}, which allow the rules from Pn and Pt with the right-hand
side xB for some x ∈ Σ∗ to be simulated using m + 1 moves in M . In each of
these states, i identifies the island, j represents the remainder for this branch of
computation (or, equivalently, it represents that the derivation being simulated
starts with the rule pj ∈ Ps), and k is the counter used to ensure that exactly
m+ 1 moves are performed for the simulation of any given rule from Pn ∪ Pt.

We now have the necessary groundwork to describe the rules of the automaton.
Specifically, R must contain the following rules:

• Rules to generate the remainder:

– A rule of the form si → 〈i, 1〉 for each 1 ≤ i ≤ n,

– A rule of the form 〈i, j〉 → 〈i, j + 1〉 for each 1 ≤ i ≤ n, 1 ≤ j < m;

• Rules to pair the remainder 0 with simulating derivations starting with rules from
Pc:

– A rule of the form 〈1,m〉x→ f1 for each production rule S → x ∈ Pc;

– A rule of the form 〈i,m〉 → fi for each 1 < i ≤ n;

• Rules to pair the remainder j, 1 ≤ j ≤ m, in island i with the nonterminal Aij

derived at position i by the initial rule pj : S → A1j · · ·Anj ∈ Ps corresponding to
the remainder:
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– A rule of the form si → 〈Ai1, i, 1〉 for each 1 ≤ i ≤ n;

– A rule of the form 〈i, j − 1〉 → 〈Aij , i, j〉 for each 1 ≤ i ≤ n, 1 < j ≤ m;

• Rules to simulate production rules from Pn and Pt, including extra ε-rules to
ensure that the simulation of a given rule always takes m+ 1 steps:

– A rule of the form 〈A, i, j〉x→ 〈i, j, 1, B〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m and
each rule A→ xB ∈ Pn ∪ Pt, where x ∈ Σ∗ and B ∈ (N \ {S}) ∪ {ε};

– A rule of the form 〈i, j, k,B〉 → 〈i, j, k+ 1, B〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m,
1 ≤ k < m, B ∈ (N \ {S}) ∪ {ε};

– A rule of the form 〈i, j,m,B〉 → 〈B, i, j〉 for each 1 ≤ i ≤ n, 1 ≤ j ≤ m,
B ∈ N \ {S};

– A rule of the form 〈i, j,m, ε〉 → fi for each 1 ≤ i ≤ n, 1 ≤ j ≤ m;

• Bridge rules:

– A rule of the form fi → si+1 for each 1 ≤ i < n.

Given all this, we can define M = (Q,Σ, R, s, f), where

• Q and R are as described above,

• Σ is the same as in G,

• s = s1 and f = fn.

Finally, Γ = {(fi, si+1) | 1 ≤ i < n}.

By examining the definition of R above, it can be seen that each non-initial rule
of G is simulated by m + 1 moves, and enforcing the remainder ensures that in even
computations, the islands agree on the initial S-rule used. Even computations also make
sure that in the simulated derivation, all nonterminals get rewritten to a terminal string
in a single step, as an n-PRLG requires (this corresponds to moving into the exit state
fi of each island). Each island can on its own accept any string derivable from any single
nonterminal different from S, but the structure helps simulate the synchronicity of the
grammar. It therefore follows that Le(M,Γ) = L(G). �

Theorem 4.7 implies that PRLn ⊆ Le(GFAn). From Theorems 4.5 and 4.7, we
obtain the following main result of this paper.

Corollary 4.8. For any positive integer n, PRLn = Le(GFAn).

Recall that
PRLn ⊂ PRLn+1 for all n ≥ 1

(see [8]). From this hierarchy and Corollary 4.8 above, we get the next corollary.

Corollary 4.9. For any positive integer n, Le(GFAn) ⊂ Le(GFAn+1).
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5. CONCLUSION

The present paper has introduced the notion of an island in transition graphs for finite
automata. Based on this notion, it placed a restriction on the way finite automata work,
referred to as even computation. As its main result, it demonstrated an infinite hier-
archy of language families corresponding to the number of islands in evenly computing
finite automata. This hierarchy coincides with a well-known infinite hierarchy of lan-
guage families resulting from multi-parallel right-linear grammars in a very natural way.
Consequently, it is obviously closely related to some well-known results about formal
languages, on which it sheds light in an alternative way. Therefore, the authors suggest
to continue with the study opened in the present paper. Specifically, this investigation
should pay special attention to the following three open problem areas.

I. Introduce deterministic versions of the restricted finite automata defined in this
paper. Study them by analogy with the study of classical deterministic finite
automata.

II. We have based the present paper on one-way finite automata with useful states, out
of which only one state is final. Observe that this concept fulfills an essential role
in the proofs of the achieved results. In the classical automata theory, however,
there exist many other equivalent versions of these automata. Do the achieved
results hold in their terms as well? Specifically, do they hold in terms of two-way
finite automata (see Section 2.6 in [3])?

III. There exist a broad variety of finite automata, ranging from quantum through
probabilistic up to fuzzy finite automata. Restrict these automata by analogy with
the bridge-based restriction discussed in the present paper. Study their power.
From a more general viewpoint, investigate this topic in terms of automata that
are stronger than finite automata, such as a broad variety of pushdown automata,
including counters and one-turn pushdown automata.

ACKNOWLEDGEMENTS

We thank all three anonymous referees for their useful comments.

FUNDING

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic
from the National Programme of Sustainability (NPU II), from the project IT4Innovations
excellence in science—LQ1602.

(Received January 21, 2021)

R E F E R E N C E S

[1] Z. Bavel: Structure and transition-preserving functions of finite automata. J. ACM 15
(1968), 1, 135–158. DOI:10.1145/321439.321448

https://doi.org/10.1145/321439.321448


Multi-island finite automata and their even computation 877

[2] X. Han, Z. Chen, Z. Liu, and Q. Zhang: The detection and stabilisation of
limit cycle for deterministic finite automata. Int. J. Control 91 (2018), 4, 874–886.
DOI:10.1080/00207179.2017.1295319

[3] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages and Com-
putation. First edition. Addison-Wesley Publishing Company, 1979.

[4] A. Meduna: Formal Languages and Computation: Models and Their Applications. First
edition. Auerbach Publications, 2014.

[5] A. Meduna and T. Masopust: Self-regulating finite automata. Acta Cybernetica 18 (2007),
1, 135–153.

[6] A. Meduna and P. Zemek: Jumping finite automata. Int. J. Found. Comput. Sci. 23
(2012), 1555–1578. DOI:10.1142/S0129054112500244

[7] A. Meduna and P. Zemek: Regulated Grammars and Automata. Springer, 2014.

[8] R. D. Rosebrugh and D. Wood: Restricted parallelism and right linear grammars. Util.
Math. 7 (1975), 151–186.
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[13] A. Yli-Jyrä and K. Koskenniemi: Compiling contextual restrictions on strings into finite-
state automata. In: Proc, Eindhoven FASTAR Days 2004.
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Martin Tomko, Božetěchova 2, 612 00 Brno. Czech Republic.
e-mail: itomko@fit.vutbr.cz

https://doi.org/10.1080/00207179.2017.1295319
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.12785/amis/080111

