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A study of universal elements in classes

of bases of topological spaces

Dimitris N. Georgiou, Athanasios C. Megaritis,

Inderasan Naidoo, Fotini Sereti

Abstract. The universality problem focuses on finding universal spaces in classes
of topological spaces. Moreover, in “Universal spaces and mappings” by S. D. Ili-
adis (2005), an important method of constructing such universal elements in
classes of spaces is introduced and explained in details. Simultaneously, in
“A topological dimension greater than or equal to the classical covering dimen-
sion” by D.N. Georgiou, A.C. Megaritis and F. Sereti (2017), new topological
dimension is introduced and studied, which is called quasi covering dimension
and is denoted by dimq . In this paper, we define the base dimension-like function

of the type dimq, denoted by b - dimIF
q
, and study the property of universality

for this function. Especially, based on the method of “Universal spaces and
mappings” by S.D. Iliadis (2005), we prove that in classes of bases which are
determined by b - dimIF

q
there exist universal elements.

Keywords: topological dimension; universality property; quasi covering dimen-
sion

Classification: 54F45

1. Introduction

The small inductive dimension (ind), the large inductive dimension (Ind) and

the covering dimension (dim) are three topological dimensions which have been

studied in details, see for example [9], [10], [1], [11].

Recently, a new dimension for topological spaces, called quasi covering dimen-

sion (dimq) was introduced, proving that it is always greater than or equal to

dim and many properties of this dimension have been studied, see [5]. Also, this

dimension has been studied in the view of matrix theory, giving algorithms which

compute this dimension for finite spaces, see for example [2], [3], [4].

Moreover, the notion of universality for spaces attracts the interest of finding

universal spaces in various classes of spaces, see [8], [6], [7]. A space T is said to

be universal in a class IP of spaces if: (a) T ∈ IP and (b) for every X ∈ IP there
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exists an embedding of X into T . A space T , which satisfies the condition (b)

only, is said to be containing for the class IP.

For example, for a fixed infinite cardinal τ , in the class of all T0-spaces of

weight less than or equal to τ , in the class of all regular T0-spaces of weight less

than or equal to τ and in the class of all completely regular T0-spaces of weight

less than or equal to τ there exist universal elements, see [7].

However, in [8] the author gives a different approach to the universality prob-

lem. Given an indexed collection S of T0-spaces of weight less than or equal to

a given infinite cardinal τ , the author constructs by a standard manner some con-

taining T0-spaces for S of weight less than or equal to τ . This method is proved

to be a significant tool for the study of the universality problem, see [8], [6], [7].

In addition, the universality problem is also investigated for classes of bases

of topological spaces. This study leads to the definition of base dimension-like

functions of the types ind, Ind and dim, see [8], verifying the universality property

in classes of bases which are characterized by these dimensions.

In this paper, based on the topological dimension quasi covering dimension,

dimq, we define the base dimension-like function of the type dimq and we prove

the existence of universal elements in classes of bases that are determined by this

function. This result is based on the method of constructing containing spaces as

it is presenting in [8].

2. Preliminaries – a method of constructing containing spaces

In this section, we recall basic definitions, notations and the method of con-

structing containing spaces that are needed for this paper and for more details

we refer to [8].

We agree that throughout the paper we denote by τ a fixed infinite cardinal,

by F the set of all finite subsets of τ and we assume that all spaces are T0-spaces

of weight less than or equal to τ . We shall use the symbol “≡” in a relation,

meaning that one or both sides of the relation are new notations.

Moreover, we shall use indexed sets. An indexed set is a mapping F of a set Λ

into a set Y . Hence, F is a subset of Λ × Y and its elements have the form

(λ, yλ), where λ ∈ Λ and yλ = F (λ). However, for the simplicity of notations

each element (λ, yλ) of F is identified with the element yλ of Y and the indexed

set F is denoted by {yλ : λ ∈ Λ}.

An indexed set F : Λ → Y is said to be an indication of Y if F (Λ) = Y and

the set Λ is called the indexing set of F . Usually, in order to emphasize the use

of the set Λ, F is called a Λ-indexed set.

A family B of open subsets of a space X is said to be a base for X if any open

subset of X is a union of elements of B.
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Any τ -indexed baseM = {Uδ : δ ∈ τ} of X is called amark ofX and a spaceX

is called marked if a mark of X is chosen.

Let S be an indexed collection of spaces. An S-indexed collection

B ≡ {BX : X ∈ S},

where BX is a base for X of cardinality less than or equal to τ , is called a co-base

for S.

An S-indexed collection M ≡ {MX : X ∈ S} of τ -indexed families is said to

be a co-indication of an S-indexed set B ≡ {BX : X ∈ S} of families if MX is an

indication of BX for every X ∈ S.

Also, an S-indexed collection

(2.1) M ≡ {{UX
δ : δ ∈ τ} : X ∈ S},

where {UX
δ : δ ∈ τ} is a τ -indexed base for X , is called a co-mark of S. The

co-mark M of S is said to be a co-extension of a co-mark

M+ ≡ {{V X
δ : δ ∈ τ} : X ∈ S}

of S if there exists a one-to-one mapping θ of τ into itself such that for every

X ∈ S and for every δ ∈ τ , V X
δ = UX

θ(δ). The corresponding mapping θ is called

an indicial mapping from M+ to M.

We shall deal with F -indexed families of equivalence relations on S. For such

a family R ≡ {∼s : s ∈ F} we shall write

C(R) =
⋃

{C(∼s) : s ∈ F},

where C(∼s) denotes the set of all equivalence classes of the relation “∼s”. We

will, frequently, refer to the minimal ring of subsets of S containing C(R), which

is denoted by C♦(R).

Let R1 ≡ {∼s
1 : s ∈ F} and R0 ≡ {∼s

0 : s ∈ F} be two F -indexed families of

equivalence relations on S. It is said that R1 is a final refinement of R0 if for

every s ∈ F , there exists t ∈ F such that ∼t
1 ⊂ ∼s

0.

An F -indexed family R ≡ {∼s : s ∈ F} of equivalence relations on S is said to

be admissible if the following conditions are satisfied:

(a) ∼∅ = S× S;

(b) for every s ∈ F the number of ∼s-equivalence classes is finite; and

(c) ∼s ⊂ ∼t, if t ⊂ s.

For every s ∈ F \{∅}, on the class of all marked spaces an equivalence relation,

denoted by ∼s
m, is defined as follows, see [8]: Two marked spaces X and Y are

∼s
m-equivalent if there exists an isomorphism i of the algebra of subsets of X
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generated by the set {UX
δ : δ ∈ s} onto the algebra of subsets of Y generated by

the set {UY
δ : δ ∈ s} such that i(UX

δ ) = UY
δ for every δ ∈ s. This relation is called

s-standard and the isomorphism i is called natural.

We consider the co-mark (2.1) of S. For every s ∈ F \ {∅}, the s-standard

equivalence relation “∼s
m” defines on S an equivalence relation, denoted by “∼s

M”,

as follows, see [8]:

Two elements X and Y of S are ∼s
M-equivalent if and only if the marked spacesX

and Y are ∼s
m-equivalent (that is, ∼s

M = ∼s
m ∩ (S×S)). We also set ∼∅

M= S×S.

We denote by

RM ≡ {∼s
M : s ∈ F}

the indexed family of equivalence relations “∼s
M” on S, which is called M-

standard. An admissible family R of equivalence relations on S is said to be

M-admissible if R is a final refinement of RM.

Let R ≡ {∼s : s ∈ F} be an M-admissible family of equivalence relations on S.

On the set of all pairs (x,X), where X ∈ S and x ∈ X , we consider an equivalence

relation, denoted by “∼M
R ”, as follows: (x,X) ∼M

R (y, Y ) if and only if X ∼s Y

for every s ∈ F , and either x ∈ UX
δ and y ∈ UY

δ or x /∈ UX
δ and y /∈ UY

δ for every

δ ∈ τ .

The set of all equivalence classes of the relation “∼M
R ” is denoted by T(M,R)

or simply by T, that is T = C(∼M
R ). (It is assumed that T(M,R) = ∅, if all

elements of S are empty.) See [8].

For every H ∈ C♦(R) the set of all a ∈ T(M,R) for which there exists an

element (x,X) ∈ a such that X ∈ H is denoted by T(M,R,H) ≡ T(H). For

every δ ∈ τ and H ∈ C♦(R) we denote by UT
δ (H) the set of all a ∈ T(M,R) for

which there exists an element (x,X) ∈ a such that X ∈ H and x ∈ UX
δ .

We denote by BT
∗ the set of all sets of the form UT

δ (H), where δ ∈ τ , H ∈ C(∼t)

and ∼t ⊂ ∼
{δ}
M . The set BT

∗ is a base for a topology on the set T, see Lemma 1.2.6

of [8]. The set T equipped with the topology for which the set BT
∗ is a base will

be called containing space for the indexed collection S corresponding to the co-

mark M and the family R. Since |BT
∗ | 6 τ , the weight of T is 6 τ .

The subspaces of T of the form T(L), where L ∈ C♦(R), are said to be primary

subspaces of T.

For every subset κ of τ and L ∈ C♦(R) we set

(1) BT
κ ≡ {UT

δ (H) : δ ∈ κ and H ∈ C(R)};

(2) BT
♦,κ ≡ {UT

δ (H) : δ ∈ κ and H ∈ C♦(R)};

(3) BL
κ ≡ {UT

δ (H) ∈ BT
κ : H ⊂ L};

(4) BL
♦,κ ≡ {UT

δ (H) ∈ BT
♦,κ : H ⊂ L}.

If for every X ∈ S the family {UX
δ : δ ∈ κ} is a base for X , then the families

BT
κ and BT

♦,κ are bases for the space T and the families BL
κ and BL

♦,κ are bases
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for the space T(L), see Corollary 1.2.8 of [8]. The families BT
κ and BL

κ (or BT
♦,κ

and BL
♦,κ) are called κ-standard bases ((♦, κ)-standard bases, respectively) for the

corresponding spaces T and T(L).

For every element X of S there exists a natural embedding eXT of X into the

space T(M,R) defined as follows: for every x ∈ X , eXT (x) = a, where a is the

element of T(M,R) containing the pair (x,X), see Proposition 1.2.10 of [8].

We suppose that for every X ∈ S a subset QX of X is given. The S-indexed

set

(2.2) Q ≡ {QX : X ∈ S}

is called a restriction of S. Especially, a restriction Q ≡ {QX : X ∈ S} of S is

called open (or closed) if for every X ∈ S, QX is an open (a closed, respectively)

subset of X .

We consider the restriction (2.2) of S. The trace on Q of the co-mark M of S

is the co-mark

M|Q ≡ {{UX
δ ∩QX : δ ∈ τ} : QX ∈ Q}

of Q. The trace on Q of an equivalence relation “∼” on S is the equivalence

relation on Q denoted by ∼|Q and defined as follows: QX∼|QQY if and only if

X ∼ Y .

Let R ≡ {∼s : s ∈ F} be an F -indexed family of equivalence relations on S.

The trace on Q of the family R is the F -indexed family

R|Q ≡ {∼s|Q : s ∈ F}

of equivalence relations on Q. The trace on Q of an element H of C♦(R) is the

element

H|Q ≡ {QX ∈ Q : X ∈ H}

of C♦(R|Q).

An M-admissible family R of equivalence relations on S is said to be (M,Q)-

admissible if R|Q is an M|Q-admissible family of equivalence relations on Q.

If R is an (M,Q)-admissible family of equivalence relations on S, then we can

consider the containing space T(M|Q,R|Q) for the indexed collection Q corre-

sponding to the co-mark M|Q and the M|Q-admissible family R|Q. The contain-

ing space T(M|Q,R|Q) is denoted briefly by T|Q.

There exists a natural embedding of T(M|Q,R|Q) into T(M,R). So we can

consider the containing space T(M|Q,R|Q) as a subspace of the space T(M,R).

The subsets of this form will be called specific subsets of T(M,R).

Also, if L is an element of C♦(R) and E = L|Q, consequently the subspace

T(M|Q,R|Q,L|Q) of T(M|Q,R|Q) is denoted by T(E) ≡ T(L|Q).
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Let R be an M-admissible family of equivalence relations on S. A restriction

Q ≡ {QX : X ∈ S} is said to be an (M,R)-complete restriction if the family R is

(M,Q)-admissible and the subset T|Q of T satisfies the following condition: for

every point a of T|Q and for every element (x,X) of a we have x ∈ QX .

In our consideration, by a class of subsets we mean a class IF consisting of

pairs (Q,X), where Q is a subset of a space X . Let IF be a class of subsets.

A restriction Q of S is said to be an IF-restriction if (QX , X) ∈ IF for every

X ∈ S. Also, a restriction Q of S is said to be complete if there exists a co-

mark M of S and an (M,Q)-admissible family R of equivalence relations on S

such that Q is an (M,R)-complete restriction. A class IF of subsets is said to be

complete if for every indexed collection S of spaces any IF-restriction is complete.

An element (QT , T ) of a class IF of subsets is said to be universal in IF if for

every (QZ , Z) ∈ IF there exists an embedding h of Z into T such that QZ ⊆

h−1(QT ).

Definition 2.1 ([8]). A nonempty class IF of subsets is said to be saturated

if for every indexed collection S of spaces and for every IF-restriction Q of S,

there exists a co-mark M+ of S satisfying the following condition: for every co-

extension M of M+, there exists an (M,Q)-admissible family R+ of equivalence

relations on S such that for every admissible family R of equivalence relations

on S, which is a final refinement of R+, and elements L and H of C♦(R) for

which L ⊂ H, we have (T(H|Q),T(L)) ∈ IF.

The co-mark M+ is called an initial co-mark corresponding to the IF-restric-

tion Q (or corresponding to the restriction Q and the class IF). Also the family R+

is called an initial family corresponding to the co-mark M and the IF-restriction Q

(or corresponding to the co-mark M, the restriction Q and the class IF).

By a class of bases we mean a class consisting of pairs (B,X), where B is

a base for a space X such that ∅, X ∈ B. Let ID be a class of bases. We say that

a base B for a space X is a ID-base if (B,X) ∈ ID. A co-base B ≡ {BX : X ∈ S}

for a collection S of spaces is said to be a ID-co-base if for every X ∈ S, BX is

a ID-base for X .

An element (BT , T ) of a class ID of bases is said to be universal in ID if

for every (BX , X) ∈ ID there exists an embedding h of X into T such that

BX = {h−1(V ) : V ∈ BT }.

Definition 2.2 ([8]). A class ID of bases is said to be saturated if for every indexed

collection S of spaces, for every ID-co-base B for S and for every co-indication N

of B, there exists a co-extension M+ of N satisfying the following condition:

for every co-extension M of M+, there exists an M-admissible family R+ of

equivalence relations on S such that for every admissible family R of equivalence
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relations on S, which is a final refinement of R+, and for every element L ∈ C♦(R),

we have (BL
♦,θ(τ),T(L)) ∈ ID, where θ is an indicial mapping from N to M.

The co-markM+ is called an initial co-mark corresponding to the co-indication

N of B and the class ID. Also the family R+ is called an initial family corre-

sponding to the co-mark M, the co-indication N of B, and the class ID.

Facts. In [8] the following results are proved:

(1) The class of all bases is saturated.

(2) The nonempty intersection of not more than τ saturated classes of bases

is also a saturated class of bases.

(3) In any saturated class of bases there exist universal elements.

(4) The class of all subsets is saturated.

(5) The nonempty intersection of not more than τ saturated classes of subsets

is also a saturated class of subsets.

(6) In any saturated class of subsets there exist universal elements.

In [5] the notion of a new topological dimension, called quasi covering dimension

and denoted by dimq, is introduced, introducing firstly the meaning of the quasi

cover.

Let X be a topological space. A cover of X is a nonempty set of subsets of X ,

whose union is X . If B is a base for X , then a cover c of X is said to be B-cover

if all elements of c are elements of B.

A quasi cover of X is a nonempty set of subsets of X , whose union is a dense

element of X . Two quasi covers c1 and c2 are said to be similar (in short, c1 ∼ c2)

if their unions are the same dense subset of X .

A family r of subsets of X is said to be a refinement of a family c of subsets

of X (in short, r ≺ c) if each element of r is contained in an element of c.

If IF is a class of subsets, then a cover c of a space X is said to be IF-cover if

(V,X) ∈ IF for every V ∈ c. An IF-cover of a space X , which is a refinement of

a cover c of X , is called IF-refinement of c.

Moreover, it is said that IF satisfies the finite union condition if the conditions

(Fi, X) ∈ IF, i ∈ j ∈ ω, imply that
(
⋃

{Fi : i ∈ j}, X
)

∈ IF. It is said that

IF satisfies the empty subset condition if the condition (Q,X) ∈ IF implies that

(∅, X) ∈ IF.

We also recall the notion of the order. The order of a family r of a space X is:

(a) The integer −1 if r consists of the empty set only (and therefore, X = ∅).

(b) An integer n ∈ ω if the intersection of any n+ 2 distinct elements of r is

empty and there exists n+1 distinct elements of r, whose intersection is

not empty.

(c) The symbol ∞ if for every n ∈ ω, there exist n distinct elements of r,

whose intersection is not empty.
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Definition 2.3 ([5]). The quasi covering dimension (dimq) of a spaceX is defined

as follows:

(1) dimq(X) 6 n, where n ∈ {−1, 0, 1, . . .}, if and only if for every finite open

quasi cover c of X , there exists a finite open quasi cover r of X , such

that r ≺ c, r ∼ c and the order of r is less than or equal to n.

(2) dimq(X) = n, where n ∈ {0, 1, 2, . . .}, if and only if dimq(X) 6 n and

dimq(X) 
 n− 1.

If there exists no integer n for which dimq(X) 6 n, then we put dimq(X) = ∞.

3. Base dimension-like function of the type dimq

In this section we define the base dimension-like function of the type dimq

and based on the method of constructing containing spaces as it is presenting in

Section 2, we prove the universality property for this dimension.

Let B be a base for a space X . A quasi cover c of X is said to be B-quasi

cover if all elements of c are elements of B.

Let IF be a class of subsets. A quasi cover c of a space X is said to be IF-quasi

cover if (V,X) ∈ IF for every V ∈ c. An IF-quasi cover of a space X , which is

refinement of a quasi cover c of a space X and is similar to c, is called IF-quasi

refinement.

Definition 3.1. For every class IF of subsets we denote by b - dimIF
q the (unique)

function that has as domain the class of all bases and as range the set {−1,∞}∪ ω

satisfying the following condition:

b - dimIF
q (B,X) 6 n, n ∈ {−1} ∪ ω,

if and only if for every finite B-quasi cover c of the space X , there exists an IF-

quasi refinement of c, which has order less than or equal to n. If there exists no

integer n for which b - dimIF
q (B,X) 6 n, then we put b - dimIF

q (B,X) = ∞.

Theorem 3.2. For every n ∈ {−1} ∪ ω the class IP(b - dimIF
q 6 n) of all bases

(B,X) with b - dimIF
q (B,X) 6 n is saturated, provided that IF is a complete and

saturated class of subsets satisfying the finite union condition and the empty

subset condition.

Proof: Let IF be a complete and saturated class of subsets satisfying the fi-

nite union condition and the empty subset condition and let n be an element of

{−1} ∪ ω. We shall prove that the class

IPn ≡ IP(b - dimIF
q 6 n)
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is saturated. Let S be an indexed collection of spaces, B ≡ {BX : X ∈ S} a IPn-

co-base for S and

N ≡ {{V X
ε : ε ∈ τ} : X ∈ S}

a co-indication of B. Thus, for every X ∈ S we have b - dimIF
q (BX , X) 6 n. We

prove that there exists a co-extension M+ of N satisfying the following condi-

tion: for every co-extension M of M+ there exists an M-admissible family R+ of

equivalence relations on S such that for every admissible family R of equivalence

relations on S, which is a final refinement of R+, and for every L ∈ C♦(R), we

have (BL
♦,θ(τ),T(L)) ∈ IPn, where θ is an indicial mapping from N to M.

Firstly, for every q ∈ F \ {∅} and for every η ∈ q we construct an IF-restriction

of S:

W(q, η) ≡ {WX(q, η) : X ∈ S}.

Let q = {η0, . . . , ηk} be an element of F \ {∅}. For every X ∈ S we consider the

indexed set

VX(q) ≡ {V X
η : η ∈ q}.

If it is not true that the set VX(q) is a quasi cover of X , then for every η ∈ q we

set WX(q, η) = ∅. We suppose that the set VX(q) is a quasi cover (and therefore,

a BX -quasi cover) of X . Since b - dimIF
q (BX , X) 6 n, there exists an IF-quasi

refinement rXq of V X(q), which has order less than or equal to n. We set

WX(q, η0) =
⋃

{O ∈ rXq : O ⊆ V X
η0
}.

If there is no such elements O ∈ rXq , then it is supposed that WX(q, η0) = ∅.

Also, we set

WX(q, ηi) =
⋃

{O ∈ rXq : O ⊆ V X
ηi

and O * V X
η for every η ∈ {η0, . . . , ηi−1}}

for every i ∈ {1, . . . , k}. If there is no such elements O ∈ rXq , it is supposed

that WX(q, ηi) = ∅. Since rXq is an IF-quasi cover of order less than or equal

to n and IF satisfies the finite union condition and the empty subset condi-

tion, the set WX(q) ≡ {WX(q, η) : η ∈ q} is also IF-quasi cover of X , simi-

lar to rXq
(

since
⋃

{O : O ∈ rXq } =
⋃

{WX(q, η) : η ∈ q}
)

of order less than or

equal to n. Moreover, we have WX(q, η) ⊂ V X
η for every η ∈ q. We note that

the quasi cover WX(q) has also the following property: if η0, . . . , ηn+1 are dis-

tinct elements of q such that WX(q, ηi) 6= ∅ for every i ∈ {0, . . . , n + 1}, then

WX(q, η0), . . . ,W
X(q, ηn+1) are distinct elements of WX(q) and therefore,

WX(q, η0) ∩ . . . ∩WX(q, ηn+1) = ∅.
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Let M+ be a co-mark of S, which is a co-extension of N. (We denote by θN an

indicial mapping from N to M+.) Without loss of generality we can suppose that

for every q ∈ F \{∅} and for every η ∈ q, M+ is an initial co-mark corresponding

to the restriction W(q, η) of S and the class IF. Moreover, since IF is a complete

class, we can suppose that there exists a family R+
0 of equivalence relations on S

such that for every q ∈ F \ {∅} and for every η ∈ q we have:

(a) the family R+
0 is (M+,W(q, η))-admissible; and

(b) the restriction WX(q, η) of S is (M+,R+
0 )-complete.

We show that M+ is an initial co-mark of S corresponding to the co-indica-

tion N of B and the class IPn. Indeed, let

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. We denote by θ+ an indicial mapping

from M+ to M. Then, the co-mark M is a co-extension of the co-mark N and

θ ≡ θ+ ◦ θN is an indicial mapping from N to M. (Therefore, V X
ε = UX

θ(ε)

for every ε ∈ τ and X ∈ S.) For every q ∈ F \ {∅} and for every η ∈ q we

consider a family R+
q,η of equivalence relations on S, which is an initial family

corresponding to the co-mark M, the restriction W(q, η) of S and the class IF.

We denote by R+ a family of equivalence relations on S, which is a final refine-

ment of all families R+
q,η. In addition, we suppose that R+ is a final refinement of

the family R+
0 .

We prove that R+ is an initial family of S corresponding to the co-mark M,

the co-indication N of B, and the class IPn. We consider an arbitrary admissible

family R ≡ {∼s : s ∈ F} of equivalence relations on S, which is a final refinement

of R+, and prove that for every L ∈ C♦(R) we have (BL
♦,θ(τ),T(L)) ∈ IPn, where

BL
♦,θ(τ) is the (♦, θ(τ))-standard base for the subspace T(L) of T.

Let L ∈ C♦(R) and

c ≡ {UT
δ0
(L0), . . . , U

T
δk
(Lk)}

be a finite BL
♦,θ(τ)-quasi cover of T(L), where L0 ⊂ L, . . . ,Lk ⊂ L and where

δ0, . . . , δk ∈ θ(τ). Then, the union of the elements of c is an open and dense

subset D of T(L), which is determined by the (♦, θ(τ))-standard base BL
♦,θ(τ)

of T(L). We set s = {δ0, . . . , δk} and q = θ−1(s). For every X ∈ L we denote

by qX the set of all elements η of q such that for some i ∈ {0, . . . , k}, θ(η) = δi
and X ∈ Li. It is easy to see that qX 6= ∅ and that the set

V X(qX) = {V X
η : η ∈ qX}

is a BX -quasi cover of X . Then the set
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WX(qX) = {WX(qX , η) : η ∈ qX}

is an IF-quasi cover of X , which is similar to V X(qX).

Let t be an element of F such that if K is ∼t-equivalence class andK∩ Li 6= ∅

for some i ∈ {0, . . . , k}, then K ⊂ Li. Obviously, if X ∼t Y , then qX = qY .

Let K be an element of C(∼t) such that K ⊂ L. We let qK = qX , where

X ∈ K. By the above, qK is independent of the element X of K.

We consider the quasi cover

c(K) ≡ {UT
δi
(Li) ∩ T(K) = UT

δi
(K) : δi ∈ θ(qK),K ⊂ Li}

of T(K). We can see that the union of the elements of c(K) is the open and

dense subset D ∩ T(K) ≡ DK of T(K). We prove that

r(K) ≡ {T|W(qK,η) ∩ T(K) = T(K|W(qK,η)) : η ∈ qK}

is an IF-quasi refinement of c(K) of order less than or equal to n.

Firstly, we note that since IF is saturated, by the choice of the family R+ for

every η ∈ qK we have

(T|W(qK,η) ∩ T(K),T) ∈ IF,

that is r(K) is an IF-quasi cover, similar to c(K). Also, for every X ∈ K and for

every η ∈ qK we have

WX(qK, η) ⊂ V X
η

and, therefore,

eXT (WX(qK, η)) ⊂ eXT (V X
η ),

where eXT is the natural embedding of X into T. By Corollary 1.3.6 of [8] we have

T(K|W(qK,η)) =
⋃

{eXT (WX(qK, η)) : X ∈ K}

⊂
⋃

{eXT (V X
η ) : X ∈ K}

=
⋃

{eXT (UX
δi
) : X ∈ K} = UT

δi
(K),

where i ∈ {0, . . . , k} such that δi = θ(η) and K ⊂ Li, which means that r(K) is

an IF-refinement of c(K).

Now, we prove that r(K) has order less than or equal to n. Indeed, in the

opposite case, we suppose that there exist n + 2 distinct elements η0, . . . , ηn+1

of qK such that

T(K|W(qK,η0)) ∩ . . . ∩ T(K|W(qK,ηn+1)) 6= ∅
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or

(T|W(qK,η0) ∩ T(K)) ∩ . . . ∩ (T|W(qK,ηn+1) ∩ T(K)) 6= ∅.

Let a be an element of the above intersection and let (x,X) ∈ a. Then

a ∈ T|W(qK,η0) ∩ . . . ∩ T|W(qK,ηn+1).

Since the restrictions W(qK, ηi), i ∈ {0, . . . , n + 1}, are (M+,R+
0 )-complete, by

Lemma 2.2.4 of [8] these restrictions are also (M,R)-complete. Therefore,

x ∈ WX(qX , η0) ∩ . . . ∩WX(qX , ηn+1).

SinceWX(qX , η0), . . . ,W
X(qX , ηn+1) are distinct elements of WX(qX), the above

contradicts the fact that the non-indexed set WX(q) has order less than or equal

to n.

We consider the set

r ≡
⋃

{r(K) : K ∈ C(∼t) and K ⊂ L},

which is an IF-refinement of c and has order less than or equal to n. We complete

our proof, stating that r is similar to c, that is
⋃

V ∈r V = D.

Indeed, let a ∈
⋃

V ∈r V . Then there exists V ∈ r such that a ∈ V . By

consideration of the set r, there existsK ∈ C(∼t) withK ⊂ L such that V ∈ r(K),

that is there exists η ∈ qK such that V = T|W(qK,η)∩T(K). Thus, a ∈ T|W(qK,η)∩

T(K) and since

T|W(qK,η) ∩ T(K) ⊆
⋃

η∈qK

T|W(qK,η) ∩ T(K),

we have that a ∈
⋃

η∈qK T|W(qK,η)∩T(K). Finally, since r(K) is an IF-quasi cover

of T(K), which is similar to c(K), we have
⋃

η∈qK T|W(qK,η) ∩T(K) = D∩T(K)

and therefore, a ∈ D.

Conversely, let a ∈ D. Since a ∈ T(L), there exists K ∈ C(∼t) with K ⊂ L

such that a ∈ T(K). Then a ∈ D ∩ T(K). Since r(K) is an IF-quasi cover

of T(K), which is similar to c(K), we have
⋃

η∈qK T|W(qK,η)∩T(K) = D∩T(K)

and therefore, there exists η ∈ qK such that a ∈ T|W(qK,η) ∩ T(K). Thus, a ∈ V

for some V ∈ r, that is, a ∈
⋃

V ∈r V . �

Using the fact that in any saturated class of bases there exist universal elements,

see Proposition 2.5.4 of [8], we get the following corollary.

Corollary 3.3. For every n ∈ {−1} ∪ ω, in the class IP(b -dimIF
q 6 n) there

exist universal elements.

Remark 3.4. If IF is the class IP(Op) (or the class IP(Cl) or the class IP(rCl)) of

subsets consisting of all pairs (Q,X), where Q is an open (closed or regular closed,
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respectively) subset of X , then IF is a complete and saturated class of subsets,

satisfying the finite union condition and the empty subset condition, see [8]. In

each of these cases, the function b - dimIF
q is denoted by b - dimOp

q , b - dimCl
q and

b - dimrCl
q , respectively.

Therefore, by Corollary 3.3, we get the following corollary, which verifies the

existence of universal elements in different classes of bases.

Corollary 3.5. For every n ∈ {−1} ∪ ω, in the classes

(1) IP(b -dimOp
q 6 n),

(2) IP(b -dimCl
q 6 n), and

(3) IP(b -dimrCl
q 6 n),

there exist universal elements.

In [8] several base dimension-like functions of types ind, Ind, and dim are

defined and studied from the universality point of view. For each base dimension-

like function df and for every m ∈ {−1} ∪ ω, we denote by IP(df 6 m) the class

of all bases (B,X) with df(B,X) 6 m.

Using the fact that the nonempty intersection of not more than τ many sat-

urated class of bases is also a saturated class of bases we obtain the following

results. We refer the reader to the book [8] where detail information about men-

tioned base dimension-like functions can be found, as well as results related to

them.

Corollary 3.6. Let df be one of the base dimension-like functions b0- ind
IB
IL ,

b1- ind
IB
IL , b

0- indIBIL , b
1- indIBIL . If IB and IL are saturated classes of bases, and IF is

a complete and saturated class of subsets satisfying the finite union condition and

the empty subset condition, then the class

IP(b - dimIF
q 6 n) ∩ IP(df 6 m), n,m ∈ {−1} ∪ ω

is saturated provided that it is nonempty, and hence in this class there exist

universal elements.

Corollary 3.7. Let df be one of the base dimension-like functions b∨- IndIF1

IB ,

b- IndIF1

IB , b♦- IndIF1

IB . If IB and IF1 are saturated classes of bases and subsets,

respectively, satisfying the finite free union condition, and IF2 is a complete and

saturated class of subsets satisfying the finite union condition and the empty

subset condition, then the class

IP(b -dimIF2

q 6 n) ∩ IP(df 6 m), n,m ∈ {−1} ∪ ω

is saturated provided that it is nonempty, and hence in this class there exist

universal elements.
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Corollary 3.8. If IF1 and IF2 are complete and saturated classes of subsets

satisfying the finite union condition and the empty subset condition, then the

class

IP(b - dimIF2

q 6 n) ∩ IP(b - dimIF1 6 m), n,m ∈ {−1} ∪ ω

is saturated provided that it is nonempty, and hence in this class there exist

universal elements.

We complete our study, presenting some results for the universality problem

on classes of spaces, determined by the quasi covering dimension.

Definition 3.9 ([8]). Let IM be a class of bases and df a base dimension-like func-

tion. We denote by IM - df the dimension-like function with as domain the class of

all spaces and as range the class {−1,∞}∪ O, where O is the set of all ordinals,

such that for every space X , IM - df(X) is the minimal element α of {−1,∞}∪ O

for which there exists an element (B,X) of IM such that df(B,X) 6 α. If there

is no such element (B,X) of IM, then it is supposed that IM - df(X) = ∞.

Remark 3.10. Based on the above definition, for every class IM of bases we

can consider the space dimension-like function IM - b - dimIF
q such that for every

spaceX , IM - b - dimIF
q (X) is the minimal element α of {−1,∞}∪O for which there

exists an element (B,X) of IM with dimIF
q (B,X) 6 α, and IM - b - dimIF

q (X) = ∞,

if there is no such element (B,X) of IM.

If IM is the class of all bases and IF is one of the classes IP(Op), IP(Cl), IP(rCl) of

Remark 3.4, then the function IM - b - dimIF
q is denoted by s - b - dimOp

q , s - b - dimCl
q

and s - b - dimrCl
q , respectively.

Definition 3.11 ([8]). A class IP of spaces is said to be saturated if for every

indexed collection S of elements of IP, there exists a co-mark M+ of S satisfying

the following condition: for every co-extension M of M+ there exists an M-

admissible family R+ of equivalence relations on S such that for every admissible

family R of equivalence relations on S, which is a final refinement of R+, and for

every element L ∈ C♦(R), the space T(L) belongs to IP.

The co-mark M+ is called an initial co-mark of S corresponding to the class IP

and the family R+ is called an initial family of S corresponding to the co-mark M

and the class IP.

Facts. In [8] the following results are proved:

(1) The class of all spaces is saturated.

(2) The nonempty intersection of not more than τ saturated classes of spaces

is also a saturated class of spaces.

(3) In any saturated class of spaces there exist universal elements.
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Therefore, since the base dimension-like function b - dimIF
q satisfies the sat-

uration property (Theorem 3.2), and especially, the base dimension-like func-

tions b - dimOp
q , b - dimCl

q , b - dimrCl
q satisfy the saturation property, by Proposi-

tion 3.3.15 of [8] and the fact that in any saturated class of spaces there exist

universal elements, we have the following result.

Proposition 3.12. For every n ∈ {−1} ∪ ω, the classes

(1) IP(s -b -dimOp
q 6 n),

(2) IP(s -b -dimCl
q 6 n), and

(3) IP(s -b -dimrCl
q 6 n)

are saturated classes of spaces and therefore, in these classes there exist universal

elements.

It is well known that in the class of all T0-spaces of weight less than or equal

to τ there exist universal elements, see Corollary 2.1.5 of [8]. This implies that

there is a containing space for the class of all T0-spaces of weight less than or

equal to τ and dimq 6 n. So the following natural problem arises.

Open problem. Let τ be a fixed infinite cardinal and n a natural number. Does

there exist a universal element in the class of all T0-spaces X of weight less than

or equal to τ and dimq(X) 6 n?
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