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Abstract. Let N be a normal subgroup of a group G. The structure of N is given when
the G-conjugacy class sizes of N is a set of a special kind. In fact, we give the structure
of a normal subgroup N under the assumption that the set of G-conjugacy class sizes of N
is (p

a1n1

1n1
, . . . , pa11

11
, 1) × . . . × (p

arnr

rnr
, . . . , par1

r1 , 1), where r > 1, ni > 1 and pij are distinct
primes for i ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , ni}.
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1. Introduction

All groups considered in this paper are finite. Let G be a group and x an element

in G. We denote by xG the conjugacy class of G containing x, that is, xG = {g−1xg :

g ∈ G}. Then the size of xG is |G : CG(x)|, which is sometimes called the index

of x in G. Let cs(G) = {|xG| : x ∈ G}. Suppose that cs(G) = {n1, n2, . . . , nr},

where n1, n2, . . . , nr are different numbers with n1 > n2 > . . . > nr = 1. In 1953,

Itô in [9] called the vector (n1, n2, . . . , nr) the conjugate type vector of G, and the

group G is said to be a group with type (n1, n2, . . . , nr) if G has conjugate type

vector (n1, n2, . . . , nr). In the same paper, Itô proved that a group G is nilpotent

if G has type (n1, 1). Since then, the relationship between the conjugate type of

a group G and the property of G attracts interest of many authors. Camina in [8]

The research of the work is supported by the National Natural Science Foundation of
China (11901169, U1504101), the Youth Science Foundation of Henan Normal Univer-
sity (2019QK02) and Henan Engineering Laboratory for Big Data Statistical Analysis
and Optimal Control, College of Mathematics and Information Sciences, Henan Normal
University.

c© Institute of Mathematics, Czech Academy of Sciences 2021.

DOI: 10.21136/CMJ.2021.0395-20 201

http://dx.doi.org/10.21136/CMJ.2021.0395-20


gave the structure of a group G under the assumption that the conjugate type vector

of G is the product of several conjugate type vectors, see [4], [5] for more examples.

Let N be a normal subgroup of a group G and write csG(N) = {|xG| : x ∈ N}.

Since N is a union of some G-conjugacy classes contained in N , the set csG(N) has

a strong influence on the structure of N , and many interesting results are obtained,

for instance, see [1], [11].

Suppose that csG(N) = {n1, n2, . . . , nr}, where n1, n2, . . . , nr are different num-

bers with n1 > n2 > . . . > nr = 1. In this paper, we call the vector (n1, n2, . . . , nr)

the G-conjugate type vector of N . It is obvious that csG(N) = {m1,m2, . . . ,mt}

and for each mi there exists nj such that mi is a divisor of nj . Furthermore, if

w = (a1, a2, . . . , as) and v = (b1, b2, . . . , bt), we define w × v = {aibj : i = 1, 2, . . . , s,

j = 1, 2, . . . , t}.

Motivated by the results in [8], in this short paper, we consider the structure of

a normal subgroup N of G under the assumption that the G-conjugate type vector

of N is of a particular type, and the following theorem is obtained:

Theorem 3.1. Let G be a group and N a normal subgroup of G. Suppose that

G-conjugate type vector of N is

(p
a1n1

1n1
, . . . , pa11

11 , 1)× . . .× (p
arnr

rnr
, . . . , par1

r1 , 1),

where r > 1, ni > 1 and pij are distinct primes for i ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , ni}.

Then ni = 2 and N = A1 × . . . × Ar, and the G-conjugate type vector of Ai is

(pai2

i2 , pai1

i1 , 1) for each i ∈ {1, . . . , r}.

Furthermore, one of the following holds for Ai (up to multiplication by central

Sylow subgroups):

(1) Ai is abelian;

(2) Ai is a non-abelian pi1 or pi2-group;

(3) Ai is a non-nilpotent {pi1, pi2}-group with abelian Sylow subgroups.

Recall that a group G is called a p-Baer group if every p-element in G has prime

power index in G, and G is called a Baer group if every element of the group with

prime power order has prime power index in G. The structure of p-Baer groups and

Baer groups are characterized in [2]. If S is a nonempty subset of G, following [4], we

set KS = {x ∈ G : xS = S}. Then |KS | divides |S|. Other notation and terminology

are standard, see [10] for instance.
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2. Preliminaries

In this section, we give some lemmas which are useful in the proofs of our main

results.

The following lemma is a famous result as Thompson’s Lemma, and the proof can

be found in many books of group theory, see Theorem 8.2.8 of [10] for example.

Lemma 2.1. Let P ×Q be the direct product of a p-group P and a p′-group Q

and suppose that P × Q acts on a p-group G. If CG(P ) ⊆ CG(Q), then Q acts

trivially on G.

Lemma 2.2 (Wielandt). Let G be a group and x an element of G. If both |x|

and |xG| are powers of a prime p, then x ∈ Op(G).

Lemma 2.3. Let G be a group and N a normal subgroup of G. Suppose that pa

is the highest power of the prime p which divides the G-conjugacy class sizes of

elements in N . If there is a p-element x in N such that |xG| = pa, then N has

a normal p-complement.

P r o o f. Since x is a p-element and |xG| = pa, we have that 〈xG〉 6 Op(G)

by Lemma 2.2. Therefore, 〈xG〉 6 Op(G) ∩ N 6 Op(N). Write H = 〈xG〉 and

Z = CG(H) ∩ N = CN (H). For every p′-element y ∈ CN (x), the hypothesis of

this lemma implies that (p, |CG(x) : CG(xy)|) = 1. Since N is normal in G, we

conclude that (p, |CN (x) : CN (xy)|) = 1. That is, (p, |CN (x) : CN (x) ∩CN (y)|) = 1.

Therefore, H ∩ CN (x) 6 H ∩ CN (y), that is, CH(x) 6 CH(y). Now by Lemma 2.1,

we have that y ∈ CN (H) = Z.

Since |xN | divides |xG|, we have that |xN | is a power of p. From the above

paragraph, we see that Z contains all the p′-elements in CN (x), and thus |N : Z|

is a power of p. Now let w be an arbitrary p′-element in Z. By the previous

argument, p does not divide |CN (x) : CN (w) ∩ CN (x)|. As Z is a normal subgroup

of CN (x), we have that p does not divide |Z : CZ(w)|. Therefore, every p′-element

in Z has index in Z prime to p, so by [6], Lemma 1, we have that Z = K × P ,

where K is a p-complement of Z and P is a Sylow p-subgroup of Z. Therefore, K is

a normal p-complement of N since |N : Z| is a power of p. �

Lemma 2.4. Let G be a group and N a normal subgroup of G such that pa is the

highest power of the prime p which divides the G-conjugacy class size of an element

in N . Assume that there exists a p-element x in N such that |xG| = pa. If m is

a G-conjugacy class size in N such that (m, p) = 1, then there exists a p′-element

in N , say y, such that |(xy)G| = pam.
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P r o o f. By Lemma 2.3, we see that N has a normal p-complement K. As |xN |

divides |xG|, |xN | is a power of p, and thus K 6 CN (x). Let u be a p′-element

in CN (x). Then p does not divide |CG(x) : CG(ux)|. Since N is normal in G, we

have that p does not divide |CN (x) : CN (ux)|. That is to say, p does not divide the

index of u in CN (x). Therefore, by [6], Lemma 1, CN (x) = Px ×K with Px a Sylow

p-subgroup of CN (x) and K a normal p-complement of CN (x). Let y be an element

in N such that |yG| = m. Then p does not divide |yN | since |yN | divides |yG|,

whence y centralizes a Sylow p-subgroup of N , and thus y centralizes Op(N). Since

x ∈ Op(G) by Lemma 2.2, we have that x ∈ Op(G) ∩ N 6 Op(N). Therefore,

y centralizes x. We may assume that y ∈ K, and thus |(xy)G| = pam, as required.

�

Lemma 2.5 ([7], Proposition 1). Let G be a group and p a prime. Suppose that

x ∈ G such that |xG| is a power of p. Then [xG, xG] ⊆ Op(G).

Lemma 2.6. Let G be a group and p and r two primes. Suppose that there

is an r-element x ∈ G such that |xG| is a power of p. If we set B = xG, then

〈BB−1〉 ⊆ Op,r(G).

P r o o f. First suppose that Op(G) = 1. Then by Lemma 2.5, [B,B] = 1. It

follows that 〈B〉 is an abelian normal subgroup of G, and thus 〈B〉 6 F (G). As x

is an r-element, we have that 〈B〉 6 Or(G). Since 〈BB−1〉 6 〈B〉, we have that

〈BB−1〉 6 Or(G).

Now suppose that Op(G) 6= 1, we can set G = G/Op(G). Then Op(G) = 1.

Since |x̄G| divides |xG|, we have that |x̄G| is a power of p. By the above paragraph,

we have that 〈BB−1〉 6 Or(G). Therefore, 〈BB−1〉 ⊆ Op,r(G). �

Lemma 2.7. Let G be a group and N a normal subgroup of G. Suppose

that x, y ∈ N such that |xG| = pa and |yG| = qb, where p and q are distinct primes

with pa < qb. If there is no element in N with G-conjugacy class size divisible by pq,

then x is a q-element (up to multiplication by central elements).

P r o o f. Write x = x1x2 . . . xs such that each xi is an element of a prime power

order, xixj = xjxi for all i and j and (|xi|, |xj |) = 1 for i 6= j. Since x is not central

in G, we may assume that x1 /∈ Z(G) and that x1 is an r-element for a prime r.

Write B = xG
1 , C = yG and D = CB. Since |B| divides |xG|, we have

that (|B|, |yG|) = 1. Therefore, similarly as in [3], Lemma 1(b), we see that D

is a G-conjugacy class contained in N and |D| divides |C||B|. In fact, since

(|yG|, |xG
1 |) = 1, we have that G = CG(y)CG(x1). For every ygxh

1 ∈ CB, we have

that gh−1 ∈ G = CG(y)CG(x1). Then there exist a ∈ CG(y) and b ∈ CG(x1) such
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that gh−1 = a−1b. So ag = bh. Furthermore, ygxh
1 = yagxbh

1 = (yx1)
ag ∈ (yx1)

G.

Therefore, CB ⊆ (yx1)
G. Conversely, it is obvious that (yx1)

G ⊆ yGxG
1 = CB.

Therefore, CB = yGxG
1 = (yx1)

G is a conjugacy class. Now it is clear that

|D| > |C|. So by the hypothesis of this lemma, |D| = |C|. Repeating the argument

we see that DB−1 is a G-conjugacy class contained in N , and thus C = CBB−1

since C ⊆ CBB−1. Therefore, H = 〈BB−1〉 6 KC . Since |Kc| divides |C|, we have

that |H | divides |C|, whence |H | is a power of q. According to Lemma 2.6, we have

that 〈BB−1〉 ⊆ Op,r(G), which forces r = q. Therefore, x2x3 . . . xs is central in G

and by replacing x with x1 we can assume that x is a q-element. �

Lemma 2.8 ([11], Lemma 2.2). Let G be a group. A prime p does not divide any

conjugacy class size of G if and only if G has a central Sylow p-subgroup.

3. Proof of the Main Result

In this section, we give the proof of the main result.

Theorem 3.1. Let G be a group and N a normal subgroup of G. Suppose that

the G-conjugate type vector of N is

(p
a1n1

1n1
, . . . , pa11

11 , 1)× . . .× (p
arnr

rnr
, . . . , par1

r1 , 1),

where r > 1, ni > 1 and pij are distinct primes for i ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , ni}.

Then ni = 2 and N = A1 × . . . × Ar, and the G-conjugate type vector of Ai is

(pai2

i2 , pai1

i1 , 1) for each i ∈ {1, . . . , r}.

Furthermore, one of the following holds for Ai (up to multiplication by central

Sylow subgroups):

(1) Ai is abelian;

(2) Ai is a non-abelian pi1 or pi2-group;

(3) Ai is a non-nilpotent {pi1, pi2}-group with abelian Sylow subgroups.

P r o o f. We first consider the case r = 2. Let x, yi ∈ N such that |xG| = pa11

11 and

|yGi | = pa1i

1i for 2 6 i 6 s. Then by Lemma 2.7, x is a p1i-element for each i. Thus,

n1 = 2 and x is a p2-element. For every p′12-element y ∈ CN (x), the hypothesis

implies that p12 does not divide |CN (x) : CN (xy)|, whence CN (x) = P2 × L by [6],

Lemma 1, where P2 is a Sylow p12-subgroup of N . Therefore, p12 does not divide

the index of any p2j-element in N for j = 1, . . . , t. Similarly, we have n2 = 2, and

if z is an element in N such that |zG| = pa21

21 , then z is a p22-element. Furthermore,

we have that CN (z) = Q2×K, where Q2 is a Sylow p22-subgroup of N , and p22 does

not divide the index of any p1i-element in N for i = 1, 2.
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Now assume that w is an element in N such that |wG| = pa12

12 . By the above para-

graph we see that w is neither a p21-element nor a p22-element. If w is a p12-element,

we may assume that w ∈ P2. It follows that L 6 CG(w). Then pa12

12 = |wG| di-

vides |G : L| = |G : CG(x)||CG(x) : CN (x)||CN (x) : K|, which is a contradiction.

Therefore, w must be a p11-element. Let v be an arbitrary p′11-element in CN (w).

Since p11p12 does not divide any G-conjugacy class size of element in N , p11 does not

divide |CG(w) : CG(wv)| and thus, p11 does not divide |CN (w) : CN (wv)| since N is

normal in G. Therefore, CN (w) = P1 ×M , where P1 is a Sylow p11-subgroup of N .

Recall that |N : CN (w)| is a p12-number. If u is a p21- or p22-element in N , then u

is contained in a conjugation of M and thus, p11 does not divide |u
N |. Combining

this with the above paragraph, we see that |uN | is a power of p21 or p22. Similarly,

if h is a p11- or p12-element in N , then |hN | is a power of p11 or p12.

In the following, we suppose that r > 2. Let x be an element of N such that

|xG| = pa11

11 . Then as in the first paragraph of the proof we have that n1 = 2 and

that x is a p12-element. For every p
′

12-element y ∈ CN (x) we have that

|CG(x) : CG(x) ∩ CG(y)| = |CG(x) : CG(xy)|

is prime to p12. Since CN (x) E CG(x), we have that |y
CN (x)| is a p′12-number.

Therefore, we have that CN (x) = P12 ×K, where P12 is a Sylow p12-subgroup of N .

It is easy to see that N is a p12-Baer group. Furthermore, all {p11, p12}
′-elements

have index coprime to p12. On the other hand, it follows from Lemma 2.4 that all

p12-elements have index pa11

11 or are central. So an element of index pa12

12 must be

a p11-element, we can assume that w is such an element. Then by arguing similarly as

for the element x, we have that N is a p11-Baer group. Thus, by [7], Theorem A, we

see that P11P12 is a normal subgroup of N . Notice that every element of order prime

to p11 and p12 have index prime to p11 and p12. Therefore, P11P12 is centralized by

all {p11, p12}
′-elements of N . If we set A1 = P11P12, then A1 satisfies the theorem.

Similarly, we can find all Ai for 2 6 i 6 r.

Let i ∈ {1, . . . , r}. Suppose that Ai is not abelian. For every element x ∈

Ai \Z(Ai), since Ai is normal in G, we have that |x
Ai | divides |xG|. Since csG(Ai) =

{pai2

i2 , pai1

i1 , 1}, we have that |xAi | is a power of pi1 or pi2. Then according to

Lemma 2.8, the {pi1, pi2}-complement of Ai is central in Ai. Up to multiplica-

tion by central Sylow subgroups, we can assume that Ai is a {pi1, pi2}-group. Recall

that pi1pi2 does not divide |x
Ai | for any x ∈ Ai. If Ai is nilpotent, then Ai is a pi1

or a pi2-group. If Ai is not nilpotent, since Ai is a Baer group, we have that every

Sylow subgroup of Ai is abelian by Theorem of [2]. �
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