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Limited p-converging operators and relation with

some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun

Abstract. By using the concepts of limited p-converging operators between two
Banach spaces X and Y , Lp-sets and Lp-limited sets in Banach spaces, we obtain

some characterizations of these concepts relative to some well-known geometric
properties of Banach spaces, such as ∗-Dunford–Pettis property of order p and
Pelczyński’s property of order p, 1 ≤ p < ∞.

Keywords: Gelfand–Phillips property; Schur property; p-Schur property; weakly
p-compact set; reciprocal Dunford–Pettis property of order p

Classification: 47L05, 46B25

1. Introduction

Suppose that X is a Banach space and 1 ≤ p ≤ ∞. The space of all weakly

p-summable sequences in X is defined by

lweak
p (X) := {(xn) : (xn, x

∗) ∈ lp, ∀x∗ ∈ X∗}.

This is a Banach space with norm

‖(xn)‖
weak
p = sup

{( ∞
∑

n=1

|〈xn, x
∗〉|p

)1/p

: ‖x∗‖ ≤ 1

}

.

Note that for p = ∞, lweak
∞ (X) = l∞(X) is the Banach space of all (weakly)

bounded sequences in X with supremum norm, see [10, page 33]. Moreover, by

cweak
0 (X) we represent the closed subspace of l∞(X) containing all weakly null

sequences in X .

An operator T between two Banach spaces X and Y is said to be p-converging

if it transfers weakly p-summable sequences into norm null sequences. The class

of all p-converging operators from X into Y is denoted by Cp(X,Y ). Also T is
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called p-summing if there is a constant c ≥ 0 such that for all choices of (xk)
n
k=1

in X we have

( n
∑

k=1

‖Txk‖
p

)1/p

≤ c sup

{( n
∑

k=1

|〈xk, x
∗〉|p

)1/p

: ‖x∗‖ ≤ 1

}

.

The set of all p-summing operators from X into Y is denoted by Πp(X,Y ).

For each 1 ≤ p < ∞ a sequence (xn) in a Banach space X is said to be weakly

p-convergent to an x ∈ X if the sequence (xn − x) is weakly p-summable, i.e.,

(xn − x) ∈ lweak
p (X). The weakly ∞-convergent sequences are simply the weakly

convergent sequences. Also, a bounded set K in a Banach space is said to be

relatively weakly p-compact, 1 ≤ p ≤ ∞, if every sequence in K has a weakly

p-convergent subsequence, see [3]. If the limit point of each weakly p-convergent

subsequence is in K, then K is weakly p-compact set. Moreover, according to [4],

we say that a Banach space X ∈ Wp if the closed unit ball BX of X is a weakly

p-compact set. A bounded operator T from X into Y is called weakly p-compact,

1 ≤ p ≤ ∞, if T (BX) is relatively weakly p-compact. The space of all weakly

p-compact operators from X into Y is denoted by Wp(X,Y ); while the space of

all bounded operators and weakly compact operators from X into Y are denoted

by L(X,Y ) and W (X,Y ), respectively. Weakly ∞-compact operators are pre-

cisely those T ∈ L(X,Y ) for which T (BX) is relatively weakly compact, that is,

W∞(X,Y ) = W (X,Y ).

A Banach space X has the Dunford–Pettis (DP) property, if every weakly

compact operator T from X into arbitrary Banach space Y is a Dunford–Pettis

operator, that is, T carries weakly convergent sequences into norm convergent

ones. Moreover, if 1 ≤ p ≤ ∞, the Banach space X has the Dunford–Pettis

property of order p (DPp) if for each Banach space Y , every weakly compact

operator T : X → Y is p-converging; in other words W (X,Y ) ⊆ Cp(X,Y ), see [3].

By definition, ∞-converging operators are equal to Dunford–Pettis ones. So the

Dunford–Pettis property of order ∞ is the same as DP property. Every Banach

space with DP property, such as the sequence spaces c0 and l1, have the DPp

property, see [3].

Also the Banach space X has the Schur property if every weakly null sequence

in X converges in norm. The simplest Banach space with the Schur property

is l1. A Banach space X has the p-Schur property, 1 ≤ p ≤ ∞, if every weakly

p-compact subset of X is compact. In other words, if 1 ≤ p < ∞, X has

the p-Schur property if and only if every sequence (xn) ∈ lweak
p (X) is a norm

null sequence, for example, lp has the 1-Schur property. Moreover, X has the

∞-Schur property if and only if every sequence in cweak
0 (X) is norm null. So,
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∞-Schur property coincides with the Schur property. Also one note that every

Schur space has the p-Schur property for all p ≥ 1, see [6].

A subset K of a Banach space X is called limited (or Dunford–Pettis (DP)),

if for each weak∗ null (weak null, respectively) sequence (x∗
n) in X∗,

lim
n→∞

sup
x∈K

|〈x, x∗
n〉| = 0.

In particular, a sequence (xn) ⊂ X is limited if and only if 〈xn, x
∗
n〉 → 0 for all

weak∗-null sequences (x∗
n) in X∗.

In general, every relatively compact subset of X is limited and so is Dunford–

Pettis. If every limited subset of X is relatively compact, then X has the Gel-

fand–Phillips (GP) property. For example the classical Banach spaces c0 and l1
have the GP property and every Schur space and spaces containing no copy of l1,

such as reflexive spaces have the same property, see [2]. The reader can find some

useful and additional properties of limited and DP sets and Banach spaces with

the Schur and GP properties in [1], [11], [12], [15], [19], [20], [22], [24].

In this note, using the concepts of limited p-converging operators between

Banach spaces and Lp-limited subsets in dual of Banach spaces, we obtain some

characterizations of the DP∗
p property of X . We shall also obtain some necessary

and sufficient conditions for Pelczyński’s property (V) of order p which has been

introduced and studied in [18]. In particular, we will present a new class of Banach

spaces with Pelczyński’s property (V) of order p. More precisely, we will prove

that if X ∈ Wp and Y is a Banach space with Pelczyński’s property (V) of order p

such that L(X,Y ∗) = Πp(X,Y ∗), then X ⊗π Y has Pelczyński’s property (V) of

order p.

2. Main results

An operator T ∈ L(X,Y ) is called limited completely continuous if it carries

limited and weakly null sequences in X to norm null ones in Y . The class of all

limited completely continuous operators from X into Y is denoted by Lcc(X,Y ),

see [23]. Also, an operator T ∈ L(X,Y ) is limited p-converging if it transfers

limited and weakly p-summable sequences into norm null sequences, see [14]. We

denote the space of all limited p-converging operators fromX into Y by Clp(X,Y ).

It is clear that every weakly p-compact operator is weakly compact. On the

other hand by [23, Corollary 2.5] every weakly compact operator is limited com-

pletely continuous. Also limited completely continuous operators are limited p-

converging. Therefore we have

Wp(X,Y ) ⊆ W (X,Y ) ⊆ Lcc(X,Y ) ⊆ Clp(X,Y ).
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Theorem 2.1. The following statements for any bounded operator T : X → Y

are equivalent.

(1) T ∈ Clp(X,Y ).

(2) Operator T transfers limited weakly p-compact sets into relatively norm

compact ones.

(3) If S : Z → X is limited weakly p-compact operator, i.e., S(BZ) is limited

and weakly p-compact, then TS is compact.

(4) If S : l1 → X is limited weakly p-compact, then TS is compact.

Proof: (1) ⇒(2) Let A ⊂ X be limited weakly p-compact and (Txn) is a se-

quence in T (A). Since A is weakly p-compact, we conclude that there is a subse-

quence (xnk
) of (xn) and x0 ∈ X such that (xnk

−x0) ∈ lweak
p (X). By assumption,

‖Txnk
− Tx0‖ → 0 which implies that T (A) is relatively compact.

(2) ⇒ (3) and (3) ⇒ (4) are clear.

(4) ⇒ (1) Assume that (xn) is limited weakly p-summable. We shall prove

that ‖Txn‖ → 0. Define

S : l1 → X, S(α1, α2, . . .) =

∞
∑

n=1

αnxn.

First, note that S is well defined, since (xn) is weakly p-summable. We claim

that S is limited weakly p-compact.

Since (xn) is limited and

S(Bl1) =

{ ∞
∑

n=1

αnxn :
∞
∑

n=1

|αn| ≤ 1

}

,

it follows that S is a limited operator. Assume that q > 1 such that 1/p+1/q=1.

It is easy to see that the set

{ ∞
∑

n=1

αnxn :

∞
∑

n=1

|αn|
q ≤ 1

}

is the continuous image by the natural operator associated to (αn) ∈ Blq and so

is weakly p-compact, see e.g. [10]. On the other hand, it is clear that

{ ∞
∑

n=1

αnxn :
∞
∑

n=1

|αn| ≤ 1

}

⊆

{ ∞
∑

n=1

αnxn :
∞
∑

n=1

|αn|
q ≤ 1

}

.

It implies that S(Bl1) is relatively weakly p-compact. Then by (4) the operator

TS is compact. If (en) is the standard basis for l1, then each subsequence (enk
)

of (en), has a new subsequence, which is denoted again by (enk
), such that
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(Txnk
) = (TSenk

) is norm convergent. Since the sequence (Txn) is weakly null

it follows that ‖Txn‖ → 0. �

A Banach space X is said to have the DP∗-property of order p, for 1 ≤ p ≤ ∞,

if all weakly p-compact sets in X are limited. In short, we say that X has

the DP∗
p property, see [13]. It is clear that every p-converging operator is limited p-

converging, but the converse in general is false. For example, let T be the identity

operator on c0. By [6, Corollary 2.8] c0 does not have the p-Schur property. Then

T is not p-converging while T ∈ Clp(c0), since c0 has the GP property.

In the following, we give a characterization of this converse assertion, with

respect to the DP∗
p property of Banach spaces.

Theorem 2.2 ([13]). Let 1 ≤ p ≤ ∞. The Banach space X has the DP∗
p

property if and only if 〈xn, x
∗
n〉 → 0 as n → ∞ for all (xn) ∈ lweak

p (X) and all

weak∗ null sequence (x∗
n) in X∗.

Theorem 2.3. The Banach space X has the DP∗
p property if and only if

Cp(X,Y ) = Clp(X,Y ) for every Banach space Y .

Proof: Let T ∈ Clp(X,Y ) and (xn) ∈ lweak
p (X). Theorem 2.2 implies that (xn)

is limited and so ‖Txn‖ → 0. Hence T ∈ Cp(X,Y ).

Conversely, if X does not have the DP∗
p property, then there are (xn) ∈

lweak
p (X) and a weak∗-null sequence (x∗

n) in X∗ and ε > 0 such that |〈xn, x
∗
n〉| > ε

for all integer n. Define T : X → c0 by Tx = (〈x, x∗
n〉) and let A be a limited

subset of X . Then T (A) is also limited in c0. Since c0 has the GP property,

T (A) is relatively compact. Theorem 2.1 shows that T ∈ Clp(X, c0). Moreover,

‖Txn‖ ≥ |〈xn, x
∗
n〉| ≥ ε. Therefore T /∈ Cp(X, c0), which completes the proof. �

Recall that according to [17], a bounded subset K of a Banach space X is p-

limited if for every (x∗
n) ∈ lweak

p (X∗) there exists (αn) ∈ lp such that |〈x, x∗
n〉| ≤ αn

for all x ∈ K and all n ∈ N. Equivalently, K is p-limited if

lim
n

sup
x∈K

|〈x, x∗
n〉| = 0

for every (x∗
n) ∈ lweak

p (X∗).

It is clear that every limited set and every Dunford–Pettis set are p-limited.

We refer to [9] for more information about p-limited subsets of Banach spaces.

Theorem 2.4. Let X∗ has the DP∗
p property. If T : X → Y and T (BX) is not

p-limited, then T fixes a copy of l1.

Proof: By assumptions, there exist ε > 0, (y∗k) ∈ lweak
p (Y ∗) and a sequence

(xk) ⊂ BX such that |〈Txk, y
∗
k〉| ≥ ε for all integers k. We claim that (Txn) does

not have a weakly Cauchy subsequence. Otherwise, by passing to subsequence,
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we can assume that the sequence (Txn) is weakly Cauchy. For each m ∈ N,

limn→∞〈Txm, y∗n〉 = 0. Therefore there is an nm ∈ N such that |〈Txm, y∗nm
〉| <

ε/2. We also have

|〈Txnm
− Txm, y∗nm

〉| ≥ |〈Txnm
, y∗nm

〉| − |〈Txm, y∗nm
〉| ≥ ε−

ε

2
=

ε

2

for all m ∈ N. Since the sequence (xnm
− xm)m∈N is weakly null and

(y∗nm
◦ T ) ∈ lweak

p (X∗), it follows from the DP∗
p property of X∗ that

lim
m→∞

〈Txnm
− Txm, y∗nm

〉 = 0,

which is a contradiction. Hence (xn) has no weakly Cauchy subsequence, since

the image of a weakly Cauchy sequence is weakly Cauchy. Therefore the Rosen-

thal’s l1-theorem implies the existence of a subsequence of (xn) and a subsequece

of (Txn) which is equivalent to the usual l1 basis. Therefore a copy of l1 in Y is

fixed by T . �

Let us recall that according to [18] a bounded subset K of X∗ is said to be

p-(V) set if

lim
n

sup
x∗∈K

|〈xn, x
∗〉| = 0

for all (xn) ∈ lweak
p (X). The authors in [18] have used this notion to define

Pelczyński’s property (V) of order p as a p-version of Pelczyński’s property (V).

Also, a bounded subset K of X∗ is called an L-set, if each weakly null sequence

(xn) in X tends to 0 uniformly on K, see [12]. It is clear that ∞-(V) sets are

L-sets. According to this point of view in this article we choose the name Lp-sets

instead of the p-(V) subsets of X∗.

Obviously, a sequence (x∗
n) ∈ X∗ is a Lp-set if and only if limn→∞〈xn, x

∗
n〉 = 0

for all (xn) ∈ lweak
p (X).

In the following, we introduce the notion of Lp-limited subsets of the dual

space X∗.

Definition 2.5. Let 1 ≤ p ≤ ∞. A subset K of a dual space X∗ of X is

Lp-limited set if

lim
n

sup
x∗∈K

|〈xn, x
∗〉| = 0

for every limited sequence (xn) ∈ lweak
p (X).

For example, the Schur property of l1 implies that the closed unit ball of

l∞ = l∗1 is an Lp-set and so Lp-limited set. The closed unit ball of c∗0 = l1 shows

that Lp-limited sets are not Lp-sets, in general. In fact c0 has the GP property

and so every limited weakly null sequence in c0 is norm null, hence the closed unit

ball of c∗0 is an Lp-limited set. But c0 fail to have the p-Schur property. Then this



Limited p-converging operators 423

closed unit ball is not an Lp-set. The reader is referred to [8] for more information

about the relationships between Lp-sets and Lp-limited sets.

Proposition 2.6. A Banach space X has the p-Schur property if and only if

every bounded subset of X∗ is an Lp-set. In particular, the closed unit ball of

each lp space is an L1-set.

Proof: If X has the p-Schur property and (xn) ∈ lweak
p (X), then

sup{|〈xn, x
∗〉| : x∗ ∈ BX∗} = ‖xn‖ → 0.

Thus BX∗ is an Lp-set. So, every bounded subset of X∗ is an Lp-set. The

converse is proven in a similar way.

It is clear that, for every Banach spaceX , every p-limited subset of X∗ is an Lp-

set and the closed convex hull of an Lp-limited set is also Lp-limited. Furthermore,

every Lp-limited set in X∗ is bounded. In fact, if K ⊆ X∗ is an Lp-limited

set which is unbounded, then there are (x∗
n) in K and (yn) in BX such that

|〈yn, x
∗
n〉| > n2 for all n. Let xn = yn/n

2. Then

∞
∑

n=1

‖xn‖
p =

∞
∑

n=1

1

n2p
‖yn‖

p < ∞.

Hence (xn) is a limited sequence in lweak
p (X). Therefore

0 = lim
n→∞

sup
x∗

n∈K
|〈xn, x

∗
n〉| ≥ lim

n→∞
|〈xn, x

∗
n〉| = lim

n→∞

1

n2
|〈yn, x

∗
n〉| > 1.

This is a contradiction. �

Theorem 2.7. The Banach space X has the DP∗
p property if and only if every

Lp-limited subset of X∗ is Lp-set.

Proof: It is clear that, for an operator T : X → Y , T ∈ Clp(X,Y ) if and only

if T ∗(BY ∗) is an Lp-limited set. Also, T ∈ Cp(X,Y ) if and only if T ∗(BY ∗) is

an Lp-set. Now, assume that every Lp-limited subset of X∗ is Lp-set and T :

X → Y is a limited p-converging operator. Then T ∗(BY ∗) is an Lp-limited

set. By assumption T ∗(BY ∗) is an Lp-set. Hence T is p-converging. Therefore

Theorem 2.3 completes the proof. The converse follows easily from Theorem 2.2.

�

In [16] A. Grothendieck introduced the reciprocal Dunford–Pettis (RDP) prop-

erty: a Banach space X has the RDP property if for every Banach space Y , every

completely continuous operator T : X → Y is weakly compact. Recall that Ba-

nach space X has Pelczyński property (V) if for every Banach space Y , every

unconditionally converging operator T ∈ L(X,Y ), (i.e. any operator mapping
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weakly unconditionally converging series into unconditionally converging ones) is

weakly compact.

The concept of Pelczyński property (V) of order p has been introduced in [18].

In fact, a Banach space X has the Pelczyński property (V) of order p (property

p-(V)) if Cp(X,Y ) ⊆ W (X,Y ) for every Banach space Y .

Note that property 1-(V) is equivalent to Pelczyński property (V) and ∞-

(V) is equivalent to the RDP property. Also, since every completely continuous

operator is p-converging, then every Banach space which has property p-(V) for

some 1 ≤ p ≤ ∞ has the RDP property. Then we have the following well-known

result; every Banach spaceX with Pelczyński (V) property has the RDP property.

Moreover, every reflexive Banach space has property p-(V) and if X is non

reflexive with the p-Schur property, then X does not have property p-(V); indeed,

the identity operator i : X → X is p-converging, but it is not weakly compact.

Theorem 2.8 ([18, Theorem 2.4]). A Banach space X has property p-(V) if and

only if every Lp-set in X∗ is relatively weakly compact.

Theorem 2.9. If a Banach space X ∈ Wp, then every Lp-set in X∗ is relatively

compact.

Proof: Suppose that X ∈ Wp and K ⊆ X∗ is an Lp-set. Then K is bounded.

Without loss of generality, we may assume that K is weak∗ closed and so is weak∗

compact. Define

T : X → C(K), 〈Tx, x∗〉 = 〈x, x∗〉, x ∈ X, x∗ ∈ K.

Clearly, T is bounded. Indeed,

‖T ‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖≤1

(

sup
x∗∈K

|〈x, x∗〉|
)

= sup
x∗∈K

‖x∗‖.

On the other hand, T is p-converging, because if (xn) ∈ lweak
p (X), then

‖Txn‖ = sup
x∗∈K

|〈Txn, x
∗〉| = sup

x∗∈K
|〈xn, x

∗〉| → 0.

Therefore T is compact and so T ∗ : C(K)∗ → X∗ is compact. For x∗ ∈ K define

δx∗ ∈ C(K)∗ by

δx∗(f) = f(x∗), f ∈ C(K).

Hence for all x ∈ X we have

〈x, T ∗(δx∗)〉 = 〈Tx, δx∗〉 = 〈Tx, x∗〉 = 〈x, x∗〉.

Then T ∗(δx∗) = x∗. Moreover,
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K = {T ∗δx∗ : x∗ ∈ K} = T ∗{δx∗ : x∗ ∈ K} ⊆ T ∗(BC(K)∗).

Since T ∗ is compact, we conclude that K is relatively compact. �

As a corollary, every Banach space X ∈ Wp has property p-(V). But the

converse is not true in general. For example, the Hilbert space l2 has property

1-(V), but it is not weakly 1-compact, see [6, page 132].

The following characterization of spaces having DPp property has an essential

role to achieve our next results.

Theorem 2.10 ([3, Proposition 3.2]). For a given Banach space X and 1 ≤

p ≤ ∞ the following are equivalent:

(1) Space X has the DPp property.

(2) If (xn) ∈ lweak
p (X) and (x∗

n) ∈ cweak
0 (X∗), then 〈xn, x

∗
n〉 → 0.

Corollary 2.11. If X has the DPp property and Y ∈ Wp, then L(X,Y ∗) =

Cp(X,Y ∗).

Proof: Assume that T ∈ L(X,Y ∗) and (xn) ∈ lweak
p (X). Let (yn) ∈ lweak

p (Y ).

Since (T ∗(yn)) is weakly null, then 〈Txn, yn〉 = 〈xn, T
∗yn〉 → 0 by Theorem 2.10.

It follows that (Txn) is an Lp-set. Therefore Theorem 2.9 implies that (Txn) is

relatively compact, and so T ∈ Cp(X,Y ). �

Corollary 2.12. If a Banach space X has the DPp property and Y ∗ ∈ Wp, then

L(X,Y ) = Cp(X,Y ).

Proof: Let T ∈ L(X,Y ) and let (xn) ∈ lweak
p (X). Then by previous corollary,

(Txn) is an Lp-set in Y ∗∗. Hence an appeal to Theorem 2.9 shows that this

sequence is relatively compact in Y ∗∗ and so in Y . �

Note that if a Banach space X ∈ Wp and for some Banach space Y , T ∈

Cp(X,Y ), then for each sequence (xn) in BX , there is a subsequence (xnk
) weakly

p-convergent to some x ∈ BX , and so ‖Txnk
− Tx‖ → 0 as k → ∞. Therefore T

is compact. This will be used in the proof of the following theorem.

Theorem 2.13. For Banach spacesX and Y such that X,Y ∗ ∈ Wp the following

assertions are equivalent

(1) For each T ∈ L(X,Y ∗∗) and each sequence (xn) ∈ lweak
p (X), (Txn) is an

Lp-set.

(2) Every T ∈ L(X,Y ∗∗) is compact.

(3) Every T ∈ L(Y ∗, X∗) is compact.
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Proof: (1) ⇒ (2) Let T ∈ L(X,Y ∗∗) and (xn) ∈ lweak
p (X). Then (Txn) is an

Lp-set in Y ∗∗. Since Y ∗ ∈ Wp, by Theorem 2.9, (Txn) is a relatively compact set.

Therefore ‖Txn‖ → 0. Hence T ∈ Cp(X,Y ∗∗) and we are done since X ∈ Wp.

(2) ⇒ (3) If T ∈ L(Y ∗, X∗), then T ∗|X ∈ L(X,Y ∗∗) is compact. Therefore

T = (T ∗|X)∗|Y ∗ : Y ∗ → X∗ is compact.

(3) ⇒ (1) Let T ∈ L(X,Y ∗∗) and (xn) ∈ lweak
p (X) such that (Txn) is not

an Lp-set. So there are ε > 0 and (y∗n) ∈ lweak
p (Y ∗) such that (by passing to

a subsequence, if necessary)

|〈Txn, y
∗
n〉| > ε, ∀n ∈ N.

Hence,

|〈T ∗|Y ∗(y∗n), xn〉| > ε, ∀n ∈ N.

Since T ∗|Y ∗ is compact, there is a subsequence (y∗nk
)k such that (T ∗|Y ∗(y∗nk

)) is

norm null and we have a contradiction. �

Theorem 2.14. Let X be a Banach space and X ∈ Wp and let Y be a Banach

space with property p-(V). If L(X,Y ∗) = Πp(X,Y ∗), then X ⊗π Y has property

p-(V).

Proof: Let H be an Lp-subset of (X⊗πY )∗ = L(X,Y ∗) and (hn) be a sequence

in H . If (xn) ∈ lweak
p (X) we claim that ‖hn(xn)‖Y ∗ → 0. If this were false, there

would exist ε > 0, (hnk
), (xnk

) and (yk) ⊆ BY such that

|〈hnk
(xnk

), yk〉| > ε

for all k ∈ N. On the other hand, for every T ∈ (X ⊗π Y )∗ = L(X,Y ∗),

∞
∑

k=1

|T (xnk
⊗ yk)|

p =

∞
∑

k=1

|〈Txnk
, yk〉|

p ≤

∞
∑

k=1

‖Txnk
‖p < ∞,

since T is p-summing and (xnk
) ∈ lweak

p (X). Hence (xnk
⊗yk) ∈ lweak

p (X⊗πY ) and

so by assumption on H , 〈hnk
(xnk

), yn〉 → 0 which is a contradiction. Similarly

we can prove that if (yn) ∈ lweak
p (Y ), then ‖h∗

n(yn)‖X∗ → 0.

If y∗∗ ∈ Y ∗∗, then the sequence (h∗
n(y

∗∗)) ⊆ X∗ is an Lp-set. Because, If

(xn) ∈ lweak
p (X), then

|〈h∗
n(y

∗∗), xn〉| = |〈hn(xn), y
∗∗〉| ≤ ‖y∗∗‖‖hn(xn)‖Y ∗ → 0.

Hence Theorem 2.9 implies that (h∗
n(y

∗∗)) is a relatively compact set. By passing

to a subsequence, we may assume that this sequence is weakly convergent to

some x∗. Similarly, we can prove that for all x∗∗ ∈ X∗∗, the sequence (h∗∗
n (x∗∗))

is an Lp-set and so is a relatively weakly compact subset of Y ∗∗∗, by virtue of

Theorem 2.8. But hn : X → Y ∗ is compact for all n ∈ N; so (h∗∗
n (x∗∗)) ⊆ Y ∗.
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Now consider two arbitrary subsequences (h∗∗
nk
(x∗∗)) and (h∗∗

np
(x∗∗)) which are

weakly convergent to z1 and z2, respectively. It is easy to see that z1 = z2. Indeed,

if y∗∗ ∈ Y ∗∗, then we have

〈z1, y
∗∗〉 = lim

k
〈h∗∗

nk
(x∗∗), y∗∗〉 = lim

k
〈x∗∗, h∗

nk
(y∗∗)〉

= lim
n
〈x∗∗, h∗

n(y
∗∗)〉 = lim

p
〈x∗∗, h∗

np
(y∗∗)〉

= lim
p
〈h∗∗

np
(x∗∗), y∗∗〉 = 〈z2, y

∗∗〉.

Hence there is h0(x
∗∗) ∈ Y ∗ such that h0(x

∗∗) = w − limn h
∗∗
n (x∗∗). Now we

claim that h0 is w∗-w∗ continuous. In fact, we show that h0 is w∗-w∗ continuous

from X∗∗ into Y ∗. Let (x∗∗
α ) be a w∗-null net in X∗∗ and y∗∗ ∈ Y ∗∗. Since

〈h0(x
∗∗
α ), y∗∗〉 = lim

n
〈h∗∗

n (x∗∗
α ), y∗∗〉 = lim

n
〈x∗∗

α , h∗
n(y

∗∗)〉 = 〈x∗∗
α , x∗〉,

we observe that limα〈h0(x
∗∗
α ), y∗∗〉 = 0 and h0 is w∗-w∗ continuous. Now consider

h ∈ L(X,Y ∗) = Πp(X,Y ∗) defined by h = h0|X . If x∗∗ ∈ X∗∗, then there is

a net (xα) ⊂ X which is w∗-converging to x∗∗. So we obtain

h∗∗(x∗∗) = w∗ − lim
α

h∗∗(xα) = w∗ − lim
α

h(xα) = w∗ − lim
α

h0(xα) = h0(x
∗∗).

Therefore h∗∗ = h0. By the construction of h0 we thus have limn〈h
∗∗
n (x∗∗), y∗∗〉 =

〈h∗∗(x∗∗), y∗∗〉 for all x∗∗ ∈ X∗∗ and y∗∗ ∈ Y ∗∗. Corollary 4.1.5 of [21] implies

that hn
w
→ h in L(X,Y ∗). Therefore H is relatively weakly compact. �

Recall that a Banach space X has the p-Gelfand–Phillips (p-GP) property

if every limited weakly p-compact subset of X is relatively compact, see [13]. It

should be noted that this notion has been called “limited p-Schur property” in [7].

More precisely, X has the p-GP property if and only if every limited sequence

(xn) ∈ lweak
p (X) is norm null. It is easy to see that every Banach space with

the p-Schur property and every Banach space with GP property is p-GP for all

1 ≤ p ≤ ∞. Moreover, X has the GP property if and only if every limited weakly

null sequence in X is norm null, see e.g., [11]. Therefore the ∞-GP property is

equivalent to the GP property.

If X is a p-GP space with the DP∗
p property, then X has the p-Schur property.

Indeed, if (xn) ∈ lweak
p (X), then by the DP∗

p property of X , we conclude that

〈xn, x
∗
n〉 → 0 for all w∗-null sequence (x∗

n) ⊂ X∗. Therefore (xn) is limited and so

‖xn‖ → 0. Furthermore, if X ∈ Wp has the p-GP property, then X has the GP

property.

By a similar argument of Proposition 2.6, it is evident that a Banach space X

has the p-GP property if and only if every bounded subset of X∗ is an Lp-limited

set. Since l1 has the p-Schur property for all 1 ≤ p ≤ ∞ so Bl1 is an Lp-limited
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set which is not weakly compact. Also, l2 has the 1-Schur property. It follows

that Bl2 is an L1-limited set, while we know that it is not weakly 1-compact, see

[6, page 132].

Theorem 2.15. For a Banach space X , the following are equivalent.

(1) Every Lp-limited set in X∗ is weakly compact.

(2) For each Banach space Y , Clp(X,Y ) = W (X,Y ).

(3) Clp(X, l∞) = W (X, l∞).

Proof: (1) ⇒ (2) If T ∈ Clp(X,Y ), then T ∗(BY ∗) is an Lp-limited set in X∗.

So by hypothesis, it is weakly compact and so T ∗ is a weakly compact operator.

Therefore T ∈ W (X,Y ).

(2) ⇒ (3) It is clear.

(3) ⇒ (1) If (1) does not hold, then there is an Lp-limited subset A of X∗

which is not weakly compact. So there is a sequence (x∗
n) ⊂ A with no weakly

p-convergent subsequence. Now let T : X → l∞ be defined by

Tx = (〈x, x∗
n〉), x ∈ X.

As (x∗
n) is Lp-limited set, for every limited sequence (xm) ∈ lweak

p (X) we have

‖Txm‖ = sup
n

|〈xm, x∗
n〉| → 0

as m → ∞. Thus T ∈ Clp(X, l∞). Clearly T ∗(e∗n) = x∗
n for all n ∈ N. Hence T ∗

is not weakly p-compact. So T /∈ W (X, l∞). �

It is clear that the class Clp(X,Y ) is a closed linear subspace of L(X,Y ) which

has the ideal property. In sequel, we prove that the operator ideal Clp of all limited

p-converging operators between Banach spaces, by meaning of [5], is injective but

it is not surjective.

Theorem 2.16. The operator ideal Clp is injective but not surjective.

Proof: Suppose that T ∈ L(X,Y ) and J : Y → Z is an isometric embed-

ding, such that JT is limited p-converging. If (xn) ∈ lweak
p (X) is limited, then

‖JTxn‖ → 0 and so ‖Txn‖ → 0 as n → 0. Therefore T belongs to Clp. Hence

Clp is injective.

Now assume that X is a Banach space without the p-GP property. Then the

identity operator i : X → X is not limited p-converging. On the other hand, one

define Φ: l1(BX) → X via

Φ(ϕ) =
∑

x∈BX

ϕ(x)x, ϕ ∈ l1(BX).
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It is easy to see that Φ is a surjective operator. Thus the Schur property and

so the p-GP property of l1(BX) imply that the operator Φ = iΦ belongs to Clp,

while the identity operator i does not. Hence Clp is not surjective. �

Theorem 2.17. The Banach space X has the p-GP property if and only if

L(X,Y ) = Clp(X,Y ) for every Banach space Y .

Proof: Suppose that X has the p-GP property. If T ∈ L(X,Y ) and (xn) ∈

lweak
p (X) is a limited sequence, then ‖xn‖ → 0. Hence ‖Txn‖ → 0.

Conversely, if Y = X , then the identity operator on X belongs to Clp. There-

fore X has the limited p-Schur property. �

Similarly, we can prove that the Banach space X has the p-GP property if and

only if L(Y,X) = Clp(Y,X) for every Banach space Y .

Theorem 2.18. The Banach space X has the DP∗
p property if and only if

L(X,Y ) = Cp(X,Y ) for every p-GP Banach space Y .

Proof: Assume that X has the DP∗
p property and Y is a p-GP space. Con-

sider limited sequence (xn) ∈ lweak
p (X). Then for every operator T ∈ L(X,Y ),

(Txn) ∈ lweak
p (Y ) is a limited sequence. So ‖T (xn)‖ → 0 and by Theorem 2.3

T ∈ Cp(X,Y ).

Conversely suppose that Y = c0, (xn) ∈ lweak
p (X) and (x∗

n) is a weak∗ null

sequence in X∗. Define T : X → c0 by Tx = (〈x, x∗
n〉). Then by assumption,

‖Txn‖ → 0. Therefore

|〈xn, x
∗
n〉| ≤ sup

k
|〈xn, x

∗
k〉| = ‖Txn‖ → 0

as n → ∞. By Theorem 2.2, X has the DP∗
p property. �
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