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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 6 , P A G E S 9 8 9 – 1 0 0 4

ON THE DIRECT PRODUCT OF UNINORMS ON BOUNDED
LATTICES

Emel Aşıcı and Radko Mesiar

In this paper, we study on the direct product of uninorms on bounded lattices. Also, we
define an order induced by uninorms which are a direct product of two uninorms on bounded
lattices and properties of introduced order are deeply investigated. Moreover, we obtain some
results concerning orders induced by uninorms acting on the unit interval [0, 1].
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1. INTRODUCTION

Uninorms were introduced by Yager and Rybalov [28]. Uninorms are a special kind
of aggregation functions that generalize both t-norms and t-conorms [8, 11]. In [20],
two first classes of uninorms were introduced: uninorms in Umin and in Umax, and
representable uninorms. Then, some papers were published dealing with uninorms,
especially from the point of view of their applications. Thus, uninorms have proved
to be useful in a wide range of fields like aggregation of information, expert systems,
neural networks, fuzzy system modeling, pseudo-analysis and measure theory, fuzzy
mathematical morphology, fuzzy sets and fuzzy logic, approximate reasoning and so on.
Since uninorms on [0, 1] are always conjunctive or disjunctive, they have been extensively
studied in the framework of logical connectives and they have been used in fuzzy sets
theory and fuzzy logic [26].

In [16], direct product of triangular norms on product lattices was introduced and
some of the algebraic properties were investigated.

In particular, Karaçal and Mesiar [22] studied uninorms on bounded lattices. They
showed the existence of uninorms with neutral element e for an arbitrary element e ∈
L\{0, 1} with underlying t-norms and t-conorms on an arbitrary bounded lattice. Also,
they introduced the smallest and the greatest uninorm on a bounded lattice.

In recent years, the orders induced by uninorms, nullnorms and triangular norms
have been studied widely. In this sense, in [23], T - partial order, denoted �T , defined
by means of t-norms on a bounded lattice was introduced.
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Based on these previous studies, in [1, 18] U -partial order and F -partial order ob-
tained from the uninorm and nullnorm, respectively, were introduced and some proper-
ties of these orders were investigated.

In this paper, we study on the direct product of uninorms on bounded lattices. The
present paper consists of four main parts. Firstly, we give in preliminaries some necessary
definitions we will work with. In Section 3, we define an order induced by uninorms
which are a direct product of two uninorms on bounded lattices. In Section 4, we define
the set of comparable and incomparable elements with respect to the U1 × U2-partial
order, denoted �U1×U2

and we obtain some interesting results related to direct product
of uninorms on [0, 1]2. In Section 5, some concluding remarks are added.

2. PRELIMINARIES

A lattice [9] is a partially ordered set (L,≤) in which each two element subset {x, y} has
an infimum, denoted as x∧y, and a supremum, denoted as x∨y. A bounded lattice (L,≤,
0, 1) is a lattice that has the bottom and top elements written as 0 and 1, respectively.
Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b are incomparable, in this
case, we use the notation a ‖ b.

Definition 1. (De Baets and Mesiar [16]) Let (L1,≤1, 01, 11) and (L2,≤2, 02, 12) be
bounded lattices. Then, L1 × L2 = (L1 × L2,≤, (01, 02), (11, 12)) is a bounded lattice
with partial order relation ≤, ∧ and ∨ defined by

(x1, y1) ≤ (x2, y2)⇔ x1 ≤1 x2 and y1 ≤2 y2,

(x1, y1) ∧ (x2, y2) = (x1 ∧1 x2, y1 ∧2 y2),

(x1, y1) ∨ (x2, y2) = (x1 ∨1 x2, y1 ∨2 y2).

In this study, for short, we use the L1 instead of (L1,≤1, 01, 11), L2 instead of
(L2,≤2, 02, 12) and L1 × L2 instead of (L1 × L2,≤,∧,∨, (01, 02), (11, 12)).

Definition 2. (Aşıcı and Karaçal [4], Çaylı [13], Saminger [27]) Let L be a bounded
lattice. A triangular norm T (briefly t-norm) is a binary operation on L that is com-
mutative, associative, monotone and has neutral element 1.

Example 1. (Aşıcı and Mesiar [5], Klement et al. [25]) The four basic t-norms TM ,
TP , TL and TD on [0, 1] are given by:
TM (x, y) = min(x, y),
TP (x, y) = x.y,
TL(x, y) = max(x+ y − 1, 0),

TD(x, y) =

{
0 (x, y) ∈ [0, 1)

2
,

min(x, y) otherwise.

Definition 3. (Aşıcı [3], Çaylı [14], Saminger [27]) Let L be a bounded lattice. A
triangular conorm S (briefly t-conorm) is a binary operation on L that is commutative,
associative, monotone and has neutral element 0.
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Example 2. (Aşıcı and Mesiar [6], Klement et al. [25]) The four basic t-conorms SM ,
SP , SL and SD on [0, 1] are given by:
SM (x, y) = max(x, y),
SP (x, y) = x+ y − x.y,
SL(x, y) = min(x+ y, 1),

SD(x, y) =

{
1 (x, y) ∈ (0, 1]

2
,

max(x, y) otherwise.

Extremal t-norms T∧ and TW are defined on a bounded lattice as follows, respectively:
T∧(x, y) = x ∧ y

TW (x, y) =


x if y = 1,

y if x = 1,

0 otherwise.
Similarly, the t-conorms S∨ and SW can be defined.

Especially we have obtained TW = TD and T∧ = TM for L = [0, 1] ⊂ R.

Definition 4. (De Baets and Mesiar [16]) Let L1 and L2 be bounded lattices and T1
and T2 be t-norms on L1 and L2, respectively. Then, the direct product T1 × T2 of T1
and T2, defined by

T1 × T2((x1, y1), (x2, y2)) = (T1(x1, x2), T2(y1, y2))

is a t-norm on the product lattice L1 × L2.

Definition 5. (Casasnovas and Mayor [12]) A t-norm T on L is divisible if the following
condition holds:

∀x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

Definition 6. (Aşıcı and Mesiar [7], Calvo et al. [10], Çaylı [14]) Let L be a bounded
lattice. An operation U : L2 → L is called a uninorm on L, if it is commutative,
associative, monotone and has a neutral element e ∈ L.

We denote by U(e) the set of all uninorms on L with the neutral element e ∈ L. Also,
we denote by A(e) = L2 \ ([0, e]2 ∪ [e, 1]2) and I(U) = {x ∈ L | U(x, x) = x}.

Theorem 1. (Fodor et al. [19]) Let U : [0, 1]2 → [0, 1] be a uninorm with neutral
element e ∈ (0, 1). Then the sections x 7→ U(x, 1) and x 7→ U(x, 0) are continuous in
each point except perhaps for e if and only if U is given by one of the following formulas.
(a) If U(0, 1) = 0, then

U(x, y) =


eT (x

e ,
y
e ) (x, y) ∈ [0, e]2,

e+ (1− e)S(x−e
1−e ,

y−e
1−e ) (x, y) ∈ [e, 1]2,

min(x, y) (x, y) ∈ A(e),

(1)

where T is a t-norm and S is a t-conorm.
(b) If U(0, 1) = 1, then the same structure holds, changing minimum by maximum in
A(e).
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The class of uninorms as in case (a) will be denoted by Umin and the class of uninorms
as in case (b) by Umax. We will denote a uninorm U in Umin with underlying t-norm T ,
underlying t-conorm S and neutral element e by U ≡ 〈T, e, S〉min and in a similar way,
a uninorm in Umax by U ≡ 〈T, e, S〉max.

Proposition 1. (Kalina [21]) Let L1 and L2 be bounded lattices and U1 be a uninorm
on L1 with neutral element e1 and U2 be a uninorm on L2 with neutral element e2.
Then the direct product U1 × U2 of U1 and U2, defined by

U1 × U2((x1, y1), (x2, y2)) = (U1(x1, x2), U2(y1, y2))

is a uninorm on the product lattice L1 × L2 with neutral element (e1, e2).

Definition 7. (Karaçal and Kesicioğlu [23]) Let L be a bounded lattice, T be a t-norm
on L. The order defined as follows is called a T− partial order (triangular order) for
t-norm T :

x �T y :⇔ T (`, y) = x for some ` ∈ L.

Definition 8. (Ertuğrul et al. [18]) Let L be a bounded lattice, S be a t-conorm on
L. The order defined as follows is called an S− partial order for t-conorm S:

x �S y :⇔ S(`, x) = y for some ` ∈ L.

Definition 9. (Ertuğrul et al. [18]) Let L be a bounded lattice and U be a uninorm
with neutral element e on L. Define the following relation, for x, y ∈ L, as

x �U y :⇔


if x, y ∈ [0, e] and there exist k ∈ [0, e] such that U(y, k) = x or,

if x, y ∈ [e, 1] and there exist ` ∈ [e, 1] such that U(x, `) = y or,

if (x, y) ∈ L∗ and x ≤ y,
(2)

where Ie = {x ∈ L | x ‖ e} and L∗ = [0, e]× [e, 1]∪ [0, e]× Ie ∪ [e, 1]× Ie ∪ [e, 1]× [0, e]∪
Ie × [0, e] ∪ Ie × [e, 1] ∪ Ie × Ie.

Proposition 2. (Ertuğrul et al. [18]) The relation �U defined in (2) is a partial order
on L.

Note: The partial order �U in (2) is called U -partial order on L.

3. �U1×U2
-PARTIAL ORDER

In this section, we define an order induced by uninorms which are a direct product of
two uninorms on bounded lattices.

Definition 10. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with neutral
element e1 and U2 be a uninorm on L2 with neutral element e2 and consider their direct
product U1 × U2 on L1 × L2. Let �U1 and �U2 are partial orders induced by uninorms
U1 and U2, respectively. Then, the relation �U1×U2 is defined by
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(x, y) �U1×U2
(z, t)⇔ x �U1

z and y �U2
t

for all (x, y), (z, t) ∈ L1 × L2.

Example 3. Consider the lattice (L1 = L2 = {0, a, k, e, b, p,m, 1},≤, 0, 1) given in Fig-
ure 1 and the uninorms U1 and U2 on L1 = L2 defined Table 1 and Table 2, respectively.

Fig. 1. The lattice L1 = L2.

U1 0 a k e b p m 1

0 0 0 0 0 b p m 1
a 0 a a a b p m 1
k 0 a k k b p m 1
e 0 a k e b p m 1
b b b b b 1 1 1 1
p p p p p 1 1 1 1
m m m m m 1 1 1 1
1 1 1 1 1 1 1 1 1

Tab. 1. The uninorm U1 on L1 = L2.

Since U1(a, k) = a and U2(a, k) = a, then we obtain that a �U1
k and a �U2

k.
So, it is obtained (a, a) �U1×U2 (k, k) by Definition 10. Also, we want to show that
(p, p) �U1×U2 (m,m). We assume that (p, p) �U1×U2 (m,m). Then, it must be p �U1
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U2 0 a k e b p m 1

0 0 0 0 0 b p m 1
a 0 a a a b p m 1
k 0 a k k b p m 1
e 0 a k e b p m 1
b b b b b b 1 1 1
p p p p p 1 p m 1
m m m m m 1 m m 1
1 1 1 1 1 1 1 1 1

Tab. 2. The uninorm U2 on L1 = L2.

m and p �U2
m by Definition 10. Then, there exist elements s, ` ∈ [e, 1] such that

U1(p, s) = m and U2(p, `) = m. According to the Table 1, we obtain U1(p, s) = m, a
contradiction. Because there does not exist an element s ∈ [e, 1] such that U1(p, k) = m.
So, it must be p �U1 m. So, it is clear that (p, p) �U1×U2 (m,m) by Definition 10.

Proposition 3. Let U1 be a uninorm on L1 with neutral element e1 and U2 be a
uninorm on L2 with neutral element e2 and consider their direct product U1 × U2 on
L1×L2. Then, the relation �U1×U2

defined in Definition 10 is a partial order on L1×L2.

P r o o f . Since �U1 and �U2 are partial orders on L1 and L2, respectively, it is clear
that �U1×U2 is a partial order on L1 × L2. �

Proposition 4. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with neutral
element e1 and U2 be a uninorm on L2 with neutral element e2 and consider their direct
product U1 × U2 on L1 × L2. Then, L1 × L2 is a bounded partially ordered set with
respect to the �U1×U2 partial order.

P r o o f . It is clear that L1 × L2 is a partially ordered set with respect to the �U1×U2

partial order. Since 01 �U1
x, 02 �U2

y and x �U1
11, y �U2

12, then it is obtained that
(01, 02) �U1×U2

(x, y) and (x, y) �U1×U2
(11, 12) for all (x, y) ∈ L1×L2 by Definition 10.

�

Note: From Definition 1, it is clear that ≤i is a partial order on Ui.

Remark 1. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with neutral
element e1 and U2 be a uninorm on L2 with neutral element e2 and consider their direct
product U1 × U2 on L1 × L2. Then,

(x, y) �U1×U2 (z, t)⇒ x ≤1 z and y ≤2 t

for all (x, y), (z, t) ∈ L1 × L2.
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Lemma 1. Let L1 and L2 be bounded lattices, T1 be a t-norm on L1 and T2 be a
t-norm on L2 and consider their direct product T1 × T2 on L1 ×L2. T1 × T2 is divisible
if and only if T1 and T2 are divisible.

P r o o f . Let T1×T2 is divisible t-norm on L1×L2. Let x ≤1 y and z ≤2 t for x, y ∈ L1

and z, t ∈ L2. Then, we have (x, z) ≤ (y, t) from Definition 1. Since T1× T2 is divisible,
then we have (x, z) = T1 × T2((y, t), (k,m)) for (k,m) ∈ L1 × L2. Then, it is clear that
(x, z) = (T1(y, k), T2(t,m)) by Definition 4. Since x = T1(y, k) and y = T2(t,m), then
we have that T1 and T2 are divisible t-norms on L1 and L2, respectively. Similarly, if T1
and T2 are divisible, then it can be shown that T1 × T2 is divisible. �

Lemma 2. Let L1 and L2 be bounded lattices, S1 be a t-conorm on L1 and S2 be a
t-conorm on L2 and consider their direct product S1×S2 on L1×L2. S1×S2 is divisible
if and only if S1 and S2 are divisible.

P r o o f . It can be proved using similar arguments in the proof of Lemma 1. �

Proposition 5. Let L1 and L2 be bounded lattices, U1 and U2 be uninorms on L1

and L2 with neutral elements e1 and e2, respectively, T1 and T2 be t-norms on [0, e1]
and [0, e2], respectively and S1 and S2 be t-conorms on [e1, 1] and [e2, 1], respectively.
Consider direct products U1 ×U2 on L1 ×L2, T1 × T2 on [0, e1]× [0, e2] and S1 × S2 on
[e1, 1]× [e2, 1]. Then, T1 × T2 and S1 × S2 are divisible if and only if �U1×U2

=≤.

P r o o f . The proof can be obtained from Lemma 1 and Lemma 2. �

Proposition 6. (De Baets and Mesiar [16]) Let T1 and T2 be t-norms on [0, 1] and
their direct product T1 × T2 on [0, 1]2. T1 × T2 is divisible if and only if T1 × T2 is
continuous.

Proposition 7. (De Baets and Mesiar [16]) Let S1 and S2 be t-conorms on [0, 1] and
their direct product S1 × S2 on [0, 1]2. S1 × S2 is divisible if and only if S1 × S2 is
continuous.

Corollary 1. Let U1 and U2 be uninorms on [0, 1] with neutral elements e1 and e2,
respectively, T1 and T2 be t-norms on [0, e1] and [0, e2], respectively and S1 and S2 be t-
conorms on [e1, 1] and [e2, 1], respectively. Consider direct products U1×U2 on L1×L2,
T1 × T2 on [0, e1]× [0, e2] and S1 × S2 on [e1, 1]× [e2, 1]. Then, T1 × T2 and S1 × S2 are
continuous if and only if �U1×U2

=≤.

4. SOME INVESTIGATIONS ON THE SET OF COMPARABLE AND
INCOMPARABLE ELEMENTS WITH RESPECT TO THE �U1×U2

-PARTIAL
ORDER

In this section, we investigate some properties of direct product of uninorms on bounded
lattices. We define comparable and incomparable elements with respect to the U1 × U2

partial order on bounded lattices. By using these definitions, we obtain some interesting
results for direct product of uninorms on [0, 1]2.
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Definition 11. Let L be a bounded lattice and U be a uninorm L. The set CU is
defined as follows:

CU = {x ∈ L| there exist y, y′ ∈ L \ {0, x, 1}, x �U y and y′ �U x}.

Remark 2. It is clear that {0, 1} /∈ CU . If we take y, y′ ∈ {0, x, 1}, then it is trivial
that all elements in L satisfy the condition of Definition 11. So, we have to take y, y′ /∈
{0, x, 1} in Definition 11.

Example 4. Consider the lattice (L = {0, a, e, b, r, p, s, 1},≤, 0, 1) which is depicted by
Hasse diagram in Figure 2. and consider any uninorm on L.

Fig. 2. The lattice L.

Since U(e, a) = a and U(b, e) = b, then it is obtained that a �U e and e �U b. So,
e ∈ CU . Since p ‖ e, r ‖ e and r < p, then we have r �U p by the definition of �U .
Similarly, it is obtained that p �U s. So, p ∈ CU . Thus, it is obtained that CU = {e, p}.

Example 5. Consider the uninorm U 1
3

: [0, 1]2 → [0, 1] with neutral element 1
3 defined

by

U 1
3
(x, y) =


min(x, y) (x, y) ∈ [0, 13 ]

2
,

1 (x, y) ∈ ( 1
3 , 1]

2
,

max(x, y) otherwise.

Then, CU 1
3

= (0, 13 ]. Now, let us show that this claim. Let x ∈ (0, 13 ]. Since U 1
3
(x, y) = y,

then it must be y �U 1
3

x for all y ∈ [0, x]. Since U 1
3
(x, y′) = y′, then it must be x �U 1

3

y′
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for all y′ ∈ [ 13 , 1]. So, it is obtained that x ∈ CU 1
3

, i. e., (0, 13 ] ⊆ CU . Conversely let

x ∈ CU 1
3

. We want to show that x ∈ (0, 13 ]. Suppose that x /∈ (0, 13 ]. Then, it must be

x = 0 or x ∈ ( 1
3 , 1]. According to the Remark 2, it can not be x = 0. So, it must be

x ∈ (0, 13 ]. Since x ∈ CU 1
3

, there exist elements y, y′ ∈ (0, 1) \ {x} such that x �U 1
3

y

and y′ �U 1
3

x. Let x �U 1
3

y. Then, there exist k ∈ ( 1
3 , 1] such that U 1

3
(x, k) = y.

Since x, k ∈ ( 1
3 , 1], by the definition of U 1

3
, it is obtained that U 1

3
(x, k) = 1 = y,

a contradiction. So, it must be x �U 1
3

y, i. e., x /∈ CU 1
3

. Thus, it must be x ∈ (0, 13 ],

CU ⊆ (0, 13 ].

Proposition 8. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with neutral
element e1 and U2 be a uninorm on L2 with neutral element e2. If �U1

⊆�U2
, then

CU1 ⊆ CU2 .

P r o o f . Let �U1
⊆�U2

. We assume that CU1
* CU2

. Then, it must be x ∈ CU1
and

x /∈ CU2 . Since x ∈ CU1 , there exist y, y′ ∈ L \ {0, x, 1} such that x �U1 y and y′ �U1 x.
Since �U1⊆�U2 , then we obtain that x �U2 y and y′ �U2 x. So, it is obtained that
x ∈ CU2

, a contradiction. Thus, it must be CU1
⊆ CU2

. �

Corollary 2. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with neutral
element e1 and U2 be a uninorm on L2 with neutral element e2. If �U1

=�U2
, then

CU1 = CU2 .

Remark 3. The converse of Corollary 2 may not be true. Here is an example illustrating
such a case.

Example 6. Consider the uninorm U 1
2

: [0, 1]2 → [0, 1] with neutral element 1
2 defined

by

U 1
2
(x, y) =


0 (x, y) ∈ [0, 12 )

2
,

max(x, y) (x, y) ∈ [ 12 , 1]
2
,

min(x, y) otherwise,

and consider the uninorm U := Umin(TnM ,SM , 12 )
: [0, 1]2 → [0, 1] with neutral element 1

2
defined as follows:

Umin(TnM ,SM , 12 )
(x, y) =


0 (x, y) ∈ [0, 12 ]

2
and x+ y ≤ 1

2 ,

max(x, y) (x, y) ∈ [ 12 , 1]
2
,

min(x, y) otherwise.

It can be shown that CU = [ 12 , 1) and CU 1
2

= [ 12 , 1). That is, CU = CU 1
2

. But, it does

not need to be �U=�U 1
2

.

Now, we will show that this claim. Since U( 1
3 ,

1
4 ) = 1

4 , it must be 1
4 �U

1
3 . On

the other hand 1
4 �U 1

2

1
3 . We suppose that 1

4 �U 1
2

1
3 . Then, there exists an element
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k ∈ [0, 12 ] such that U 1
2
( 1
3 , k) = 1

4 . Since k ∈ [0, 12 ], it must be U 1
2
( 1
3 , k) = 1

4 = 0, a

contradiction. So, 1
4 �U 1

2

1
3 . Consequently, �U 6=�U 1

2

.

The set CU allows us to introduce the next equivalence relation on the class of all
uninorms on bounded lattices.

Definition 12. Define a relation δ on the class of all uninorms on bounded lattices by
U1δU2

U1δU2 :⇔ CU1
= CU2

.

Lemma 3. The relation δ given in Definition 12 is an equivalence relation.

Definition 13. For a given uninorm U on bounded lattice L, we denote by U the δ
equivalence class linked to U , i.e,

U = {U ′| U ′δU}.

If we take L = [0, 1], then we obtain the following Proposition 9 and Proposition 10.

Proposition 9. The set [0, 1]/δ of all equivalence classes of all uninorms on the unit
interval [0, 1] under δ, is uncountably infinite.

P r o o f . Let e1, e2 ∈ (0, 1) be arbitrary but fixed two elements and e1 6= e2. We assume
that e1 < e2.

Consider the uninorms on the unit interval [0, 1] with neutral elements e1 and e2,
respectively defined as follows:

Ue1(x, y) =


0 (x, y) ∈ [0, e1)

2
,

max(x, y) (x, y) ∈ [e1, 1]
2
,

min(x, y) otherwise,

and

Ue2(x, y) =


0 (x, y) ∈ [0, e2)

2
,

max(x, y) (x, y) ∈ [e2, 1]
2
,

min(x, y) otherwise.

It can be shown that CUe1
= [e1, 1) and CUe2

= [e2, 1). Since e1 < e2, then we have

that the uninorms Ue1 and Ue2 are not equivalent under the relation δ. So, we obtain

that Ue1 6= Ue2 .
Define the mapping α : (0, 1)→ [0, 1]/δ by

α(e) = Ue.

We showed that α(e1) 6= α(e2) for e1 6= e2. So, α is an injective function, and it is
obtained that |(0, 1)| ≤ |[0, 1]/δ|. So, the set [0, 1]/δ has uncountably infinite cardinality.

�
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Proposition 10. Let e ∈ [0, 1]. If U ∈ U(e), then

U(x, y) =


TU (x, y) (x, y) ∈ [0, e]

2
,

SU (x, y) (x, y) ∈ [e, 1]
2
,

D(x, y) (x, y) ∈ A(e),

where TU is a t-norm on [0, e], SU is a t-conorm on [e, 1] and D : A(e) → [0, 1] is in-
creasing and fulfills

min(x, y) ≤ D(x, y) ≤ max(x, y) for (x, y) ∈ A(e) by [17].

If TU and SU are continuous t-norm and t-conorm, respectively, then CU = (0, 1).

P r o o f . Let TU and SU are continuous t-norm and t-conorm, respectively. Then, it
is obtained that CTU

= (0, e] and CSU
= [e, 1) from Corollary 1. So, we have that

CU = (0, 1). �

Example 7. Let e ∈ [0, 1]. Consider the uninorms Umin and Umax as unique idempotent
uninorm Umin

e and Umax
e , respectively:

Umin(x, y) =

{
max(x, y) (x, y) ∈ [e, 1]2,

min(x, y) otherwise,

Umax(x, y) =

{
min(x, y) (x, y) ∈ [0, e]2,

max(x, y) otherwise.

Then, it is obtained that CUmin = (0, 1) and CUmax = (0, 1) .

The next example shows the importance of continuity in Proposition 10.

Example 8. Consider the uninorm U := Umin(TnM ,SM , 12 )
: [0, 1]2 → [0, 1] with neutral

element 1
2 defined in Example 6. Since TnM is left continous t-norm, it need not be

CU = (0, 1). Also, it is clear that CU = [ 12 , 1).

Proposition 11. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with
neutral element e1 and U2 be a uninorm on L2 with neutral element e2 and consider
their direct product U1 × U2 on L1 × L2. Then,

CU1×U2
= CU1

× CU2
.

P r o o f . Let (x, y) ∈ CU1×U2
. Then there exist (z, t) and (k, `) in L2 \ {(01, 02), (x, y),

(11, 12)} such that (x, y) �U1×U2
(z, t) and (k, `) �U1×U2

(x, y). Then we obtain x �U1
z,

y �U2
t and k �U1

x, ` �U2
y by Definition 10. So, we have x �U1

z, k �U1
x

and y �U2 t, ` �U2 y. Then, it is obtained that x ∈ CU1 and y ∈ CU2 . Thus,
(x, y) ∈ CU1 × CU2 .
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Conversely, let (x, y) ∈ CU1 × CU2 . Then, it must be x ∈ CU1 and y ∈ CU2 . Since
x ∈ CU1

, there exist elements z, z′ ∈ L \ {01, x, 11} such that x �U1
z and z′ �U1

x.
Similarly, since y ∈ CU2

, there exist elements k, k′ ∈ L \ {02, y, 12} such that y �U2
k

and k′ �U2
y. So, (x, y) �U1×U2

(z, k) and (z′, k′) �U1×U2
(x, y). Then, it is obtained

that (x, y) ∈ CU1×U2 . Consequently, we have CU1×U2 = CU1 × CU2 . �

Definition 14. (Kesicioğlu et al. [24]) Let L be a bounded lattice, U be a uninorm on
L and let KU be defined by

KU = {x ∈ L \ {0, 1} | for some y ∈ L \ {0, 1}, [x < y and x �U y] or

[y < x and y �U x] or x ‖ y}.

Proposition 12. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with
neutral element e1 and U2 be a uninorm on L2 with neutral element e2 and consider
their direct product U1 × U2 on L1 × L2. Then,

KU1 ×KU2 ⊆ KU1×U2 .

P r o o f . Let (x, y) ∈ KU1
×KU2

. It must be x ∈ KU1
and y ∈ KU2

. Then, there exist
elements z, t ∈ L such that [x �U1

z or z �U1
x] and [y �U2

t or t �U2
y]. In this

case, it is obtained that (x, y) �U1×U2
(z, t) or (z, t) �U1×U2

(x, y). So, we have that
(x, y) ∈ KU1×U2 . Consequently, KU1 ×KU2 ⊆ KU1×U2 . �

Remark 4. The converse of the Proposition 12 may not be true. Here is an example
illustrating such a case.

Example 9. Consider the greatest uninorm U 1
2

: [0, 1]2 → [0, 1] with neutral element 1
2

defined by

U 1
2
(x, y) =


min(x, y) (x, y) ∈ [0, 12 ]

2
,

1 (x, y) ∈ ( 1
2 , 1]

2
,

max(x, y) otherwise,

and the smallest uninorm U 1
2

: [0, 1]2 → [0, 1] with neutral element 1
2 defined in Exam-

ple 6.
Now, we want to show that it need not to be KU 1

2
×U 1

2

⊆ KU 1
2

×KU 1
2

. We will show

that (3
4 ,

3
4 ) ∈ KU 1

2
×U 1

2

and ( 3
4 ,

3
4 ) /∈ KU 1

2

× KU 1
2

. We claim that 3
4 �U 1

2

5
6 . Suppose

that 3
4 �U 1

2

5
6 . Then, there exists an element k ∈ [ 12 , 1] such that U 1

2
( 3
4 , k) = 5

6 . If

k = 1
2 , then it is obtained that U 1

2
( 3
4 , k) = 5

6 = 3
4 , a contradiction. If k ∈ ( 1

2 , 1],

then we have that U 1
2
( 3
4 , k) = 5

6 = 1, a contradiction. So, it holds 3
4 �U 1

2

5
6 . Thus,

( 3
4 ,

3
4 ) �U 1

2
×U 1

2

(x, 56 ) for all x ∈ [ 34 , 1]. So, ( 3
4 ,

3
4 ) ∈ KU 1

2
×U 1

2

. On the other side, since

KU 1
2

= (0, 12 ) by Aşıcı (see [2]), then we have that 3
4 /∈ KU 1

2

. So, (3
4 ,

3
4 ) /∈ KU 1

2

×KU 1
2

.

Consequently,KU 1
2
×U 1

2

⊆ KU 1
2

×KU 1
2

does not hold.
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Remark 5. If we take the uninorms U1 and U2 to be equal, then the converse of the
Proposition 12 is true, i. e., equality is satisfied.

Remark 6. The converse of the Proposition 12 may be true for some special uninorms
on the unit interval [0, 1]. Here is an example illustrating such a case.

Example 10. Consider the uninorm U1 : [0, 1]2 → [0, 1] with neutral element 1
2 defined

as follows:

U1(x, y) =


0 (x, y) ∈ [0, 12 ]

2
and x+ y ≤ 1

2 and (x, y) 6= ( 1
4 ,

1
4 ),

1
4 (x, y) = (1

4 ,
1
4 ),

max(x, y) (x, y) ∈ [ 12 , 1]
2
,

min(x, y) otherwise,

and consider the uninorm U := Umin(TnM ,SM , 12 )
: [0, 1]2 → [0, 1] with neutral element 1

2

defined in Example 6. We know that KU = (0, 12 ) by Aşıcı (see [2]). Similarly, it can be
shown that KU1

= (0, 12 ). Also, it is clear that KU×U1
= (0, 12 )× (0, 12 ) = KU ×KU1

.

Definition 15. Let L be a bounded lattice, U be a uninorm on L with neutral element
e and K?

U defined by

K?
U = {x ∈ KU | for some y, y′ ∈ L \ {0, 1}, [x < y but x �U y]

and [y′ < x but y′ �U x]}.

Proposition 13. Let L1 and L2 be bounded lattices, U1 be a uninorm on L1 with
neutral element e1 and U2 be a uninorm on L2 with neutral element e2 and consider
their direct product U1 × U2 on L1 × L2. Then,

K?
U1
×K?

U2
⊆ K?

U1×U2
.

P r o o f . Let (x, y) ∈ K?
U1
×K?

U2
. Then, we have x ∈ K?

U1
and y ∈ K?

U2
. Then for some

k, k′ ∈ L and `, `′ ∈ L such that [x < k, x �U1 k and k′ < x, k′ �U1 x] and [y < `, y �U2 `
and `′ < y, `′ �U2

y]. Then, we have that [(x, y) < (k, `) but (x, y) �U1×U2
(k, `)] and

[(k′, `′) < (x, y) but (k′, `′) �U1×U2
(x, y)]. So, it is obtained that (x, y) ∈ K?

U1×U2
. �

Remark 7. The converse of the Proposition 13 may not be true. Here is an example
illustrating such a case.

Example 11. Consider the uninorm U 1
2

: [0, 1]2 → [0, 1] with neutral element 1
2 defined

in Example 6 and consider the uninorm U 1
2

: [0, 1]2 → [0, 1] with neutral element 1
2

defined in Example 9.
We want to show that K?

U 1
2
×U 1

2

* K?
U 1

2

×K?
U 1

2

. We will show that ( 1
5 ,

1
5 ) ∈ K?

U 1
2
×U 1

2

and ( 1
5 ,

1
5 ) /∈ K?

U 1
2

× K?
U 1

2

. We claim that 1
5 �U 1

2

1
4 . Suppose that 1

5 �U 1
2

1
4 . Then,

there exists an element k ∈ [0, 12 ] such that U 1
2
( 1
4 , k) = 1

5 . Since k ∈ [0, 12 ], then we



1002 E. AŞICI AND R. MESIAR

have U 1
2
( 1
4 , k) = 1

5 = 0, a contradiction. So, 1
5 �U 1

2

1
4 . So, ( 1

5 ,
1
5 ) �U 1

2
×U 1

2

( 1
4 , y) for

some y ∈ [ 15 , 1]. Also we want to show that 1
6 �U 1

2

1
5 . Suppose that 1

6 �U 1
2

1
5 . Then,

there exists an element ` ∈ [0, 12 ] such that U 1
2
( 1
5 , `) = 1

6 . Since If ` ∈ [0, 12 ], then we

have U 1
2
( 1
5 , `) = 1

6 = 0, a contradiction. So, 1
6 �U 1

2

1
5 . So, ( 1

6 , y
′) �U 1

2
×U 1

2

( 1
5 ,

1
5 ) for

some y′ ∈ [0, 15 ]. Consequently, we have that (1
5 ,

1
5 ) ∈ K?

U 1
2
×U 1

2

. On the other side,

since K?
U 1

2

= ( 1
2 , 1) by Aşıcı (see [2]), we have that 1

5 /∈ K?
U 1

2

. So, ( 1
5 ,

1
5 ) /∈ K?

U 1
2

×K?
U 1

2

.

Consequently, K?
U 1

2
×U 1

2

⊆ K?
U 1

2

×K?
U 1

2

does not hold.

Remark 8. If we take the uninorms U1 and U2 to be equal, then the converse of the
Proposition 13 is true, i. e., equality is satisfied.

Remark 9. The converse of the Proposition 13 may be true for some special uninorms
on the unit interval [0, 1]. Here is an example illustrating such a case.

Example 12. Consider the uninorm U1 : [0, 1]2 → [0, 1] with neutral element 1
2 defined

in Example 10 and consider the uninorm U := Umin(TnM ,SM , 12 )
: [0, 1]2 → [0, 1] with

neutral element 1
2 defined in Example 6. We know that K?

U = (0, 14 ) by Aşıcı (see
[2]). Similarly, it can be shown that K?

U1
= (0, 14 ). Also, it is clear that K?

U×U1
=

(0, 14 )× (0, 14 ) = K?
U ×K?

U1
.

5. CONCLUDING REMARKS

We have introduced and studied uninorms on bounded lattices. On one side, we have
developed several new results in the domain of uninorms acting on bounded lattices,
including the direct products of bounded lattices, on the other side, we have introduced
several new results for classical uninorms acting on the real unit interval [0, 1]. Among
others, we have studied new partial orderings induced by uninorms on bounded lat-
tices. As already stressed in introduction, uninorms (together with related operations
such as t-norms, t-conorms) have important applications in several domains such as
decision making in fuzzy environment, general measure and integral theory (again with
application in ordinal decision making), image processing, etc.
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[24] M. N. Kesicioğlu, F. Karaçal, and Ü. Ertuğrul: An equivalence relation based on the
U -partial order. Inform. Sci. 411 (2017), 39–51. DOI:10.1016/j.ins.2017.05.020

[25] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers,
Dordrecht 2000.

[26] G. J. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic, Theory and Application. Prentice
Hall PTR, Upper Saddle River, New Jersey 1995.

[27] S. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst.
157 (2006), 1403–1416. DOI:10.1016/j.fss.2005.12.021

[28] R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996),
111–120. DOI:10.1016/0165-0114(95)00133-6
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