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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 6 , P A G E S 9 3 9 – 9 5 7

STRUCTURAL IDENTIFIABILITY ANALYSIS
OF NONLINEAR TIME DELAYED SYSTEMS
WITH GENERALIZED FREQUENCY RESPONSE
FUNCTIONS

Gergely Szlobodnyik and Gábor Szederkényi

In this paper a novel method is proposed for the structural identifiability analysis of nonlinear
time delayed systems. It is assumed that all the nonlinearities are analytic functions and
the time delays are constant. We consider the joint structural identifiability of models with
respect to the ordinary system parameters and time delays by including delays into a unified
parameter set. We employ the Volterra series representation of nonlinear dynamical systems and
make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized
Frequency Response Functions (GFRFs), in order to test the unique computability of the
parameters. The advantage of representing nonlinear systems with their GFRFs is that in the
frequency domain representation the time delay parameters appear explicitly in the exponents
of complex exponential functions from which they can be easily extracted. Since the GFRFs can
be symmetrized to be unique, they provide us with an exhaustive summary of the underlying
model structure. We use the GFRFs to derive equations for testing structural identifiability.
Unique solution of the composed equations with respect to the parameters provides sufficient
conditions for structural identifiability. Our method is illustrated on non-linear dynamical
system models of different degrees of non-linearities and multiple time delayed terms. Since
Volterra series representation can be applied for input-output models, it is also shown that
after differential algebraic elimination of unobserved state variables, the proposed method can
be suitable for identifiability analysis of a more general class of non-linear time delayed state
space models.

Keywords: structural identifiability, Volterra series, generalized frequency response

Classification: 93B30

1. INTRODUCTION

Several dynamical systems of physical, chemical and biological importance can be mod-
eled by means of continuous differential equations [28, 56]. An important step in con-
structing appropriate mathematical models is estimating the model parameters [26, 44,
51, 55]. Accurate estimation of parameters is of paramount importance especially if
the purpose is to make predictions or design a controller based on the identified model.
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A related problem of parameter estimation is structural identifiability (also called prior,
theoretical or qualitative identifiability): a given model structure is said to be struc-
turally identifiable with respect to a set of parameters, if the exact parameter values
of the set can be uniquely determined in theory, assuming unlimited, noise-free ob-
servational data [2, 32, 47]. Structural identifiability is a property depending on the
underlying model structure and possibly on the initial conditions. It is independent of
the quality and amount of available observed data. Examining structural identifiability
of model structures is especially important if the system parameters are endowed with
physical, chemical or biological significance.

Structural identifiability was introduced among the first by Bellman and Astrom in
the framework of linear systems theory [6]. They used the parameterized transfer func-
tion of the system as exhaustive summary in order to obtain necessary and sufficient
conditions on structural identifiability. In the context of linear systems the similarity
transformation approach is based on finding invertible transformations of the state space
realization matrices [52]. Assuming joint observability and controllability, by Kalman’s
algebraic rank condition the similarity transformation approach provides necessary and
sufficient conditions for structural identifiability. In the case of non-linear systems,
deciding structural identifiability is computationally much more complicated. For un-
controlled autonomous systems the direct test approach provides a conceptually simple,
but limited method by equating the system non-linearities of different parameterizations
[14]. The similarity transformation based approach was extended to non-linear systems
by means of the local state isomorphism theorem [48, 49]. For locally reduced systems
(structural controllability and observability conditions have to be fulfilled), it seeks for
state variable transformations and leads to solving a set of partial differential equations
[19]. The Taylor series approach expands the model output in Taylor series around t = 0
[37]. The coefficients of the resulting power series are unique and provide an exhaustive
summary for testing structural identifiability. Conceptually similar to the Taylor series
based expansion, the generating series approach employs the Fliess series expansion of
the observables [53]. The coefficients of the series, which are unique descriptors of the
input-output behavior, are the Lie derivatives of the model output. Both Taylor series
and generating series expansions provide sufficient conditions of structural identifiability,
but the algebraic expressions obtained by the generating series approach are often sim-
pler [11, 54]. The differential algebra based approach reformulates the system equations
so that the non-measured state variables are eliminated in order to obtain an equiv-
alent set of differential algebraic equations containing only the model inputs, outputs
and system parameters [27]. Elimination of unobserved variables can be performed by
Ritt’s pseudodivision algorithm [7]. The resulting set of equations is called the input-
output map or characteristic set, which provides a Grbner basis of the model equations
[38]. Necessary and sufficient conditions on structural identifiability can be obtained by
the characteristic set [27]. The implicit function theorem approach also eliminates the
unobservable variables [60]. It determines a matrix composed of the derivatives of non-
linearities with respect to the system parameters. Then structural identifiability testing
translates to the non-singularity of the obtained matrix. Assuming constant input ex-
citation, testing structural identifiability can be performed by means of the concept of
non-linear observability [57, 58]. Viewing the constant parameters as state variables
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with zero dynamics, structural identifiability can be examined through the observability
of the extended state vector involving the system parameters. Then identifiability can
be examined through the rank of the extended non-linear observability matrix.

In practice, many dynamical processes involve time delayed terms [9, 22, 30, 31, 43],
and this is true for biological models as well. For example, metabolic regulatory networks
may contain delayed signaling pathways, e. g. delayed feedback loops, which imply
specific qualitative dynamical phenomena [12, 20, 23, 24]. Time delayed signals are also
proven to be useful for controlling dynamics of biological networks [34]. Time delayed
models are often employed to model the dynamical behavior of systems in population
biology and epidemiology [13, 22, 25]. Delayed terms are also used in models of chemical
kinetics (e. g. if the dynamics is partially known or certain intermediates are omitted
from the description for simplicity) [15, 39].

A related problem arising in modeling with time delayed differential equations is to
examine the possibility of uniquely determining the constant delay parameters. Struc-
tural identifiability of time delayed systems – including the delays as parameters – has
received less attention. Compared to ordinary system parameters, time delays appear
implicitly in the inputs, outputs and internal state variables, which makes the respec-
tive identifiability problem more involved. Identifiability of delayed systems is typically
analyzed in the context of dynamical systems of some specific structure. For linear time
delayed systems sufficient condition on joint identifiability of ordinary parameters and
delays can be obtained [33]. Furthermore, it is shown that under sufficiently exciting
input signals, weak controllability provides necessary and sufficient condition for identifi-
ability [5]. For linear retarded functional differential equations the unique identifiability
of coefficients, delays and initial conditions were also examined, necessary and sufficient
conditions for identifiability are available [29]. In case of non-linear systems, assuming
constant integer time delays, identifiability was examined in [63], however, identifiabil-
ity analysis was restricted to the ordinary parameters not including the delays. In [1]
authors examined the class of nonlinear systems with a single constant time delay and
considered the identifiability problem of the delay parameter. It is shown that identi-
fiability of the time delay parameter is a necessary condition of observability of state
variables and identifiability of ordinary system parameters. The authors also showed
that by state elimination, the resulting input-output relations can be used to decide
the identifiability of the delay parameter. Linear algebraic conditions are also obtained
to eliminate explicit calculation of the input-output relations for testing identifiability.
In [64] the case of delay identifiability in nonlinear systems with unknown inputs was
examined. The proposed approach is based on the deduction of an output-delay equa-
tion, which is proven to be related to identifiability. Assuming the existence of the
output-delay equation in the single delay case, necessary and sufficient conditions were
derived for delay identifiability. The results are shown to be necessary for the more
general case of systems with multiple delays. For the class of kinetic systems (a sub-
class of non-negative polynomial systems) polynomial time algorithms were proposed
for finding delayed system realizations with different parameterizations [46]. This way
an efficient computational method was obtained that can be employed to test (local)
structural identifiability. However, the delays are assumed to be known, hence they
cannot be involved in the identifiability analysis.
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In this paper a novel approach is proposed for testing structural identifiability of
non-linear time delayed systems. Compared to existing identifiability methods, the pro-
posed approach can be used to examine structural identifiability of delay parameters and
ordinary system parameters jointly with arbitrary analytic non-linearities in the model
structures. It is assumed that the non-linearities are analytic functions and the delays
are constants. It is important that the proposed method does not prescribe upper limit
on the number of (different) delays in the model structure. Making use of the Volterra
series representation of nonlinear systems, sufficient conditions are provided for struc-
tural identifiability. The generalized frequency response functions (GFRFs), i. e. the
Fourier transforms of the Volterra kernel functions, are used to construct identifiability
conditions. It is shown that structural identifiability of delayed systems can be trans-
lated to solving a set of algebraic equations with respect to the ordinary parameters and
time delays.

The paper is organized as follows. Section 2 introduces the definition of structural
identifiability for time delayed systems in which the delays are fixed constants. In Section
3.1 the Volterra series representation is summarized for non-linear parametric input-
output models. Section 3.2 outlines the harmonic probing method for computation of
the GFRFs, which is extensively used in the sequel. In Section 4 the proposed method for
testing structural identifiability is discussed. Section 5 provides computational examples
for illustrating the proposed approach.

2. STRUCTURAL IDENTIFIABILITY OF TIME DELAYED SYSTEMS

We consider a continuous SISO input-output dynamical system model

M(t, θ, u, y, p) = 0, (1)

where u and y are the input excitation and the respective output of the system. The
signals u and y can involve arbitrary number of constant time delays, i. e.

u =
{
u(t), u(t− Tu

1 ), . . . u(t− Tu
ku

)
}
,

y =
{
y(t), y(t− T y

1 ), . . . y(t− T y
ky

)
}
,

(2)

with ku, ky denoting the number of delayed components with respect to u and y. θ
denotes the set of parameters, which includes the time delays Tu1 , . . . T

u
ku , T

y
1 , . . . T

y
ky
∈ R.

θ is assumed to be independent of the initial conditions and the input signals. p denotes the
differentiation operator, which is omitted in the sequel. The system operator M(.) is assumed
to be analytic. Moreover, we assume zero initial conditions for M(·) in Eq. (1) (see, e. g. [10]).
We note that the analytic assumption on M(.) is not restrictive as it is satisfied by several
important systems, e. g. systems of polynomial non-linearities, which are widely used to model
physical, chemical and biological systems. M(.) may also involve non-linearities in terms of θ.

The input-output model structure defined by Eq. (1) may be obtained from non-linear state
space models by differential algebraic elimination of unobserved state variables [18, 27].

Example 2.1. In order to illustrate the mapping M(.) we use the following simple system
model:

ẏ(t) = ay(t− T y1 ) + bu(t− Tu1 ) + cy3(t− T y2 ), (3)
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where yn(.) denotes the nth power of y(.). The parameter vector is θ = {a, b, c, Tu1 , T y1 , T
y
2 },

where a, b and c are ordinary system parameters, while Tu1 , T y1 and T y2 are constant time delay
parameters. In this particular case M(.) takes the form

M(t, u, y, θ) = ẏ(t)− ay(t− T y1 )− bu(t− Tu1 )− cy3(t− T y2 ). (4)

Prior to any parameter estimation procedure performed on a model of E.q (1), it is useful
to examine whether it is theoretically possible to uniquely determine the system parameters.

Definition 2.2. The model of Eq. (1) is said to be structurally globally identifiable (s.g.i.), if

y(θ) = y(θ̂) ⇒ θ = θ̂ (5)

for any measurable value of θ, where y(θ) denotes the output of the system Eq. (1) parameter-
ized with θ.

If Eq. (5) is valid only in a bounded neighborhood V(θ) of θ, then the system is said to be
structurally locally identifiable (s.l.i.) around θ. If the system is not identifiable, it is called
structurally unidentifiable (s.u.i.). If the identfiability definitions are restricted to a subset
θ ⊂ θ, then the respective parameters θ are said to be s.g.i, s.l.i and s.u.i.

By involving the time delays in the parameter set θ, structural identifiability is considered
jointly for the ordinary system parameters and the time delays.

Structural identifiability is a model property depending on the underlying model structure
and possibly on the initial conditions. It is independent of the amount and quality of data
available about the system dynamics.

3. INPUT-OUTPUT REPRESENTATION FOR IDENTIFIABILITY ANALYSIS

In this section the Volterra series representation of non-linear dynamic input-output models is
discussed. We consider the Volterra kernels and their respective frequency domain represen-
tations, which provide unqie description of the underlying input-output behavior. A compu-
tational method is also reviewed for determining the frequency domain representations. Later
we employ the obtained frequency domain descriptors to derive sufficient conditions for struc-
tural identifiability of ordinary system parameters and constant time delays. The notations
and results of this section in the context of Volterra series are based on the references [45, 62].

3.1. Volterra series representation for non-linear input-output models

Here we provide the Volterra series representation for non-linear SISO system models. The
equivalent frequency domain representation is also detailed which will be extensively used in
the sequel for identifiability analysis.

The Volterra series representation of a dynamical system of the form of Eq. (1) can be
written as [10, 59]:

y(t) = y0(t) +

∞∑
i=1

yi(t), (6)

where yn(t) is the nth-order non-linearity, which is represented by a series of generalized con-
volutional integrals:

yn(t) =

∫ ∞
−∞

. . .

∫ ∞
−∞

hn(τ1, . . . τn)

n∏
j=1

u(t− τj) dτj , (7)
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where hn(τ1, . . . τn) is the nth-order Volterra kernel. hn(τ1, . . . τn) is a so-called generalized
impulse response function. Clearly, for a linear mapping M(.), h1(τ1) is the impulse response
function known from linear system theory [40]. Necessary and sufficient conditions for the
existence of Volterra series representation of a nonlinear dynamical system are derived in [35]. If
all the non-linearities in Eq. (1) are analytic (e. g. polynomial systems) or can be approximated
by polynomials with arbitrary precision, then the existence of input-output representation of the
form Eq. (6) is guaranteed. Note that the introduction of time delays in the input and output
does not affect the analytic property of the system model, hence Volterra series expansion is
also available for time delayed systems [45].

The frequency domain description of non-linear systems through the Volterra series rep-
resentation can be obtained by the multidimensional Fourier transformation of the Volterra
kernels [17]:

Hn(jω1, . . . jωn) =

∫ ∞
−∞

. . .

∫ ∞
−∞

hn(τ1, . . . τn)e−j(ω1τ1+...ωnτn) dτ1 . . .dτn. (8)

Hn(jω1, . . . jωn) is called the n-order Generalized Frequency Response Function (GFRF) or
simply the nth-order transfer function. Observe that for n = 1 Hn(jω1) is the known lin-
ear transfer function. Since hn(τ1, . . . τn) and Hn(jω1, . . . jωn) are related through the multi-
variable Fourier transform, the n-order output can be expressed by the GFRFs:

yn(t) =
1

(2π)n

∫ ∞
−∞

. . .

∫ ∞
−∞

Hn(jω1, . . . jωn)

n∏
k=1

U(jωk)ej(ω1+...+ωn)tdωk. (9)

hn() and Hn(), n ≥ 1 are independent of the input signal and they uniquely describe of the
input-output behavior of underlying non-linear system [3, 36]. However, since the change of
the order in the arguments τ1, . . . τn may result in different kernels without affecting the input-
output behavior, hn() and Hn() are not necessarily unique descriptors. Hence it is common to
introduce the symmetrized GFRFs as follows:

Hsym
n (jω1, . . . jωn) =

1

n!

∑
all permutations

ofω1,...ωn

Hn(jω1, . . . jωn). (10)

The symmetric GFRFs are independent of the order of arguments and provide unique repre-
sentations for analytic SISO system models of the from Eq. (1) [45].

3.2. Computation of the GFRFs

In this section computation of the GFRFs for SISO systems is reviewed using the harmonic
probing method and the extraction operator [4, 8, 62]. Let us consider an arbitrary non-
linear input-output dynamical system model described by Eq. (1) for which a Volterra series
representation of Eq (6) exists. Since the output of the system can be expressed by the GFRFs
according to Eq. (9), Eq. (1) becomes

M(t, θ, u,H) = 0, (11)

with H = {Hn(jω1, . . . jωn)}n≥1. Expressing Hn(.) using Eq. (11) may lead to complicated
integral equations, which make the problem computationally intractable. In order to remedy
this problem, special input excitations can be employed. The harmonic probing technique
applies a multi-tone input of R distinct frequency components:

u(t) =

R∑
i=1

ejωit, (12)
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where ω1, . . . ωR are arbitrarily chosen, non-zero different frequencies. Then the respective
Fourier transform U(jω) is

U(jω) =

R∑
i=1

2πδ(jω − jωr). (13)

By applying the input Eq. (12) on the system Eq. (1), the output becomes

y(t) =

∞∑
n=1

R∑
r1,...rn=1

Hn(jωr1 , . . . jωrn)ej(ωr1
+...+ωrn )t =

∞∑
n=1

∑
[all combinations
of R frequencies
taken n at a time]

∑
[all permutations
of ωr1

,...ωrn ]

Hn(jωr1 , . . . jωrn)ej(ωr1
+...+ωrn )t.

(14)

In order to determine Hn(.), it is convenient to choose n = R so that there is only one non-
repetitive combination of frequencies {ω1, . . . ωR}. Then the nth-order output can be written
as

yn(t) = n!Hsym
n (jω1, . . . jωn)ej(ω1+...+ωn)t + [terms of repetitive frequency components].

(15)

By substituting Eq. (12) and Eq. (14) into Eq. (1) one obtains

M(t, θ, u(ΩR),H) = 0, (16)

where u(ΩR) denotes the harmonic input of Eq. (12) and ΩR = {ω1, . . . ωR} indicates the set
of R distinct frequency components. Since M(t, θ, u(ΩR),H) is a linear combination of distinct
exponential basis functions, Eq. (16) is satisfied only with the trivial linear combination, i. e.
all the coefficients of the exponential terms must be equal to zero. Then Hsym

n (.) can be
determined as the coefficient of the exponential term of the non-repetitive combination of the
n distinct frequency components.

The harmonic probing technique is performed by means of the extraction operator εn[.] [62].

Definition 3.1. The extraction operator εn[f ] on a differential algebraic expression f is defined
by the following consecutive steps:

1. Substitute Eq. (12) and Eq. (14) (with R = n) to the given expression f .

2. Extract the coefficient of ej(ω1+...+ωn)t.

Clearly, the extraction operator εn[.] returns the coefficient of the complex exponential basis
function containing n distinct frequency components.

Making use of the extraction operator, the equation

εn[M(t, θ, u, y)] = 0 (17)

can be used to determine the nth-order GFRF Hsym
n (.).

We emphasize that the harmonic probing technique requires n distinct, arbitrarily chosen
frequency components in order to compute the nth order (symmetrized) GFRF. Clearly, the
symmetrized GFRFs compose a unique descriptor of the input-output behavior of the un-
derlying dynamical system model regardless of the chosen (distinct) frequency components
{ω1, . . . ωn}. The only requirements are to guarantee that the chosen frequency components
are different and non-zero. It is also important to emphasize that the harmonic probing method
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can be employed regardless of parametric non-linearities in the dynamical input-output system
model M(.), hence the method is not restricted to systems which are linear in parameters.
We also note that the discussed probing method is suitable for determining the GFRFs for
non-linear time delayed systems as well. Another important approach for computing GFRFs
is the application of recursive algorithms [45, 62].

Now a computational example is provided to illustrate the harmonic probing method and
the related extraction operator.

Example 3.2. Let us consider the following SISO input-output model:

ÿ(t) = θ1ẏ(t) + θ2e
−θ3tu(t) + θ4u(t)y(t). (18)

In order to determine the 1st order GFRF, H1(jω1), we employ the input u(t) = ejω1t so that
ω1 6= 0. Then, according to Eq. (14), the respective output is of the form y(t) = H1(jω1)ejω1t.
According to the extraction operator ε1[.] we substitute u(t) and y(t) to the given model
equation Eq. (18), which gives rise to the following expression:

(jω1)2H1(jω1)ejω1t = θ1(jω1)H1(jω1)ejω1t + θ2e
−tθ3ejω1t + θ4H1(jω1)ej2ω1t. (19)

Then we take the coefficient of the complex exponential basis function ejω1t, which is known
to be zero, that is:

(jω1)2H1(jω1)− θ1(jω1)− θ2e−tθ3 = 0. (20)

H1(jω1) can be calculated by solving Eq. (20) with respect to H1(jω1). Formally, using
the notation of the extraction operator ε1[.], we solve the following equation with respect to
H1(jω1):

ε1[M(t, θ, u, y)] = 0, (21)

where
M(t, θ, u, y) = ÿ(t)− θ1ẏ(t)− θ2e−θ3tu(t)− θ4u(t)y(t). (22)

Finally, the 1st order GFRF is as follows:

H1(jω1) =
θ2e
−tθ3

(jω1)3 + θ1(jω1)
. (23)

Now determine the 2nd order symmetrized GFRF. We employ an input signal u(t) = ejω1t +
ejω2t of two frequency components so that ω1 6= 0, ω2 6= 0 and ω1 6= ω2. The respective output
of the system can be calculated by means of Eq. (14):

y(t) =H1(jω1)ejω1t +H1(jω2)ejω2t + 2!H2(jω1, jω2)ej(ω1+ω2)t

+ [terms of repetitious frequency components].
(24)

Next we substitute u(t) and y(t) to the given model equation Eq. (18) and extract the coefficient
of the two-tone complex exponential basis function ej(ω1+ω2)t. Since the coefficient is equal to
zero we have an equation from which H2(jω1, jω2) can be calculated:

H2(jω1, jω2) =
θ4[H1(jω1) +H1(jω2)]ej(ω1+ω2)t

2![j(ω1 + ω2)2]− 2!θ1j(ω1 + ω2)
. (25)

Here we note that the above procedure of calculating the 2nd order GFRF can be compactly
represented by the extraction operator ε2[.] as follows:

ε2[M(t, θ, u, y)] = 0, (26)

where M(t, θ, u, y) is defined by Eq. (22).
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4. TESTING STRUCTURAL IDENTIFIABILITY WITH GFRFS

Making use of the generalized frequency response functions associated to a Volterra series repre-
sentation, sufficient conditions for joint structural identifiability of ordinary system parameters
and time delays can be derived in the form of algebraic equations. Compared to other structural
identifiability tests based on series expansions, the proposed method allows us for directly ex-
amining the identifiability of constant time delay parameters appearing in the model structure.
This can be performed since the time delay parameters appear in the exponents of complex
exponential functions in the GFRFs. From the exponents the delay parameters can be easily
extracted.

Assuming that the Volterra series representation exists for a dynamical system model
M(t, θ, u, y, p) = 0, the unique GFRFs provide us with an exhaustive summary:

s(θ) =
{
Hsym
k (jω1, . . . jωk, θ)

}∞
k=1

, (27)

where Hsym
k (jω1, . . . jωk, θ) denotes the parameterized GFRF of order k and θ stands for the

set of parameters including time delays. Then testing structural identifiability translates to the
following equations:

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), ∀ω1, . . . ωk, k ≥ 1. (28)

Here Hsym
k (.) is of the form of a fraction of complex exponential polynomials and we translate

Eq. (28) to the equality of the numerator and denominator polynomials. Clearly, complex
exponentials of different exponents are linearly independent of each other, which means that
the existence of a particular exponent in one polynomial implies that an exponential function
of the same exponent appears in the other polynomial [41]. Then the equality of exponential
polynomials is equivalent to the equality of the corresponding coefficients. This way algebraic
equations can be obtained for identifiability testing. Algebraic conditions on the time delay
parameters are derived as the equality of the respective exponents. We note that the proposed
approach can be employed even if the numerators and the denominators are polynomials of
multiple variables (i. e. frequencies) as it could be the case of higher order (k > 1) GFRFs. In
this case the arising complex exponential basis functions in the GFRFs have exponents including
sums of different frequency components. Clearly, complex exponential basis functions with the
same sums of different frequencies must have the same coefficients in order to guarantee equality
of the polynomials.

Joint structural identifiability of ordinary parameters and time delays is guaranteed by the
unique solution of Eq. (28) with respect to θ. However, in general case s(θ) is composed of a
countably infinite set of GFRFs, but in practice we are restricted to a finite set of s(θ). This
way sufficient conditions for structural identifiability can be derived. Formally, if the relation

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K =⇒ θ = θ̂ (29)

holds for some K ∈ N, then the parameters θ are structurally globally identifiable. Clearly, if
the above relation holds for a subset θ ⊂ θ, the subset θ is s.g.i.

Proposition 4.1. Let us consider a SISO dynamical system model M(t, θ, u, y). Assuming
that M(.) is an analytical function, sufficient condition of structural identifiability is obtained
by the GFRFs as follows

Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K =⇒ θ = θ̂ (30)

for any K ∈ N.
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P r o o f . Since Hsym
k (jω1, . . . jωk, θ) is unique for any k ≥ 0, any feasible parametrization θ̂

satisfies
Hsym
k (jω1, . . . jωk, θ) = Hsym

k (jω1, . . . jωk, θ̂), k ≤ K (31)

for arbitrary K ∈ N. The number of equations of the form Eq. (31) to be satisfied by a feasible
parametrization θ̂ is infinitely countable, hence by a finite subset of K equations sufficient
conditions can be obtained. �

Clearly, if Eq. (29) holds in a finite subset Θ ⊂ Θ of the parameter space Θ, then sufficient
conditions for local structural identifiability are derived in Θ.

If the model structure under study is proven to be weakly nonlinear (i. e. a finite number of
non-zero GFRFs exist), then the proposed approach provides sufficient and necessary conditions
for structural identifiability and structural non-identifiability of model parameters can also be
determined.

We note that the proposed method can be viewed as an extension of the transfer function
approach applied for identifiability analysis of linear time invariant systems [6]. If the system
under study is linear, then the Volterra series expansion is composed of a single kernel function
and the associated GFRF coincides with the frequency response function known form linear
system theory. It is clear that constant time delay parameters appear explicitly in the exponents
of the linear frequency response function. Since s(θ) involves only a one-dimensional function
H(jω), Eq. (28) reduces to a necessary and sufficient condition.

We also indicate the relation to the generating series approach. It is based on the Fliess func-
tional series expansion of non-linear systems. In this case an exhaustive summary is obtained
as the coefficients of Fliess series expansion, which are the Lie derivatives of the output signals.
It can be shown that the Volterra series expansion is a reordering of the Fliess decomposition
[16, 21].

5. EXAMPLES

In this section we provide examples for structural identifiability testing of time delayed non-
linear model structures. First the GFRFs are determined using the harmonic probing technique
along with the extraction operator. Then structural identifiability of parameters (including time
delays) are evaluated trough the equations Eq. (28).

Note that Hsym
k (.) is a fraction of sums of complex exponential basis functions. We formulate

structural identifiability of the system parameters as the equality of the coefficients of the
complex exponential basis functions of the same exponents and identifiability of time delay
parameters is algebraically expressed as the equality of the respective exponents.

1. Duffing oscillator with time delay

As a delayed nonlinear input-output model we consider the Duffing oscillator, which is
used for modeling Electroencephalography (EEG) time series data [61]. The model is
equipped with a time delayed term according to [45]. The differential equation model
describing the delayed Duffing oscillator is as follows:

ÿ(t) + k1ẏ(t) + k2ẏ(t− T ) + c1y(t) + k3y
3(t) = bu(t), (32)

where T ∈ R denotes a constant time-delay parameter. The parameter set of the above
system is θ = {k1, k2, k3, b, c1, T}.
In order to decide whether the model is structurally identifiable with respect to the
parameters in θ, first the GFRFs are computed based on the harmonic probing technique.
The GFRFs provide a set of algebraic equations in the system parameters so that the
uniqueness of the solution is sufficient condition of structural identifiability.
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The first GFRF Hsym
1 (jω) can be determined by applying the input signal

u(t) = ejω1t. (33)

Then the respective system output – according to Eq. (14) – becomes

y(t) = H1(jω1)ejω1t. (34)

Applying the extraction operator ε1[.] on the system Eq. (33) involves substituting
the input and the output into the system, and extracting the coefficient of ejω1 . Then
Hsym

1 (jω1) can be obtained by solving the equation

ε1[M(t, θ, u, y)] = 0, (35)

where

M(t, θ, u, y) = ÿ(t) + k1ẏ(t) + k2ẏ(t− T ) + c1y(t) + k3y
3(t)− bu(t). (36)

For the first order GFRF we obtain

Hsym
1 (jω1) =

b

(jω1)2 + k1(jω1) + k2(jω1)e−jω1T + c1
. (37)

The above solution of Hsym
1 (jω1) provides the following equations for structural identi-

fiability analysis:

b = b̂

(jω1)2 + k1(jω1) + c1 = (jω1)2 + k̂1(jω1) + ĉ1

k2(jω1)e−jω1T = k̂2(jω1)e−jω1T .

(38)

Clearly the model is structurally globally identifiable with respect to b and c1. Depending
on T two cases can be distinguished. If T = 0, then it follows that

k1 + k2 = k̂1 + k̂2, (39)

i. e. k1 and k2 are not structurally uniquely identifiable. If T 6= 0, then k1, k2 and T are
structurally globally identifiable. Note that the identifiability of k3 cannot be analyzed
via H1(jω1), since it does not account for higher order non-linearities, but k3 is the
coefficient of a 3rd-order term in Eq. (33).

Since Eq. (33) has no 2nd-order non-linearities, Hsym
2 (jω1, jω2) is absent.

To determineHsym
3 (jω1, jω2, jω3), the input according to the harmonic probing technique

is of the form

u(t) = ejω1t + ejω2t + ejω3t. (40)

The respective output of the system according to Eq. (14) is as follows:

y(t) =H1(jω1)ejω1t +H1(jω2)ejω2t +H1(jω3)ejω3t

+ 2!Hsym
2 (jω1, jω2)ej(ω1+ω2)t + 2!Hsym

2 (jω1, jω3)ej(ω1+ω3)t

+ 2!Hsym
2 (jω2, jω3)ej(ω2+ω3)t + 3!Hsym

3 (jω1, jω2, jω3)ej(ω1+ω2+ω3)t

+ [terms involving repetitious frequency components].

(41)
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Then applying the extraction operator ε3[.] involves substituting u(t) and y(t) to the
given dynamical model Eq. (33) and extracting the coefficient of ej(ω1+ω2+ω3)t. Then
the equation

ε3[M(t, θ, u, y, p)] = 0 (42)

can be used to express the 3rd-order symmetrized GFRF as follows:

Hsym
3 (jω1, jω2, jω3)

=
−k3H1(jω1)H1(jω2)H1(jω3)

(jω1 + jω2 + jω3)2 + (k1 + k2e(jω1+jω2+jω3)T )(jω1 + jω2 + jω3) + c1
.

(43)

The above equation of Hsym
3 (.) implies

k3 = k̂3, (44)

from which it follows that k3 can be uniquely determined and therefore the model is
globally structurally identifiable with respect to the whole parameter vector θ if the
delay is non-zero.

2. Non-linear state space model with multiple time delays

Let us consider the following nonlinear delayed system model

ẋ1(t) = [θ1x2(t) + 1]u(t− τ1)− θ2x1(t),

ẋ2(t) = θ3x1(t),

y = θ4x2(t) + θ5y(t− τ2),

(45)

with θi, i = 1, . . . 4 are ordinary parameters and τ1, τ2 are constant time delays. We wish
to decide whether the system is structurally identifiable with respect to the parameters
θ = {θ1, θ2, θ3, θ4, τ1, τ2}.
Since Eq. (45) involves unobserved state variables, they must be eliminated in order to
obtain an equivalent input-output relation containing the parameters θ. Such an input-
output representation can be obtained by differential algebraic manipulations of the state
space model.

We extended the equations with further derivatives as follows

ẋ1(t) = [θ1x2(t) + 1]u(t− τ1)− θ2x1(t),

ẋ2(t) = θ3x1(t),

y = θ4x2(t) + θ5y(t− τ2)

ẍ1(t) = θ1ẋ2u(t− τ1) + θ1x2(t)u̇(t− τ1) + u̇(t− τ1)− θ2ẋ1(t)

ẍ2(t) = θ3ẋ1(t)

ẏ(t) = θ4ẋ2(t) + θ5ẏ(t− τ2)

ÿ(t) = θ4ẍ2(t) + θ5ÿ(t− τ2)

(46)

Then Eq. (46) involves 7 equations from which the state variables and their derivatives (6
unobserved variables) should be algebraically eliminated. In this example the elimination
was performed by Mathematica and the resulted input-output model associated to Eq.
(45) is as follows:

− θ3θ4u(t− τ1) + θ1θ3θ5u(t− τ1)y(t− τ2)− θ2θ5ẏ(t− τ2)

− θ5ÿ(t− τ2) + θ2ẏ + ÿ − θ1θ3u(t− τ1)y = 0.
(47)
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Note that the above input-output model of Eq. (47) is not linear in the parameters θ.

Now we can examine structural identifiability of θ based on the GFRFs associated to
Eq. (47). First the harmonic probing method is employed to determine the GFRFs.
Next, making use of the obtained GFRFs we derive algebraic equations with respect to
the model parameters. Unique solution of the calculated algebraic equations for some
parameters proves structural identifiability.

In order to determine H1(jω1) we employed the one-tone input u(t) = ejω1t. According
to the extraction operator ε1[.] we subsitute the input u(t) and the respective output
y(t) = H1(jω1)ejω1t to the obtained input-output system model of Eq. (47). Then
we take the coefficient of ejω1t. As the extracted coefficient is guaranteed to be zero
we result in an equation from which H1(jω1) can be calculated. Formally, we solve
ε1[M(t, θ, u, y, p)] = 0 with respect to H1(jω1), which results in:

H1(jω1) =
θ3θ4e

−jω1τ1

(jω1)2 + (jω1)2θ5e−jω1τ2 + θ2(jω1)− θ2θ5(jω1)e−jω1τ2
. (48)

From the numerator we obtain the following equation

θ3θ4e
−jω1τ2 = θ̂3θ̂4e

−jω1τ̂2 . (49)

Clearly, complex exponential basis functions are linearly independent, that is

τ1 = τ̂1, (50)

and τ1 is structurally globally identifiable. Then it also holds that

θ3θ4 = θ̂3θ̂4, (51)

from which the structural identifiability of θ3 and θ4 does not follow.

From the denominator of H1(jω1) we have

(jω1)2 + (jω1)2θ5e
−jω1τ2 + θ2(jω1)− θ2θ5(jω1)e−jω1τ2

= (jω1)2 + (jω1)2θ̂5e
−jω1τ̂2 + θ̂2(jω1)− θ̂2θ̂5(jω1)e−jω1τ̂2 .

(52)

There are two different cases. If τ2 = 0, then the following equations hold for the ordinary
parameters:

θ5 = θ̂5,

θ2 − θ2θ5 = θ̂2 − θ̂2θ̂5,
(53)

from which we have that θ5 is s.g.i. Regarding θ5 there are two different cases. If θ5 6= 1,
then s.g.i of θ2 is guaranteed, otherwise it is not necessarily s.g.i.

If τ2 6= 0, then the linear independence of complex exponentials implies that τ2 = τ̂2, i. e.
τ2 is s.g.i. and the follwing set of equations are arising:

(jω1)2 + θ2(jω1) = (jω1)2 + θ̂2(jω1),

(jω1)2θ5 − θ2θ5(jω1) = (jω1)2θ̂5 − θ̂2θ̂5(jω1),
(54)

from which it can be seen that θ2 and θ5 are s.g.i.

In order to examine the identifiability of the remaining parameters we determine the 2nd
order GFRF. We employ an input signal u(t) = ejω1t + ejω2t of two distinct frequency
components. Then the respective output according to Eq. (14) is of the form of

y(t) = H1(jω1)ejω1t +H1(jω2)ejω2t + 2!Hsym
2 (jω1, jω2)ej(ω1+ω2)t

+[terms involving repetituous frequency components].
(55)
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We substitute u(t) and y(t) to the obtained input-output form Eq. (47) of the system
model. Then the coefficient of ej(ω1+ω2)t can be extracted. Since the obtained coefficient
is known to be zero we result in an equation from which Hsym

2 (jω1, jω2) can be derived.
Formally, we solve ε2[M(t, θ, u, y, p)] = 0 with respect to Hsym

2 (jω1, jω2). Finally, for the
2nd order symmetrized GFRF we have:

Hsym
2 (jω1, jω2) =

−θ1θ3θ5H1(jω2)e−jω1τ1 − θ1θ3θ5H1(jω1)e−jω2τ1 + θ1θ3H1(jω2)e−jω1τ1 + θ1θ3H1(jω1)e−jω2τ1

−θ2θ52!e−j(ω1+ω2)τ2j(ω1 + ω2) − θ52!e−j(ω1+ω2)τ2 + θ22!j(ω1 + ω2) + 2![j(ω1 + ω2)]2
.

(56)

Clearly, the structure of the denominator of H2(jω1, jω2) is equivalent to that of H1(jω),
hence it does not provide us with further information on identifiability of parameters.
The numerator gives rise to the following equations for identifiability testing:

− θ1θ3θ5 + θ1θ3 = −θ̂1θ̂3θ̂5 + θ̂1θ̂3, (57)

which cannot be used to prove identifiability of θ1 and θ3. Hence the 2nd-order GFRF
does not provide further insight into parameter identifiability.

Finally, based on the 1st-and 2nd-order symmetrized GFRFs, using the proposed ap-
proach we obtained structural identifiability for a subset of parameters. We note that
higher order GFRFs may provide further information about the identifiability of system
parameters.

6. SUMMARY

In this paper a novel approach is introduced to examine joint structural identifiability of or-
dinary system parameters and constant time delays in nonlinear dynamical system models.
The systems under study are assumed to be of the form of input-output models in which all
the non-linearities are analytic functions and the time delays are constants. From a practical
point of view, the analytic assumption on the non-linearities is not restrictive, for example it
involves the class of polynomial systems, which is widely used to model the dynamical behavior
of complex physical, chemical and biological processes. We also note that there is no constraint
on the number of different delay parameters.

We employed the Volterra series representation of non-linear dynamical systems. In order
to test structural identifiability, the GFRFs, i. e. the Fourier transforms of the Volterra kernels
were used. The GFRFs have the advantageous property of containing explicitly the time delay
parameters of input and output signals. Since the symmetrized GFRFs are unique, they can be
used to construct an exhaustive summary of the underlying dynamic input-output model struc-
ture. Based on the GFRFs, we derived equations of complex exponential polynomials which
are suitable to examine parameter identifiability. Unique solution of the obtained equations
with respect to some parameters implies parametric uniqueness, this way sufficient condition of
structural identifiability of the respective parameters is guaranteed. Furteher property of the
GFRF-based approach is that structural identifiability can be examined regardless of the input
signals.

We illustrated the proposed method on time delayed non-linear system models. Among the
provided examples we illustrated the case of non-linear state space models with unobserved
state variables. Since the Volterra series modeling assumes input-output model structure, first
we performed differential algebraic manipulations to eliminate unobserved variables. This way
an equivalent input-output model structure can be obtained that contains the parameters. In
the provided example the resulting input-output representation was suitable to prove structural
identifiability of a subset of the parameters by means of the proposed method.
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Our contribution is to propose a novel method which can be used to determine the joint
identifiability of ordinary system parameters and constant time delays. The method can also be
used to examine how the time delay parameters affect structural identifiability of ordinary sys-
tem parameters. The proposed approach can be applied to systems of analytical non-linearities
which involves many biologically motivated system classes, such as polynomial systems (e. g.
Lotka-Volterra systems, epidemiological models). An important aspect of our contribution –
compared to many existing results – is that the proposed method does not impose upper limit
on the number of constant time delays appearing in the model structures. It has to be noted
that the direct application of our method for actual parameter estimation is not straightfor-
ward, since the resulting nonlinear equations between observations and parameters often become
overly complicated even for relatively simple nonlinear models. Future work will be focused
on the application of recursive methods for GFRF computation in the context of identifiability
analysis, and on the studying of specific nonlinear system classes.
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Catholic University, Prter u. 50/a, H-1083 Budapest, Hungary; Systems and Control
Laboratory, Institute for Computer Science and Control (MTA SZTAKI) of the Hungar-
ian Academy of Sciences, Kende u. 13-17, H-1111 Budapest. Hungary.

e-mail: szederkenyi@itk.ppke.hu


